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Abstract— We propose a novel and natural architecture for
decentralized control, that is applicable whenever the underly-
ing system has the structure of a partially ordered set (poset).
This controller architecture is based on the Möbius transform
of the poset, and enjoys simple and appealing separation prop-
erties, since the closed-loop dynamics can be analyzed in terms
of decoupled subsystems. The controller structure provides rich
and interesting connections between concepts from order theory
such as Möbius inversion and control-theoretic concepts such
as state prediction, correction, and separability. In addition,
using our earlier results on H2-optimal decentralized control
for arbitrary posets, we prove that the H2-optimal controller
in fact possesses the proposed structure, thereby establishing
the optimality of the new controller architecture.

I. Introduction

Motivated by the intuition that acyclic structures within
the context of decentralized control should be tractable, the
authors began a systematic study of a class of systems
known as poset-causal systems in [8]. In follow-up work [7],
[9] we showed that the problem of computing H2-optimal
controllers using state-space techniques over this class of
systems was tractable, with efficient solutions in terms of un-
coupled Riccati equations. We also provided several intuitive
explanations of the controller structure, though a detailed
analysis of the same was not presented.

In this paper we are concerned with the following ques-
tions: “What is a sensible architecture of controllers for
poset-causal systems? What should be the role of controller
states, and what computations should be involved in the con-
troller?” This paper focuses on answering this architectural
question. Our main contributions in this paper are:
• We propose a controller architecture that involves nat-

ural concepts from order theory and control theory as
building blocks.

• We show that a natural coordinate transformation of the
state variables yields a novel separation principle

• We show that the optimal H2 controller (with state-
feedback) studied in [9] has precisely the proposed
controller structure.

The controller structure that we propose in this paper is
as follows. At each subsystem of the overall system, the
partial ordering of the information structure allows one to
decompose the global state into “upstream” states (i.e. states
that are available), “downstream” (these are unavailable) and
“off-stream” states (corresponding to uncomparable elements
of the poset). The downstream and off-stream states are
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(partially) predicted using available upstream information,
this prediction is the role of the controller states. The best
available information of the global state at each subsystem
is then described using a matrix X; each column of X
corresponds to the best local guess or estimate of the overall
state at a particular subsystem.

Having computed these local partial estimates, the con-
troller then performs certain natural local operations on
X that preserve the structure of the poset. These local
operations are the well-known ζ and µ operations in Möbius
inversion. These operations, which are intimately related to
the inclusion-exclusion formula and its generalizations, have
a rich and interesting theory, and appear in a variety of
mathematical contexts [5]. The control inputs are of the form
U = ζ(G ◦ µ(X)). As we will see later, the operators µ and
ζ can be interpreted as generalized notions of differentiation
and integration on the poset so that µ(X) may be interpreted
as the differential improvement in the prediction of the local
state. The quantity G ◦ µ(X) may therefore be interpreted
as a local “differential contribution” to the overall control
signal. The overall control law then aggregates all these local
contributions by “integration” along the poset using ζ.

Computational and architectural issues in decentralized
control have been important areas of study; we mention some
related works below. From a computational standpoint, the
problem of computing H2-optimal controllers for quadrat-
ically invariant systems was studied in [6], however that
approach does not provide much insight into the structure of
the optimal controller. In the context of decentralized control,
the computational and architectural issues for the “Two-
Player Case” were studied in [11]. This work was extended
to arbitrary posets in [9] (similar results were obtained in
[10]), and some hints regarding the structure of the optimal
controller were provided in our previous work. Another
important related work is the simpler but related team-theory
problem over posets studied in [4] which provides us with
an interesting starting point in this paper. We mention the
work of Witsenhausen [12], [13] who provided important
insight regarding different types of information constraints in
control problems. Finally, connections between information
structures, team theory and decentralized control have also
been studied in [3].

The rest of this paper is organized as follows: In Section II
we introduce the necessary order-theoretic and control-
theoretic preliminaries. In Section III we present the basic
building blocks involved in the controller architecture. In
Section IV we describe in detail the proposed architecture,
establish the separability principle and explain its optimality
property with respect to the H2 norm.
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II. Preliminaries

In this section we introduce some concepts from order
theory. Most of these concepts are well-studied and fairly
standard, we refer the reader to [1], [2] for details.

A. Posets

Definition 1: A partially ordered set (or poset) P =

(P,�) consists of a set P along with a binary relation �
which is reflexive, anti-symmetric and transitive [1].
We will sometimes use the notation a ≺ b to denote the strict
order relation a � b but a , b.

In this paper we will deal only with finite posets (i.e. |P|
is finite). It is possible to represent a poset graphically via
a Hasse diagram by representing the transitive reduction of
the poset as a graph [1].

Example 1: An example of a poset with three elements
(i.e., P = {1, 2, 3}) with order relations 1 � 2 and 1 � 3 is
shown in Figure 1(b).

1 1

1 1

2 2

2 2

3 3

3

4

(a) (b) (c) (d)

Fig. 1. Hasse diagrams of some posets.

Let P = (P,�) be a poset and let p ∈ P. We define ↓ p =

{q ∈ P | p � q} (we call this the downstream set). Let ↓↓p =

{q ∈ P | p � q, q , p}. Similarly, let ↑ p = {q ∈ P | q � p}
(called a upstream set), and ↑↑p = {q ∈ P | q � p, q , p}.
We define ↓↑p = {q ∈ P | q � p, q � p} (called the off-stream
set); this is the set of uncomparable elements that have no
order relation with respect to p. Define an interval [i, j] =

{p ∈ P | i � p � j}. A minimal element of the poset is an
element p ∈ P such that if q � p for some q ∈ P then
q = p. (A maximal element is defined analogously).

In the poset shown in Figure 1(d), ↓1 = {1, 2, 3, 4}, whereas
↓↓1 = {2, 3, 4}. Similarly ↑↑1 = ∅, ↑4 = {1, 2, 3, 4}, and ↑↑4 =

{1, 2, 3}. The set ↓↑2 = {3}.
Definition 2: Let P = (P,�) be a poset. Let Q be a ring.

The set of all functions f : P × P → Q with the property
that f (x, y) = 0 if y � x is called the incidence algebra of P
over Q. It is denoted by I(P). ∗

When the poset P is finite, the elements in the incidence
algebra may be thought of as matrices with a specific sparsity
pattern given by the order relations of the poset in the
following way. An example of an element of I(P) for the

∗Standard definitions of the incidence algebra use the opposite convention,
namely f (x, y) = 0 if x � y so their matrix representation typically has
upper triangular structure. We reverse the convention so that they are
lower-triangular, and thus in a control-theoretic setting one may interpret
them as representing poset-causal maps. This reversal of convention entails
transposing other standard objects like the zeta and the Möbius operators.
For the same reason, we also reverse the convention of drawing Hasse
diagrams so that minimal elements appear at the top of the poset.

poset from Example 1 (Fig. 1(b)) is:

ζP =

 1 0 0
1 1 0
1 0 1

 .
Given two functions f , g ∈ I(P), their sum f + g and scalar
multiplication c f are defined as usual. The product h = f ·
g is defined by h(x, y) =

∑
z∈P f (x, z)g(z, y). Note that the

above definition of function multiplication is made so that it
is consistent with standard matrix multiplication. It is well-
known that the incidence algebra is an associative algebra
[1], [8].

B. Control Theoretic Preliminaries

1) Poset-causal systems: We consider the following state-
space system in discrete time:

x[t + 1] = Ax[t] + w[t] + Bu[t]
z[t] = Cx[t] + Du[t]
y[t] = x[t].

(1)

In this paper we present the discrete time case only, how-
ever, we wish to emphasize that analogous results hold in
continuous time in a straightforward manner. In this paper
we consider what we will call poset-causal systems. We
think of the system matrices (A, B,C,D) to be partitioned
into blocks in the following natural way. Let P = (P,�)
be a poset with P = {1, . . . , s}. We think of this system as
being divided into s subsystems, with subsystem i having
some states xi[t] ∈ Rni , and we let N =

∑
i∈P ni be the total

degree of the system. The control inputs at the subsystems
are ui[t] ∈ Rmi for i ∈ {1, . . . , s}. The external output is
z[t] ∈ Rp. The signal w[t] is a disturbance signal. The states
and inputs are partitioned in the natural way such that the
subsystems correspond to elements of the poset P with x[t] =

[x1[t] |x2[t] |. . . |xs[t] ]T , and u[t] = [u1[t] |u2[t] |. . . |us[t] ]T .
This naturally partitions the matrices A, B,C,D into appro-
priate blocks so that A =

[
Ai j

]
i, j∈P

, B =
[
Bi j

]
i, j∈P

, C =
[
C j

]
j∈P

(partitioned into columns), D =
[
D j

]
j∈P

. (We will throughout
deal with matrices at this block-matrix level, so that Ai j will
unambiguously mean the (i, j) block of the matrix A.) Using
these block partitions, one can define the incidence algebra
at the block matrix level in the natural way. The block sizes
will be obvious from the context and we denote by I(P) the
block incidence algebra.

Remark In this paper, for notational simplicity we will
assume ni = 1, and mi = 1. We emphasize that this is
only done to simplify the presentation; the results hold for
arbitrary block sizes ni and mi by interpreting the formulas
“block-wise” in the obvious way.

The system (1) may be viewed as a map from the inputs
w, u to outputs z, x via

z = P11w + P12u

x = P21w + P22u
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where [
P11 P12
P21 P22

]
=

 A I B
C 0 D
I 0 0

 . (2)

(We refer the reader to [14] as a reminder of standard LFT
notation used above). In this paper we will assume that A ∈
I(P) and B ∈ I(P). Indeed, this assumption ensures that the
plant P22(z) = (zI − A)−1B ∈ I(P).

We call such systems poset-causal due to the following
causality-like property among the subsystems. If an input is
applied to subsystem i via ui at some time t, the effect of the
input is seen by the downstream states x j for all subsystems
j ∈↓ i (at or after time t). Thus ↓ i may be seen as the
cone of influence of input i. We refer to this causality-like
property as poset-causality. This notion of causality enforces
(in addition to causality with respect to time), a causality
relation between the subsystems with respect to a poset.

2) Information Constraints on Controller: In this paper,
we will be interested in the design of poset-causal controllers
of the form:

K =

[
AK BK

CK DK

]
. (3)

We will require that the controller also be poset-causal, i.e.
that K ∈ I(P). In later sections we will present a general
architecture for controllers with this structure with some
elegant properties.

A control law (3) with K ∈ I(P) is said to be poset-
causal since ui depends only on x j for j ∈↑ i (i.e. upstream
information) thereby enforcing poset-causality constraints
also on the controller.

C. Notation

Since we are dealing with poset-causal systems (with
respect to the poset P = (P,�)), most vectors and matrices
will be naturally indexed with respect to the set P (at the
block level). Recall that every poset P has a linear extension
(i.e. a total order on P which is consistent with the partial
order �). For convenience, we fix such a linear extension of
P, and all indexing of our matrices throughout the paper will
be consistent with this linear extension (so that elements of
the incidence algebra are lower triangular).

Given a matrix M, Mi j will as usual denote the (i, j)th

entry. The ith column will be denoted by Mi. If M is a block
|P|× |P| matrix, we will denote M(↓i, ↓i) to be the sub-matrix
of M whose rows and columns are in ↓i. We will also need
to deal with the inverse operation: we will be given an |S | ×
|S | matrix K (indexed by some subset S ⊆ P) and we will
wish to embed it into a |P| × |P| matrix by zero-padding the
locations corresponding to row and column locations in P\S .
We will denote this embedded matrix by K̂.

III. Ingredients of the Architecture

The controller architecture that we propose is composed
of three main ingredients:
• The notion of local variables,
• A notion of a local product, denoted by “◦”,

• A pair of operators ζ, µ that operate on the local
variables in a way that is consistent with the order-
theoretic structure of the poset. These operators, called
the zeta operator and the Möbius operator respectively,
are classical objects and play a central role in much of
order theory, number theory and combinatorics [5].

A. Local Variables and Local Products

We begin with the notion of global variables.
Definition 3: A global variable is a function z : P→ R

Remark Typical global variables that we encounter will be
the overall state x and the input u.

Note that the overall system is composed of s = |P| subsys-
tems. Subsystem i has access to components of the global
variable corresponding to ↑i, and components corresponding
to ↓↓i are unavailable. One can imagine each subsystem
maintaining a local prediction of the global variable. This
notion is captured by the following.

Definition 4: Let z be a global variable. A matrix Z ∈
Rs×s such that Zii = zi is a local variable associated to z.

Remark The ith column of Z, denoted by Zi is to be thought
of as the local variable at subsystem i. The components
corresponding to ↓↓i correspond to the predictions of the
unknown (downstream) components of z. Note that Zii = zi

so that at subsystem i the component zi of the global variable
is available.

We will use the indexing Zi = [Zi
j] j∈P, so that Zi

j denotes
the local prediction of z j at subsystem i. We will sometimes
also denote Zi

j by z j(i). While local variables in general are
full matrices, an important class of local variables that we
will encounter will have the property that they are in I(P).

The two important local variables we will encounter are
X (local state variables) and U (local input variables).

Example 2: We illustrate the concepts of global variables
and local variables with an example. Consider the poset
shown in Fig. 1(d). Then we can define the global variable
x and a corresponding local variable X as follows:

x =


x1
x2
x3
x4

 X =


x1 x1 x1 x1

x2(1) x2 x2(1) x2
x3(1) x2(1) x3 x3
x4(1) x4(2) x4(3) x4

 .
We define the following important product:

Definition 5: Let G = {G(1), . . . ,G(s)} be a collection
of maps G(i) : ↓i× ↓i→ R (viewed as matrices). Let X be a
local variable. We define the local product G◦X columnwise
via

(G ◦ X)i , Ĝ(i)Xi for all i ∈ P. (4)

Remark Note that if X ∈ I(P) and Y = G ◦ X, then
it is easy to verify that Y ∈ I(P). We call the matrices
G(i) the local gains. Local products give rise to decoupled
local relationships in the following natural way. Let X,Y be
local variables. If they are related via Y = G ◦ X then the
relationship between X and Y is said to be decoupled. This
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is because, by definition,

Yk = Ĝ(k)Xk for all k ∈ P.

Thus the maps relating the pairs (Xk,Yk) are decoupled
across all k ∈ P (i.e. Yk depends only on Xk and not on
X j for any other j , k).

Definition 6: Let M ∈ Rs×s be a matrix. Define

Π(M) =

{
Mi j for i � j
0 otherwise. Π⊥(M) =

{
Mi j for j ≺ i
0 otherwise.

Thus Π(M) simply corresponds to the projection of the ma-
trix M onto the incidence algebra I(P) viewed as a subspace
of matrices, and Π⊥(M) onto its orthogonal complement.

B. The Möbius and zeta operators
We first remind the reader of two important order-theoretic

notions, namely the zeta and Möbius operators. These are
well-known concepts in order theory that generalize discrete
integration and finite differences (i.e. discrete differentiation)
to posets.

Definition 7: Let P = (P,�). The zeta matrix ζ is
defined to be the matrix ζ : P × P→ R such that ζ(i, j) = 1
whenever j � i and zeroes elsewhere. The Möbius matrix is
its inverse, µ := ζ−1.
These matrices may be viewed as operators acting on func-
tions on the poset f : P→ R (the functions being expressed
as row vectors). The matrices ζ, µ, which are members of
the incidence algebra, act as linear transformations on f in
the following way:

ζ :R|P| → R|P| µ : R|P| → R|P|

f 7→ f ζT f 7→ fµT .

Note that ζ( f ) is also a function on the poset given by

(ζ( f ))i =
∑
j�i

f j. (5)

This may be naturally interpreted as a discrete integral of the
function f over the poset.

The role of the Möbius operator is the opposite: it is a
generalized finite difference (i.e. a discrete form of differen-
tiation over the poset). If f : P→ R is a local variable then
the function µ( f ) : P→ R may be computed recursively by:

(µ( f ))i =

{
fi for i a minimal element,
fi −

∑
j≺i (µ( f )) j otherwise. (6)

Example 3: Consider the poset in Figure 1(c). The zeta
and the Möbius matrices are given by:

ζ =

 1 0 0
1 1 0
1 1 1

 µ =

 1 0 0
−1 1 0
0 −1 1

 .
If f =

[
f1 f2 f3

]
, then

ζ( f ) =
[

f1 f1 + f2 f1 + f2 + f3
]

µ( f ) =
[

f1 f2 − f1 f3 − f2
]
.

We now define modified versions of the zeta and Möbius
operators that extend the actions of µ and ζ from global

variables x to local variables X. Let ζ and µ be matrices as
defined in Definition 7.

Definition 8: Let X be a local variable. Define the
operators µ : Rs×s → I(P) and ζ : Rs×s → I(P) acting
via

ζ(X) = Π(XζT ) µ(X) = Π(XµT ). (7)
Lemma 1: The operators ζ and µ may be written more

explicitly as

ζ(X)i
j ,

∑
k�i

Xk
j µ(X)i

j , Xi
j −

∑
k≺i

µ(X)k
j (8)

for i � j and 0 otherwise.
Proof: The proofs follow in a straightforward fashion

from (5) and (6).
Note that if Y = µ(X) then Y is a local variable in I(P).
The operator ζ has the natural interpretation of aggregating
or integrating the local variables Xk for k ∈ P, whereas µ
performs the inverse operation of differentiation of the local
variables.

Example 4: We illustrate the action of µ acting on a local
variable. Consider the local variable X from Example 2. It
is easy to verify that

µ(X) =

 x1 0 0 0
x2(1) x2 − x2(1) 0 0
x3(1) 0 x3 − x3(1) 0
x4(1) x4(2) − x4(1) x4(3) − x4(1) x4 − x4(3) − x4(2) + x4(1)

 .
Lemma 2: The operators (µ, ζ) satisfy the following prop-

erties:
1) (µ, ζ) are invertible restricted to I(P) and are inverses

of each other so that for all local variables X ∈ I(P),

ζ(µ(X)) = µ(ζ(X)) = X.

2) µ(X) = µ(Π(X)) and ζ(X) = ζ(Π(X)).
3) Let A, X ∈ I(P). Then µ(AX) = Aµ(X), and ζ(AX) =

Aζ(X).
Proof: The proof is straightforward, we omit it due to

space constraints.
Note that if X < I(P) then ζ(µ(X)) = Π(X). The second part
of the preceding lemma says that µ(X) and ζ(X) depend only
on the components of X that lie in I(P), i.e. on Π(X).

Since ζ and µ may be interpreted as integration and
differentiation operators, the first part of the above lemma
may be viewed as a “poset” version of the fundamental
theorem of calculus.

IV. Proposed Architecture

A. Local States and Local Inputs

Having defined local and global variables, we now spe-
cialize these concepts to our state-space system (1). We will
denote x j to be the true state at subsystem j. We denote
x j(i) to be a prediction of state x j at subsystem i. Recall the
information constraints at subsystem i:
• Information about ↓↓i: This state information is unavail-

able, so a (possibly partial) prediction of x j for j ∈ ↓↓i is
formed. We denote this prediction by x j(i). Computing
these partial predictions is the role of the controller
states.
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• Information about ↑i: Complete state information about
x j for j ∈ ↑i is available, so that x j(i) = x j. Moreover,
the predictions from upstream xk( j) for all k ∈ P and
j � i are also available.

• At subsystem i, state information about x j for j not
comparable to i is unavailable. The prediction of x j is
computed using x j(k) for k ≺ i.

Analogous information constraints hold also for the inputs.
At a particular subsystem, information about downstream
inputs is not available. Consequently, we introduce the notion
of prediction of unknown inputs, with similar notation as that
for the states. These ideas can be formalized by defining
local variables that capture the best available information at
the subsystems. We introduce two local variables:

1) The local state X associated with the system state x,
2) The local input U associated with the controller input

u.
The local state (as also the input) satisfies the following
properties:

1) Xi
j = x j for j � i (true states available for upstream

subsystems)
2) Xi

j is a prediction of x j for j � i.
Example 5: Consider the poset shown in Fig. 1(d). The

matrix X shown in Example 2 is a local state variable. The
predicted partial states are x2(1), x3(1), x4(1), x4(2), x4(3).
The plant states are x1, x2, x3, x4. Note that since subsystems
1 and 2 have the same information about subsystem 3 (2
and 3 are unrelated in the poset), the best estimate of x3 at
subsystem 2 is x3(1).
We now clarify the notion of a partial prediction with an
example.

Example 6: Consider the system composed of three sub-
systems with P = {1, 2, 3} with 1 � 3 and 2 � 3: x1

x2
x3

 [t+1] =

 A11 0 0
0 A22 0

A31 A32 A33


 x1

x2
x3

 [t]+

 B11 0 0
0 B22 0

B31 B32 B33


 u1

u2
u3

 [t].

Note that subsystem 1 has no information about the state
of subsystem 2. Moreover, the state x1 or input u1 does
not affect the dynamics of 2 (their respective dynamics are
uncoupled). Hence the only sensible prediction of x2 at
subsystem 1 is x2(1) = 0 (the situation for u2(1) is identical).
However, both the states x1, x2 and inputs u1, u2 affect x3 and
u3. Since x2 and u2 are unknown, the state x3(1) can at best
be a partial prediction of x3 (i.e. x3(1) is the prediction of the
component of x3 that is affected by subsystem 1). Similarly
x3(2) is only a partial prediction of x3. Indeed, one can show
that x3(1) + x3(2) is a more accurate prediction of the state
x3, and when suitably designed, their sum converges to the
true state x3.
Note that at subsystem i one can naturally decompose the
local state into components belonging to ↓i (downstream
elements), and (↓i)c (upstream and off-stream elements). The
downstream components correspond to Xd , Π(X) ∈ I(P)
and the other components to Xu , Π⊥(X). Thus we can
decompose the state into

X = Π(X) + Π⊥(X) = Xd + Xu.

One can similarly decompose U = Ud + Uu. We will see
subsequently that the diagonal components of Xd are the
plant states, the other elements in I(P) are the controller
states. Moreover, the components in Xu will be completely
determined by the elements in Xd. (Analogous properties for
U hold).

B. Role of µ

We now give a natural interpretation of the operator µ(X)
in terms of the differential improvement in predicted states
with the help of an example.

Example 7: Consider the poset shown in Fig. 2, and let
us inspect the predictions of the state x6 at the various
subsystems. The prediction of x6 at subsystem 1 is x6(1) and

1

2 3 4

5 6

x6(1)

x6(2) − x6(1) x6(3) − x6(1)

x6(4) − x6(1)

0
x6 − (x6(2) + x6(3) + x6(4))

+2x6(1)

Fig. 2. Poset showing the differential improvement of the prediction of
state x6 at various subsystems.

the prediction of x6 at subsystem 2 is x6(2). The differential
improvement in the prediction at subsystem 2 regarding the
state x6 is x6(2)− x6(1). At subsystems 3 and 4, the formulae
for the differential improvements are similar. The differential
improvement in x6 at subsystem 5 is zero. These are depicted
in Fig. 2.

C. Control Law

We now formally propose the following control law:

Ud = ζ(G ◦ µ(X)). (9)

We make the following remarks about this control law.

Remarks 1) We note that (9) specifies Ud which amounts
to specifying the input (Ud)i

i = ui for all i ∈ P. It also
specifies (Ud)i

j = u j(i) for i ≺ j which is the prediction
of the input u j at an downstream subsystem i.

2) Since Ĝ(i) is non-zero only on rows and columns in
↓i, the controller respects the information constraints.
Thus for any choice of gains G(i), the resulting con-
troller respects the information constraints. In this
sense (9) may be viewed as a parameterization of
controllers.

3) The control law (9) may be alternatively written as
U i

d =
∑

k�i G(k)µ(X)k. The control law has the follow-
ing interpretation. If i is a minimal element of the poset
P, then µ(X)i = Xi

d, the vector of partial predictions of
the state at i. The local control law uses these partial
predictions with the gain G(i). If i is a non-minimal
element it aggregates all the control laws from ↑↑i

5526



and adds a correction term based on the differential
improvement in the global state-prediction µ(X)i. This
correction term is precisely G(i)µ(X)i.

Example 8: Consider a poset causal system where the
underlying poset is shown in Fig 1(d). The controller archi-
tecture described above is of the form U i

d =
∑

k≺i G(k)µ(X)k

(where U i is a vector containing the predictions of the global
input at subsystem i). Noting that (Ud)i

i = ui, we write out
the control law explicitly to obtain:

u1
u2
u3
u4

 = G(1)


x1

x2(1)
x3(1)
x4(1)

 + G(2)


0

x2 − x2(1)
0

x4(2) − x4(1)

 +

G(3)


0
0

x3 − x3(1)
x4(3) − x4(1)

 + G(4)


0
0
0

x4 − x4(2) − x4(3) + x4(1)

 .
D. State Prediction

Recall that at subsystem i the states x j for j ∈ ↓↓i are
unavailable and must be predicted. Typically, one would
predict those states via an observer. However, those states
are unobservable; only the state xk for k ∈ ↑i are observable,
and are in fact directly available. In this situation, rather than
using an observer one constructs a predictor to predict the
unobservable states. These predictions are computed by the
controller via prediction dynamics, which we now specify.
Recall the decomposition X = Xd + Xu where Xd contains the
plant states and the predicted downstream states. Given Xd,
we propose that Xu be computed via:

Xu = Π⊥(µ(Xd)ζT ). (10)

(Thus specifying Xd completely specifies Xu and hence X).
This ensures that (Xu)i

j = xi for j ≺ i (easily verified), i.e.
that subsystem i uses the true states in ↑↑i. Furthermore, the
predictions for the off-stream components are computed via
(Xu)i

j =
∑

k≺i µ(X)k
j.

Example 9: For the poset in Fig. 1(d),

Xu =


0 x1 x1 x1
0 0 x2(1) x2
0 x3(1) 0 x3
0 0 0 0

 .
In an analogous manner to X, the local variable U can be
decomposed into U = Ud + Uu, and Uu can be computed
from Ud analogous to (10).

We now describe the prediction dynamics. Since the
dynamics of the true state evolve according to x[t + 1] =

Ax[t] + Bu[t], each subsystem can simulate these dynamics
using the local states and inputs. Locally each subsystem
implements the dynamics Xi[t + 1] = AXi[t] + BU i[t]. This
can be compactly written as

X[t] = AX[t] + BU[t].

However, at subsystem i only the states in ↓i (corresponding
to the components in Xd) need to be predicted (the other
components are determined by (10)). Writing X = Xd + Xu

and projecting the dynamics onto Xd, we obtain:

Xd[t + 1] = AXd[t] + BUd[t] + R[t]
R[t] = Π(AXu[t] + BUu[t]).

(11)

We think of R[t] as the influence of the upstream components
(and also the unrelated components) in predicting Xd.

E. Separation Principle

As a consequence of Lemma 2, we see that µ(X) = µ(Xd)
and also µ(R) = Aµ(Xu) + Bµ(Uu) = 0. Applying µ to (11)
we obtain the following modified closed-loop dynamics in
the new variables µ(X):

µ(X)[t + 1] = Aµ(X)[t] + Bµ(U)[t]. (12)

Let us define A + BG =
{
A + BĜ(1), . . . , A + BĜ(s)

}
. From

(9), and the fact that µ(ζ(G ◦ µ(X))) = G ◦ µ(X) we will
momentarily see that the modified closed-loop dynamics are:

µ(X)[t + 1] = (A + BG) ◦ µ(X)[t]. (13)

These dynamics describe how the differential improvements
in the state evolve. If one picks U such that µ(U) stabilizes
µ(X), the differential improvements are all stabilized. Thus
µ(X) converges to zero, the state predictions become accurate
asymptotically and the closed-loop is also stabilized. We
show that (9) achieves this with an appropriate choice of
local gains.

Theorem 1: Let G(i) be chosen such that A(↓i, ↓i) +

B(↓i, ↓i)G(i) is stable for all i ∈ P. Then the control law
(9) with local gains G(i) renders (12) stable.

Proof: Since Ud = ζ(G ◦ µ(X)) it follows that

µ(Ud) = µ(U) = µ (ζ(G ◦ µ(X)))

= G ◦ µ(X).

The last equality follows from Lemma 2 and the fact that
G ◦ µ(X) ∈ I(P). As a consequence, µ(U)i = Ĝ(i)µ(X)i for
all i ∈ P. Hence the closed-loop dynamics (12) become:

µ(X)i[t + 1] =
(
A + BĜ(i)

)
µ(X)i[t].

Recalling that µ(X) is a local variable so that µ(X)i (viewed
as a vector) is non-zero only on ↓i it is easy to see that these
dynamics are stabilized exactly when G(i) are picked such
that A(↓i, ↓i) + B(↓i, ↓i)G(i) are stable.

The dynamics of the different subsystems µ(X)i are de-
coupled, so that the gains G(i) may be picked independent
of each other. This may be viewed as a separation principle.
Henceforth, we will assume that the gains G(i) have been
picked in this manner. Since the closed loop dynamics of
the states xi( j) are related by an invertible transformation
(i.e. Xd = ζ(µ(Xd))), if the modified closed-loop dynamics
(13) are stable, so are the closed-loop dynamics (11).

F. Controller Realization

We now describe two explicit controller realizations. The
natural controller realization arises from the closed-loop

5527



dynamics (11) along with the control law (9) to give:

Xd[t + 1] = AXd[t] + BUd[t] + R[t]
Ud[t] = ζ(G ◦ µ(Xd))[t].

While the above corresponds to a natural description of
the controller, it is possible to specify an alternate realization.
This is motivated from the following observation. The control
input U depends only on µ(X). Hence, rather than imple-
menting controller states that track the state predictions X, it
is natural to implement controller states that compute µ(X)
directly. Hence an equivalent realization of the controller is:

µ(X)[t + 1] = Aµ(X)[t] + Bµ(U)[t]
Ud[t] = ζ(G ◦ µ(X))[t].

(14)

G. Structure of the Optimal Controller

Consider again the poset-causal system considered in (2).
Consider the optimal control problem:

minimize
K

‖P11 + P12K(I − P22K)−1P21‖
2

subject to K stabilizes P, K ∈ I(P).
(15)

The solution K∗ is the H2-optimal controller that obeys
the poset-causality information constraints described in Sec-
tion II. The solution to this optimization problem was pre-
sented in [9, Theorem 2]. The main idea behind the solution
procedure is as follows. Using the fact that P21, P22 ∈ I(P)
are square and invertible (due to the availability of state
feedback) it is possible to reparametrize the above problem
via Q = K(I − P22K)−1P21. Indeed, this relationship is
invertible and the incidence algebra structure ensures that
Q ∈ I(P) if and only if K ∈ I(P). Using this the above
optimization problem may be rewritten as:

minimize
Q

‖P11 + P12Q‖2

subject to Q ∈ I(P).
(16)

Using the fact that the H2 norm is column-separable, it is
possible to decouple this optimization problem into a set of s
optimization problems. Each optimization problem involves
the solution to a standard Riccati equation. The solution to
each yields the columns of Q∗ ∈ I(P), from which the
optimal controller K∗ ∈ I(P) may be recovered. An explicit
formula for the optimal controller and other details may be
found in [7], [9].

In [9], we obtain matrices K(↓ j, ↓ j) by solving a system
of decoupled Riccati equations via (K(↓ j, ↓ j),Q( j), P( j)) =

Ric(A(↓ j, ↓ j), B(↓ j, ↓ j),C(↓ j),D(↓ j)) (we use slightly differ-
ent notation and reversed conventions in that paper, see [9]
for details). The optimal solution K∗ to (15) is related to the
proposed architecture as follows.

Theorem 2: The controller (14) with gains G(i) =

K(↓i, ↓i) for all i ∈ P is the optimal solution to the control
problem (15).

Proof: The formula for the optimal controller is pro-
vided in [9, Theorem 2]. It is straightforward to verify that
the controller in (14) (the gains being K̂(↓i, ↓i)) is equal to
the formula in [9]. We omit the detailed proof here.

This theorem establishes that the controller architecture pro-
posed in this paper is optimal in the sense of the H2 norm.

V. Conclusions

In this paper we considered the problem of designing de-
centralized poset-causal controllers for poset-causal systems.
We studied the architectural aspects of controller design,
addressing issues such as the role of the controller states, and
how the structure of the poset should affect the architecture.
We proposed a novel architecture in which the role of
the controller states was to locally predict the unknown
“downstream” states. Within this architecture the controller
itself performs certain natural local operations on the known
and predicted states. These natural operations are the well-
known zeta and Möbius operations on posets.

Having proposed an architecture, we proved two of its
important structural properties. The first was a separation
principle that enabled a decoupled choice of gains for each
of the local subsystems. The second was establishing the
optimality properties of this architecture with respect to
the H2-optimal decentralized control problem. The proposed
Möbius-based architecture is quite natural, has very ap-
pealing interpretations, and can be easily extended to more
complicated and realistic formulations. These extensions will
be the subject of future work.
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Möbius functions. Probability theory and related fields, 2(4):340–368,
1964.

[6] M. Rotkowitz and S. Lall. A characterization of convex problems
in decentralized control. IEEE Transactions on Automatic Control,
51(2):274–286, 2006.

[7] P. Shah. A Partial Order Approach to Decentralized Control.
PhD thesis, Massachusetts Institute of Technology, (available at
http://www.mit.edu/˜pari), 2011.

[8] P. Shah and P. A. Parrilo. A partial order approach to decentralized
control. In Proceedings of the 47th IEEE Conference on Decision and
Control, 2008.

[9] P. Shah and P. A. Parrilo. H2-optimal decentralized control over
posets: A state-space solution for state-feedback. In Proceedings of
the 49th IEEE Conference on Decision and Control, 2010.

[10] J. Swigart. Optimal Controller Synthesis for Decentralized Systems.
PhD thesis, Stanford University, 2010.

[11] J. Swigart and S. Lall. Optimal synthesis and explicit state-space
solution for a decentralized two-player linear-quadratic regulator. In
Proceedings of the 49th IEEE Conference on Decision and Control,
2010.

[12] H.S. Witsenhausen. A counterexample in stochastic optimum control.
SIAM J. Control, 6(1):131–147, 1968.

[13] H.S. Witsenhausen. Separation of estimation and control for discrete
time systems. Proceedings of the IEEE, 59(11):1557 – 1566, 1971.

[14] K. Zhou and J. C. Doyle. Essentials of Robust Control. Prentice Hall,
1998.

5528


