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Abstract—In this paper we present a novel distributed
supervision strategy for networks of linear locally regulated
and possibly dynamically coupled systems connected via data
links and subject to coordination constraints on the evolutions
of relevant variables of them. Such a coordination-by-constraint
paradigm is accomplished by resorting to a Distributed Com-
mand Governor approach where each agent of the strategy is
in charge to locally modify, whenever necessary and on the
basis of a reduced amount of data exchanged with the other
agents, the prescribed set-points to the regulated subsystems
so as that the global pointwise-in-time coordination constraints
are satisfied along the overall network evolutions. A sequential
strategy, where only one agent per time is allowed to manipulate
its own reference signal, is fully described and analyzed. The
constrained coordination of a network of dynamically coupled
eight water tanks is presented as an example in order to show
the effectiveness of the proposed method.

I. INTRODUCTION
The problem of interest here is the design of distributed

supervision strategies based on Command Governor (CG)
ideas for multi-agent systems in situations where the use of a
centralized coordination unit is impracticable because requir-
ing unrealistic or unavailable communication infrastructures.
A centralized solution to this problem has been recently
proposed in [1] in the quite general context depicted in Fig. 1.
There, the master station is in charge of supervising and

Fig. 1. Multi-agent master/slave architectures

coordinating the slave systems via a data network. In partic-
ular, ri, gi, xi, yi and ci represent respectively: the nominal
references, the feasible references, the states, performance-
related and coordination-related outputs of the slave systems.
In such a context, the supervision task can be expressed as
the requirement of satisfying some tracking performance,
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viz. yi ≈ ri, whereas the coordination task consists of
enforcing some pointwise-in-time constraints ci ∈ Ci and/or
f(c1, c2, ...., cN ) ∈ C on each slave system and/or on the
overall network evolutions. To this end, the supervisor is in
charge of modifying the nominal references into the feasible
ones, when the tracking of the nominal references would
produce constraint violations and hence loss of coordination.
In this paper we move towards distributed strategies for

solving the above task in large scale applications based
on novel CG ideas recently proposed in [2]. The novel
distributed context is depicted in Figure 2, where the super-
visory task is now distributed amongst many agents which
are assumed to be able to communicate amongst them and
with the regulated plants as well. See also [3]-[6] for recent
results on distributed MPC schemes of relevance here.

Fig. 2. Multi-agent architectures

The CG approach (see [1], [7]) is a well known and estab-
lished methodology that provides a simple and effective way
to enforce pointwise-in-time constraints along the trajectories
of a closed-loop system. The CG is a nonlinear device which
is added to a pre-compensated control system. Whenever
necessary, the CG modifies the reference to the closed-loop
system so as to avoid constraint violations.
In the above ”traditional” contexts, the CG action is

determined on the basis of the knowledge of the actual
measured state. In this paper, on the contrary, we will make
use of a recently proposed Feed-Forward CG solution [2] to
the CG design problem, that, at the price of some additional
conservativeness, is able to accomplish the CG task in the
absence of an explicit measure or estimate of the state.
This peculiarity of the FF-CG scheme makes it an at-

tractive solution for distributed frameworks based on model
predictive control ideas because it alleviates the need to make
the entire aggregate state, or substantial parts of it, known to
all agents at each time instant, the latter being unrealistic or
requiring unrealistic communication infrastructures in some
large scale applications. It is important to remark that the
use of such a novel FF-CG scheme introduces many technical
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challenges for the development of distributed schemes which
have to be carefully managed. In this respect, this paper
makes clear several theoretical aspects of this novel se-
quential distributed scheme, not discussed in the preliminary
version [8]. Aspects related to the liveliness of the method,
that is the analysis of conditions avoiding the occurrence
of deadlock situations, are fully analyzed in the companion
paper [9].
The main advantages of such a scheme are in its sim-

plicity and in the low communication rates required for
its implementation, remarkably lower than other distributed
approaches -e.g those based on consensus mechanisms. The
basic idea is that only one agent per time is allowed to
modify its own reference signal. This approach, although
behaving increasingly slower for an increasing number of
agents, is anyway of interest in all situations whereby the
coordination problem consists of few and slow set-point
adjustments, e.g. in all small/medium-scale situations where
the set-points change infrequently or slower than the system
dynamics. Its derivation is also instrumental to built up faster
”parallel” version of the scheme in which, whenever possible,
all agents are allowed to modify their own reference signals
simultaneously.
The feasibility and stability properties of the presented

approach are analyzed and the coordination of an eight-tank
cascaded water system is considered as an example.

II. SYSTEM DESCRIPTION AND PROBLEM FORMULATION
Consider a set of N subsystems A = {1, . . . , N}, each

one being a LTI closed-loop dynamical system regulated by
a local controller which ensures stability and good closed-
loop properties when the constraints are not active (small-
signal regimes when the coordination is effective). Let the
i-th closed-loop subsystem be described by the following
discrete-time model















xi(t+1) = Φiixi(t)+Gigi(t)+
∑

j∈A−{i}

Φijxj(t)

yi(t) = Hy
i xi(t)

ci(t) = Hc
i x(t) + Lig(t)

(1)

where: t ∈ ZZ+, xi ∈ IRni is the state vector (which includes
the controller states under dynamic regulation), gi ∈ IRmi the
manipulable reference vector which, if no constraints (and no
CG) were present, would coincide with the desired reference
ri ∈ IRm and yi ∈ IRmi is the output vector which is required
to track ri. Finally, ci ∈ IRnc

i represents the local constrained
vector which has to fulfill the set-membership constraint

ci(t) ∈ Ci, ∀t ∈ ZZ+, (2)
Ci being a convex and compact polytopic set. It is worth
pointing out that, in order to possibly characterize global
(coupling) constraints amongst states of different subsystems,
the vector ci in (1) is allowed to depend on the aggregate state
and manipulable reference vectors x = [xT

1 , . . . , x
T
N ]T ∈

IRn, with n =
∑N

i=1 ni, and g = [gT1 , . . . , g
T
N ]T ∈

IRm, with m =
∑N

i=1 mi. Moreover, we denote by r =
[rT1 , . . . , r

T
N ]T ∈ IRm, y = [yT1 , . . . , y

T
N ]T ∈ IRm and

c = [cT1 , . . . , c
T
N ]T ∈ IRnc

, with nc =
∑N

i=1 n
c
i , the other

relevant aggregate vectors. The overall system arising by the
composition of the above N subsystems can be described as







x(t+ 1) = Φx(t) +Gg(t)
y(t) = Hyx(t)
c(t) = Hcx(t) + Lg(t)

(3)

where

Φ =







Φ11 . . . Φ1N
...

. . .
...

ΦN1 . . . ΦNN






, G =







G1 . . . 0
...

. . .
...

0 . . . GN







Hy =







Hy
1 . . . 0
...

. . .
...

0 . . . Hy
N






, Hc =





Hc
1

. . .
Hc

N



 , L =





L1

. . .
LN



.

It is further assumed that
A1. The overall system (3) is asymptotically stable.
A2. System (3) is off-set free i.e. Hy(In − Φ)−1G = Im.
Roughly speaking, the CG design problem we want to

solve is that of locally determine, at each time step t and for
each agent i ∈ A , a suitable reference signal gi(t) which is
the best approximation of ri(t) such that its application never
produces constraints violation, i.e. ci(t) ∈ Ci, ∀t ∈ ZZ+, i ∈
A.
Classical centralized solutions to the above stated CG design
problem (see [1]) have been achieved by finding, at each time
t, a CG action g(t) as a function of the current reference r(t)
and measured state x(t)

g(t) := g(r(t), x(t)) (4)
such that g(t) is the best approximation of r(t) under the
condition c(t) ∈ C, where C ⊆ {C1 × ...× CN} is the global
admissible region. In [2], the Feed-Forward CG (FF-CG)
approach has been proposed, where a CG action having the
following structure

g(t) = g(r(t), g(t − τ)) (5)
was proved to have similar properties of the standard CG
state-based approach when computed every τ steps and kept
constant between two subsequent updating, without hinging
upon on the explicit knowledge of the state vector.

III. THE FEED-FORWARD CG APPROACH
In this section we recall the basic ideas and notation of

the FF-CG approach proposed in [2] which will be relevant
for the the forthcoming discussion. To this end, consider, for
a given δ > 0, the sets:

Cδ := C ∼ Bδ

Wδ := {g ∈ IRm : cg ∈ Cδ}
(6)

where Bδ is the ball of radius δ centered at the origin
and A ∼ E is the Pontryagin set difference defined as
{a : a + e ∈ A, ∀e ∈ E}. In particular, Wδ , which
we assume non-empty, is the convex and closed set of
all constant commands g whose corresponding equilibrium
points cg := Hc(In − Φ)−1Gg + Lg satisfy the constraints
with margin δ. Let introduce also the virtual evolutions of
the c-variable

ĉ(k, x(t), g(t)) :=Hc

(

Φkx(t)+
k−1
∑

i=0

Φk−i−1Gg(t)

)

+Lg(t) (7)
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along the virtual time k, from the initial condition x(t)
at time k = 0 under the application of a constant com-
mand g(t), ∀k. The virtual c-variable evolution (7) can
be rewritten as the sum of two amounts: a steady-state
component represented by cg(t) and the transient evolution
HcΦk(x(t)− xg(t)):

ĉ(k, x(t), g(t)) = cg(t) +HcΦk(x(t)− xg(t)). (8)
Because g(t) ∈ Wδ and, in turn, cg(t) ∈ Cδ at each time t,
then, a sufficient condition to ensure that the constraints are
satisfied, although in a quite arbitrary and conservative way,
is to ensure that the transient component is confined into a
ball of radius ρg(t))

‖HcΦk(x̂(t)−xg(t))‖ ≤ ρg(t), ∀k ≥ 0 (9)
where ρg(t) represents the minimum distance between cg(t)
and the border of C

ρg := argmaxρ ρ
subject to Bρ(cg) ⊆ C.

(10)

where Bρ(cg) represents the ball of radius ρ centered in cg.
Details on the computation of ρg(t) can be found in [2].
Then, the FF-CG design problem translates into the prob-

lem of defining an algorithm that is able to select, at each
time t, a reference value g(t) such that (9) holds true for all
k ≥ 0. This has been achieved n [2] by selecting a suitable
integer τ , referred to as a Generalized Settling Time, and
a sequence of positive scalars ρ(t) such that the following
more strict condition than (9) is satisfied at each time t.

‖HcΦk(x(t)−xg(t))‖≤ ρ(t) ≤ρg(t),∀k ≥ 0 (11)
Then, if condition (11) were holding true at time t− τ and
a certain command g(t − τ) were constantly applied to the
system, then the transient contribution from t onwards could
be bounded as follows
‖ HcΦk(x̂(t)− xg(t−τ)) ‖≤ γρ(t− τ) ≤ γρg(t−τ), ∀k ≥ 0

(12)
with γ < 1 because of asymptotical stability. Then, if the FF-
CG action were computed every τ sampling steps and kept
constant between two successive updating, at time t our goal
would be that to select a new command g(t) such that

‖ HcΦk(x̂(t)− xg(t)) ‖≤ ρ(t) ≤ ρg(t), ∀k ≥ 0. (13)
is satisfied for some ρ(t) > 0. By introducing the τ -step
incremental reference ∆g(t) = g(t) − g(t − τ), and by
observing that x∆g(t) = xg(t)−xg(t−τ), a sufficient condition
for (13) to hold is
‖ HcΦkx∆g(t) ‖≤ ρg(t−τ)+∆g(t)−γρ(t−τ)}, ∀k ≥ 0. (14)
Please note that the latter inequalities always hold true for∆g
in a sufficiently small ball centered in ∆g = 0. Finally, by
taking the definition of x∆g into account, we can formulate
the Feed-Forward CG selection algorithm as follows
The FF-CG Algorithm
REPEAT AT EACH TIME t
1.1 IF (t==κτ, κ=1, 2 . . .)
1.1.1 SOLVE

g(t) = argmin
g

‖ g − r(t) ‖2Ψ (15)

SUBJECT TO :

{

g ∈ Wδ

(g−g(t−τ))∈∆G(g(t−τ),ρ(t−τ))
(16)

1.2 ELSE g(t) = g(t− 1)
2.1 APPLY g(t)
3.1 UPDATE ρ(t) = γρ(t − τ) + maxk≥0 ‖ HcΦk(I −

Φ)−1G∆g(t) ‖ .

where Ψ > 0 is a weighting matrix and∆G(g, ρ) is the set of
all possible τ -step incremental commands ∆g which ensure
(14) to hold true
∆G(g, ρ):=

{

∆g :‖HcΦk(I−Φ)−1G∆g‖≤ρg+∆g−γρ,∀k≥0
}

.
(17)

It is worth to note that the sets Wδ, ∆G(g, ρ) and the
generalized settling time τ can be computed from the outset.
Finally the following properties can be proved [2]
Proposition 1: - Let assumptions A1-A2 be fulfilled.

Consider system (3) along with the FF-CG selection rule
and let an admissible command signal g(0) ∈ Wδ be applied
at t = 0 such that (9) holds true. Then:
1) the minimizer in (15), computed every τ steps,
uniquely exists and can be obtained by solving a
convex constrained optimization problem;

2) constraints are fulfilled for all t ∈ ZZ+;
3) the overall system is asymptotically stable and when-
ever r(t) ≡ r, the sequence of g(t) converges in finite
time either to r or to its best steady-state admissible
approximation: g(t) → r̂ := argming∈Wδ

‖g− r‖2Ψ.!
For simplicity, in the forthcoming distributed analysis a sim-
plified variant of the above FF-CG method will be considered
by setting ρ(t) = ρg(t), ∀t > 0. In this case, point 3.1 of
the FF-CG Algorithm can be skipped and the set ∆G(g, ρ)
depends only on the current command g

∆G(g):=
{

∆g :‖HcΦk(I−Φ)−1G∆g‖≤ρg+∆g−γρg,∀k≥0
}

.
(18)The above simplification, although conservative, lead to a

simpler analysis and has the merit that the agents don’t need
to communicate their instances of the scalar ρ(t) amongst
them.

IV. DISTRIBUTED SEQUENTIAL FFCG (S-FFCG)
Here we introduce a distributed CG scheme based on the

above FF-CG approach, inspired by the serial method pre-
sented in [4], by assuming that the agents are connected via
a communication network. Such a network may be modeled
by a communication graph: an undirected graph G = (A,B),
where A denotes the set of the N subsystems and B ⊂
A×A the set of edges representing the communication links
amongst agents. More precisely, the edge (i, j) belongs to
B if and only if the agents governing the i-th and the j-th
subsystems are able to directly share information within τ
sampling times. The communication graph is assumed to be
connected, i.e. for each couple of agents i ∈ A, j ∈ A there
exists at least one sequence of edges connecting i and j, with
the minimum number of edges connecting the two agents
denoted by di,j . The set of all agents with a direct connection
with the i-th agent will be referred to as Neighborhood of
the i-th agent Ni = {j ∈ A : di,j = 1}.
Let G be a Hamiltonian graph and assume, without loss

of generality, that the sequence H = {1, 2, ..., N − 1, N} is
a Hamiltonian cycle. The idea behind the approach is that

6890



only one agent at decision time is allowed to manipulate its
local command signal gi(t) while all others are instructed
to hold their previous values. After each decision, the agent
in charge will update the global command received from the
previous updating agent and will forward this new value to
the next updating agent in the cycle. Such a polling policy
implies that, eventually after a preliminary initialization
cycle, at each time instant the ”agent in charge” always
knows the whole aggregate vector g(t − τ). By exploiting
this observation we can define the following distributed FF-
CG algorithm:
Sequential-FFCG Algorithm (S-FFCG) - Agent i
REPEAT AT EACH TIME t
1.1 IF(t==κτ, κ=0, 1, . . .)&&(κ mod N) == i

1.1.1 RECEIVE g(t−τ) FROM THE PREVIOUS AGENT IN
THE CYCLE H

1.1.2 SOLVE

gi(t) = argmingi ‖ gi − ri(t) ‖2Ψi

SUBJECT TO :
{

g(t)=[gT1 (t−τ),...,gTi ,...,g
T
N (t−τ)]T∈Wδ

(gi − gi(t− τ)) ∈ ∆G0
i (g(t− τ))

(19)

1.1.3 APPLY gi(t)
1.1.4 UPDATE g(t)=[gT1 (t−τ), ..., gTi (t), ..., g

T
N (t−τ)]T

1.1.5 TRANSMIT g(t) TO THE NEXT AGENT IN H

1.2 ELSE

1.2.1 APPLY gi(t) = gi(t− 1)
where Ψi > 0 is a weighting matrix, κ mod N is the
remainder of the integer division κ/N and
∆G0

i (g) :=
{

∆gi : [0Tm1
, 0Tm2

, . . . ,∆gTi , . . . , 0
T
mN

]T∈∆G(g)
}

(20)
is the set of all possible command variations for gi in the
case that the commands of all other agents are frozen.
In order to present properties of the above algorithm let

us introduce some important notions and assumptions.
Definition (Admissible direction) - Let a point g ∈ Wδ.
The vector v ∈ IRm represents an admissible direction for
g ∈ Wδ if there exists a real λ̄ > 0 such that (g + λv) ∈
Wδ, λ ∈ [0, λ̄]. !

Definition (Decision Set of agent i) - The Decision Set
Vi(g) of the agent i at a point g ∈ Wδ represents the set of
all admissible directions belonging to IRm

i that such an agent
could move along in updating its action when all other agents
held their commands unvaried, viz. Vi(g) := {d ∈ IRmi :
[0T1 ,. . ., 0

T
i−1, d

T , 0Ti+1,. . ., 0
T
N ]T is an admissible direction

for g ∈ Wδ}. !

Definition (Viability property) - A point g ∈ Wδ is said to be
”viable” if, for any admissible direction v = [vT1 , ..., v

T
N ]T ∈

IRm, vi ∈ IRmi with
∑N

i=1 mi = m, at least one subvector
vi .= 0 there exists such that vi ∈ Vi(g). !

Definition (Pareto Optimal Solution) - Let vectors ri, i =
1, 2, ..., N be given. Consider the following multi-objective
problem:
ming[‖ g1 − r1 ‖2Ψ1

, . . . , ‖ gi − ri ‖2Ψi
, . . . , ‖ gN − rN ‖2ΨN

]
subject to g=[gT1 ,...,g

T
i ,...,g

T
N ]T∈Wδ

(21)A solution g∗ ∈ Wδ is a Pareto Optimal solution of the
optimization problem (21) if there not exist g ∈ Wδ, such

that: ‖ gi − ri ‖2Ψi
≤‖ g∗i − ri ‖2Ψi

∀i ∈ {1, . . . , N} and
‖ gj − rj ‖2Ψj

<‖ g∗i − ri ‖2Ψi
, j ∈ A . !

The above definitions are instrumental to characterize dead-
lock situations that, unlike the centralized solution, may exist
in this decentralized scheme when the same constraint setWδ

of the centralized scheme is used. The rationale is that by
acting one agent per time, certain viable paths existing in the
centralized scheme are precluded and the agents could get
stuck indefinitely. In order to avoid this deadlock situations
we have to introduce the following assumption for the points
belonging to the border of Wδ

A3. Each point belonging to ∂(Wδ) is viable, ∂(Wδ) denot-
ing the border of Wδ.

For space limitations no other details are given here on
the fulfilment of A3. The characterization of viable points,
a computable way of checking if the viability property
A3 is satisfied by the polyhedral set Wδ at hands and a
geometrical method allowing one to compute suitable inner
approximations of Wδ satisfying A3 are presented in the
companion paper [9]. For other details, please see also [10].
Finally, we present some properties enjoyed by the above

described S-FFCG scheme
Theorem 1: Let assumptions A1-A2-A3 be fulfilled.

Consider system (3) as the composition of N subsystems
in form (1) along with the distributed S-FFCG selection
rule (19) and let an admissible aggregate command signal
g(0) = [gT1 (0), . . . , g

T
N (0)]T ∈ Wδ be applied at t = 0 such

that (9) holds true. Then
1) for each agent i ∈ A, at each decision time t =
kτ, k ∈ ZZ+, the minimizer in (19) uniquely exists and
can be obtained by locally solving a convex constrained
optimization problem;
2) the overall system acted by the agents implementing the
S-FFCG policy never violates the constraints, i.e. c(t) ∈ C
for all t ∈ ZZ+;
3) whenever r(t)≡[ rT1 ,. . . ,rTN ]T , ∀t, with ri a constant set-
point, the sequence of solutions g(t) = [gT1 (t), . . . , g

T
N(t)]T

asymptotically converges to a Pareto-Optimal stationary
(constant) solution of (21), which is given by r whenever
r ∈ Wδ, or by any other Pareto-Optimal solution r̂ ∈ Wδ

otherwise. !

V. AN EIGHT-TANK WATER DISTRIBUTION SYSTEM
APPLICATION

Consider the water tank network depicted in Figure 3. The
system consists of the interconnection of four cascaded two-
tank models. Each cascaded subsystem is described by the
following non-linear equations
{

ρS1
i ḣ

1
i = −ρA1

i

√

2gh1
i + ui

ρS2
i ḣ

2
i = −ρA2

i

√

2gh2
i + ρA1

i

√

2gh1
i+
∑

j∈SiρA1
j

√

2gh1
i

where ui is the water flow supplied by the pump whose
command is the voltage Vi, i ∈ A := {1, .., 4}. Moreover,
for each q = 1, 2, Sq

i are the tank sections, h
q
i , the water

level in the tanks, Ai
q the section of pipes connecting the

tanks, and g and ρ the gravity constant and the water density
respectively. Their values are specified in Tables 1-2.
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Subsystem 1
Tank 1 Value Tank 2 Value
S1
1 2500 cm2 S2

1 2500 cm2

A1
1 4 cm2 A2

1 8 cm2

h
1
i 80 cm h

2
i 70 cm

h1
i

1 cm h2
i

1 cm
Subsystem i = {2, 3, 4}

Tank 1 Value Tank 2 Value
S1
i

2500 cm2 S2
i

2500 cm2

A1
i

8 cm2 S2
i

8 cm2

h
1
i 80 cm h

2
i 70 cm

h1
i

1 cm h2
i

1 cm

TABLE I
TANKS AND CONSTRAINTS VALUES

Parameters Value
g 980 cm/(sec2)
ρ 10(−3) Kg/(cm3)

Vmax 4
Tc 0.8sec

TABLE II
PARAMETER VALUES

With Si we denote the set of subsystems which provide
water to the downstream tank of the i-th subsystem; in our
case S1 := {2}, S2 = {3}, S3 = {4} and S4 = ∅. Each
cascaded two-tank subsystem has a related decision maker or
agent in charge of regulating the levels h2

i (t), i ∈ A by mod-
ifying properly their set-points and by exchanging relevant
data with the other agents. Local decentralized tracking LQ
output feedback controllers ([11]) are implemented, which
act properly on the incoming water flows ui(t), in such a
way that the offset property A2 is satisfied. A simple static
equation is used to model the relationship between the input
voltage Vi(t) and the incoming mass of water

Fig. 3. A four cascaded two-tank water system

ui(t) =

{

Vi(t) if Vi(t) ≥ 0
0 if V (t) < 0

The following local and global constraints are to be enforced
at each time instant

h1
i ≤ h1

i ≤ h
1
i , ∀ i ∈ A,

h2
i ≤ h2

i ≤ h
2
i , ∀ i ∈ A,

0 ≤ Vi ≤ Vmax, ∀ i ∈ A,
|h1

1 − h1
2| <=5cm, |h1

2 − h1
3| <=5cm, |h1

3 − h2
4| <=5cm

The system is linearized around the equilibrium V̄i = ūeq
i =

2, i ∈ A h̄j
i = 32cm and discretized with sampling time

Tc = 0.8 sec.
The reported simulations investigate the behavior of the

overall system when the desired set-points to the water levels
of the downstream tanks have the profiles depicted in Figure
5 (red dashed line). At the beginning, the desired references
ri = 32cm, i ∈ A correspond to an equilibrium. At time
t = 30 sec, the reference r1 related to the downstream tank
of subsystem 1 is changed from 32 cm to 42 cm. At the
same time, also the reference r2 is modified from 32 cm to
34 cm. These values are kept constant until time instant t =
400 sec when they are changed back to their initial values.
Simultaneously, the desired references r3 and r4 change their
values at time t = 300 sec from 32 cm to 27.85 cm and,
respectively, 28.5 cm. After that, these new values are kept
constant up to time t = 800 sec, when are brought back to
the previous values.

0 500 1000

32

34

36

38

40

42

time

h 12 [cm
]

Level tank 2 Subsystem 1

0 500 1000
31.5

32

32.5

33

33.5

34

time

h 12 [cm
]

Level tank 2 Subsystem 2

0 500 1000
28

29

30

31

32

time

h 32 [cm
]

Level tank 2 Subsystem 3

0 500 1000

29

30

31

32

time
h 42 [cm

]

Level tank 2 Subsystem 4
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Fig. 4. Water levels in the downstream tanks
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Fig. 5. CG actions

In Figures 6-7, the constrained vector responses can be
observed. It is important to note how such a vector violates
the constraints at several time instants when no CG unit is
used. On the contrary, this never happens when a CG unit is
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Fig. 6. Coordination constraints
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Fig. 7. Applied Voltages

used. In particular, the responses of the classical CG, the FF-
CG and the S-FFCG units are all reported for comparisons.
The evolutions of the downstream water levels are depicted

in Figure 4 while in Figure 5 the various CG actions are re-
ported. The standard CG and the FF-CG centralized schemes
have similar coordination performance. On the contrary, the
distributed S-FFCG exhibits, as expected, a slower response
to changed conditions. Nevertheless, the related performance,
especially during the equilibrium phases, are quite good even
if compared to the centralized algorithms.
Although the performance of a centralized solution, es-

pecially those based on the direct measure of the state,
are expected to remarkably outperform any decentralized
solution here, on the contrary, the difference is modest as
it can be observed in Figures 6-7.
However, the main advantage of S-FFCG is reported in

Table 3 where the required CPU execution time and the rate
of data exchanged is shown for a single supervisory agent
and for the centralized solution. It results that a single agent
in the S-FFCG scheme has a computational burden which is
an order of magnitude lower than a centralized CG. Also the
rate of exchanged data is lower than centralized strategies,

CG FFCG S-FFCG
CPU Time [ms] 0.61 0.43 0.058
RX/TX Data (bit/agent) 512 256 192

TABLE III
CPU TIME (SECONDS PER STEP): IT IS RELATED, IN THE DISTRIBUTED
CASE TO SINGLE AGENT AND IN THE CENTRALIZED CASE TO THE

UNIQUE SUPERVISOR IN CHARGE. EXCHANGED INFORMATION: IN THE
DISTRIBUTED CASE IT IS THE AMOUNT OF INFORMATION EXCHANGED

BY AN AGENT WITH THE REST OF THE NETWORK, IN THE CENTRALIZED
CASE IT IS THE INFORMATION RECEIVED AND TRANSMITTED BY THE

UNIQUE CG OR FFCG DEVICE

and it is very low if compared with other distributed MPC
techniques.

VI. CONCLUSIONS
In this paper, a distributed FFCG schemes has been pro-

posed for the supervision of dynamically coupled intercon-
nected linear systems subject to local and global constraints
and used for solving constrained coordination problems in
networked control system.
A sequential distributed strategy has been proposed and

its feasibility and stability properties analyzed in full details.
Its effectiveness has been demonstrated in the final example
where also comparisons with centralized solutions have been
reported for the same problem.
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