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A note on Generalized Factor Analysis models

Giulio Bottegal and Giorgio Picci

Abstract— An interesting generalization of dynamic factor
analysis models has been proposed recently by Forni, Lippi and
collaborators. These models, called generalized dynamic factor
analysis models describe observations of infinite cross-sectional
dimension. Quite surprisingly the inherent non-uniqueness of
factor analysis models does not occur in this generalized
context. We attempt an explanation of this fact by restricting
the analysis to static generalized factor models. We show
that there is a natural interpretation of generalized factor
analysis models in terms of Wold decomposition of stationary
sequences. A stationary sequence admits a (unique) generalized
factor analysis decomposition if and only if two rather natural
conditions are satisfied.

I. INTRODUCTION

Factor analysis models have a long history; they have
been first introduced by psychologists [28], [S] and have
successively been studied and applied in various branches
of statistics and econometrics [20], [21], [3], [19], [6], [7].
With a few notable exceptions however, [18], [29], [25], [26],
[10], little attention has been payed to these models in the
control engineering community.

Dynamic versions of factor models have also been introduced
in the econometric literature, see e.g. [15], [23], [24], [17]
and references therein.

Recently, we have been witnessing a revival of interest
on these models, motivated on one hand by the need of
modeling very large aggregates or very large dimensional
time series. Vector AR or ARMA models are inadequate
for large-dimensional data sets, because they involve a huge
number of parameters to estimate which may sometime turn
out to be larger than the sample size. On the other hand, an
interesting generalization of dynamic factor analysis models
allowing the cross-sectional dimension of the observed time
series to go to infinity, has been proposed recently by Forni
Lippi and collaborators in a series of widely quoted papers
[13], [14]. This new modeling paradigm is attracting a
considerable attention also in the engineering system identi-
fication community [1], [10], [24]. The models proposed by
Forni and Lippi, called Generalized Dynamic Factor Analysis
Models (GDFM)(see e.g. [14], [13] and references therein)
are motivated by economic applications. However large-
dimensional time series occur often in engineering and signal
processing applications, and typically occur, for example, in
computer vision and dynamic image processing. The role of
identification in image processing and computer vision has
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been addressed by several authors. We may refer the reader
to the recent survey [8] for more details and references.
For instance, if we are interested in modeling a “dynamic
texture” (see [12] for an example) we may end dealing
with a signal y(t) := vec(I(-,t)), obtained by vectorizing
at a given time t, the signals extracted from the image
intensities I(-,t) at each pixel, forming a vector, say y(t) €
R™, with a “large” number (typically tens of thousands) of
components. One is interested, therefore, in classes of models
(and identification methodologies thereof) which are suited
for high dimensional data. Note also that the number N of
samples (i.e. t = 1, .., N) is very often of the same order (and
sometimes smaller) than the data dimensionality (N < m).
For instance, in dynamic textures modeling, the number N
of images in the sequences is of the order of a few hundreds
while m (which is equal to the number of pixels of the image)
is certainly of the order of a few hundreds or thousands [12],
[4]. Tt is therefore apparent that some sort of dimensionality
reduction is absolutely necessary in this context.

In this paper boldface symbols will denote random variables
or random arrays, either finite or infinite. Due to page
limitations some of the proofs will not be given. A more
complete version with all proofs will appear elsewhere and
can be obtained from the authors upon request.

II. STATIC FACTOR ANALYSIS MODELS

A (static) Factor Analysis model is a representation

y=Ax+e, (1)
of m observable variables y = [y; ... ¥m] ., assumed
zero-mean and with finite variance, as linear combinations
of n common factors x = [x; ... X, ]", plus uncorrelated
“noise” or “error” terms € = [e; ... e, ] . An essential
part of the model specification is that the m components of
the error e should be (zero-mean and) mutually uncorrelated
random variables, i.e.

Yo :i=Exe’ =0, 2
¥, :=Eee' =diag{o?,...,02}. (3)
The aim of these models is to provide an “explanation” of
the mutual interrelation between the observable variables y

in terms of a small number of common factors, in the sense
that, setting

- T
yii=a; X, “4)
where aiT is the i-th row of the matrix A, one has exactly

Ey:y; =Eyiy;, %)
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for all ¢ # j. This property is just conditional orthogonality
(or conditional independence in the Gaussian case) of the
family of random variables {y1,...,ym} given x and is a
characteristic property of the factors. It is in fact not difficult
to see that y admits a representation of the type (1) if
and only if x renders {y1, ...,y } conditionally orthogonal
given x [25], [2]. We stress that conditional orthogonality
given x is actually equivalent to the orthogonality (uncorre-
lation) of the components of the noise vector e.
Unfortunately these models although providing a quite nat-
ural and useful data compression scheme in many circum-
stances, suffer from a serious non-uniqueness problem. Note
that the property of making {yi,...,ym} conditionally
orthogonal is really a property of the subspace of random
variables linearly generated by the components of the vector
y := Ax, denoted! X := H(y) and it will hold for any
set of generators of X. Any set of generating variables
for X can serve as a common factors vector and there
is no loss of generality to choose the generating vector x
for X of minimal cardinality (a basis) and normalized, i.e.
Exx" = I, which we shall always do in the following.
A subspace X making the components of y conditionally
independent is called a splitting subspace for {y1,...,¥m}
The so-called “true” variables y; are then just the orthogonal
projections ¥; = E[y; | X].

We may then call n = dimx = dim X the dimension of the
model. Obviously a model of dimension n will automatically
have rankA = n as well. Two FA. models for the same
observable y, whose factors span the same splitting subspace
X are regarded as equivalent. This is a trivial kind of non-
uniqueness since two equivalent F.A. models will have factor
vectors related by a real orthogonal transformation matrix.
The serious non-uniqueness comes from the fact that
there are in general many (possibly infinitely many) min-
imal splitting subspaces for a given family of observables
{¥1,...,¥m}. This is by now well known [25], [22]. Hence
there are in general many nonequivalent minimal F.A. models
(with normalized factors) representing a fixed m-tuple of
random variables y. For example, by choosing for each k €
{1,....,m},x:=[y1 ... Yb-1 Ykt1 --- Ym] . o0ne obtains
m “extremal” F.A. models called elementary regressions, of

the form

yE=a,x+eg (6)

Ym=1[0...1]x+0

where @, = Ey,x' (Exx")~!. The inherent nonunique-
ness of F.A. models is called “factor indeterminacy” (or
unindentifiability) in the literature and the term is usually
referred to parameter unidentifiability as it may appear that
there are always “too many” parameters to be estimated. It
may be argued that once a model (in essence, a splitting

'In the following we shall denote by the symbol H(v) the inner-product
space of random variables linearly generated by the scalar components
{v1,...,vm} of a generic m-dimensional random vector v.

subspace) is selected, it can always be parametrized in a
one-to-one (and hence identifiable) way. Unfortunately, the
classification of all possible (minimal) F.A. representations
and an explicit characterization of minimality are, to a large
extent, still an open problem. The difficulty is indeed a
serious one.

Since, as we have argued, in essence non-uniqueness is just
a consequence of uncorrelation of the noise components, one
may try to get uniqueness by mitigating the requirement
of uncorrelation of the components of e. This however
turns out to be an ill-defined problem as the basic goal
of uniquely splitting the external signal into a noiseless
component plus “additive noise” is made vacuous, unless
some extra assumptions are made on the model and on
the very notion of “noise”. As we shall see, for models
describing an infinite number of observables a meaningful
weakening of the uncorrelatedness property can be made,
which can guarantee the uniqueness of the decomposition.

III. GENERALIZED FACTOR ANALYSIS MODELS

In this section we shall review the main points of the

construction of [14] particularized to the static case. Our
point in this review is the observation that the dynamics does
not seem to add anything to the structure of the underlying
model and tends instead to obscure certain important points.
Although we shall not attempt to do so, one could possibly
recapture the original dynamic picture by assuming that all
real random variables are substituted by random elements
taking values in sequence spaces of time series. The object
of our study are called (static) generalized factor analysis
models.
Consider an infinite collection of zero-mean finite variance
random variables y := {yx, ¥ € N}, which we shall
occasionally represent as a random vector with infinite
components. We want to describe every element of such
a sequence as a linear combination of a finite number of
common components plus ““ noise”, i.e.

Ye=fix+yr, k=12, (7)

where x is a q-dimensional fixed random vector which can
be taken with orthonormal components ( Var [x] = I,;) and
Y is a random variable which is orthogonal to x, whose
specific character (see the definition of idiosyncratic noise
below) will be discussed later. The linear combination f,;'— X
is also denoted by yj (¥ in vector notation).

The infinite covariance matrix of the vector y is denoted by
3., while 3, indicates the top-left n x n block of X, equal
to the covariance matrix of the first n components of y, the
corresponding n-dimensional vector being denoted by y”.
The inequality ¥ > 0 means that all submatrices X,, of X
are at least positive semidefinite.

The orthogonality of the noise term and the common com-

ponents implies that
Sh =S, +%,, VneN, (8)

where 3, 1= Ey"y"" and ¥, := Ey"y"".
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Let ¢2(X), ¥ > 0 denote the Hilbert space of infinite
sequences a := {ay, k € N} such that ||a]|Z := a" Za < oco.
When ¥ = [ we simply use the symbol /o, indicating the
corresponding norm with the symbol || - ||.

The sequence whose first n elements are the same as in a,
while the others are set equal to zero is denoted al™.

Definition 1: Let {a,, n € N} be a sequence of elements
of the set {5Nly(X). We say that {a,,, n € N} is an averaging
sequence (AS) if lim,, o ||a,| = 0.

Example 1: The sequence of elements in /5

_ 1 T
= [1..10..] ©)

is an averaging sequence.
The definition of AS allows us to introduce the concept of
idiosyncratic sequence of random variables.

Definition 2: We say that y is idyosincratic if
lim, soaly = 0 for any averaging sequence
a, € loN ZQ(Z)

Another useful defintion is the following. Let H(y) be the
Hilbert space spanned by the sequence {yx, k € N}.

Definition 3: Let z € H(y). We say that the random

variable z is an aggregate (of y) if there exists an AS
a, such that lim, .. a)y = z The set of all aggregate
random variables in H(y) is denoted by G(y) and called
the aggregation subspace of H(y).
It is straightforward to check that G(y) is a closed subspace.
Clearly, if y is an idiosyncratic sequence then G(y) =
{0}. Furthermore, it is possible to define an orthogonal
decomposition of the type

y =Ely|G(y)] +u,

where all components wy, are uncorrelated with G(y). The
idea behind this decomposition is that, in case G(y) is
finite dimensional, say generated by a g-dimensional random
vector X, one may naturally capture a unique decomposition
of y as in (7). Unfortunately, in general G(y) = {0} does
not imply that y is idiosyncratic, as it can be seen in the
following example.

Example 2: ([14]) Consider a sequence y with
yilynVj # h (ie. y is a white noise), such that
lly;lI> = j. This sequence is not idiosyncratic, since, given
the AS

(10)

1
0 =—[0...010...]",
——

n

(1)

we obtain that |0, y| = 1Vn. Let then z be an aggregate
random variable, so that there must exist an AS a,, such that

(o)
— 1 T — 1 . .
zZ = nhﬁn;c’ a,y = nl;ngoz A, Yj - (12)
j=1
Note that, being z € H(y) and y an orthogonal basis of
such space, we can uniquely express z as

o0
z=> by;,
j=1

13)

and, by uniqueness of the representation, it follows that
lim,, o0 an,j = b; Vj. On the other hand, being a,, an AS,
the limits of a,, ; must be zero, so that b; = 0. Hence z = 0.
Thus G(y) = {0} but y is not idiosyncratic.
Note that the sequence y, interpreted as a stochastic process
with respect to the cross-sectional index k, is non-stationary.
The nature of an idiosyncratic sequence is strictly related to
the behaviour of the eigenvalues of its covariance matrix. To
explain this point, it is useful to introduce some notations and
facts about the eigenvalues of infinite covariance matrices.
Denote by AY , the k-th eigenvalue of the n x n upper left
submatrix ¥, of ¥. The Y, are real nonnegative and can be
ordered in decreasing magﬁitude. Forni and Lippi [14, Fact
M], show that the k—th eigenvalue of 3., is a non decreasing
function of n and hence has a limit, A}, which may possibly
be +oo. Each such limit is called an eigenvalue of 3. In case
all the limits are finite one can show that they are bona—
fide eigenvalues of the infinite matrix X (considered as a
linear operator on /¢3). Clearly these eigenvalues can also
be ordered. Henceforth we shall denote by A} the maximal
eigenvalue of X, with the convention that /\‘7{ = +o0o0 when
there are infinite eigenvalues as defined above.
A strong characterization of idiosyncratic sequences is given
by the following theorem, stated after [14] after some obvi-
ous simplifications.

Theorem 1: The sequence y is idiosyncratic if and only if
Y is finite.

Proof: Assume first that lim,, o, A} | = +oco. Since

Y, > 0, for every n one has the diagonalization

Uy, U, =D,, (14)
where U, is orthonormal and
D,, =diag{ A}, ;, ..., M\ ., } (15)

For every n, consider the first column of U, say u[', which
is the eigenvector of the eigenvalue A} ; and define the
sequence of elements in the set ¢3 N {5 (X)

= [wrT 0 ... (16)
/\y
n,l
Note that this is an AS, whose application to y gives
lla y|| = 1 for every n, thus the sequence y cannot be
idiosyncratic.

Conversely, suppose now that A\Y < -+oc and again apply the
diagonalization ,, = UnDnUnT . Let a,, be an arbitrary AS
and consider the random variable

z= lim ay = lim a"'y", (I7)
n—oo n— o0
which has variance
varz] = lim o' U,D,U, a” := 2" D,o", (18)

n—oo

where 0,, is an AS whose first n elements form a vector
equal to U, a”, while the remaining can be taken equal to

n n’

1487



those of a,,.

: nT n _ n Yy g2 :
Since o3, Dy, 05 =3 71_ A}, ;d; ; one can write

n n
— 1 vy 2 ; Y 2
varlal = fim > X < Y A D o
i=1 i=1
N Y9n|2 =
= lim A{[[o[|" =0
n—oo

which shows that y is idiosyncratic. [ ]
Definition 4: Let ¢ be a finite integer. A sequence y is
purely deterministic of rank ¢ (in short ¢-PD) if H(y) has
dimension gq.
Clearly for a g-PD sequence y can be seen as a (in general
non-stationary) purely deterministic process in the classical
sense of the term, see [9]. Let x be an orthonormal basis in
H(y). Obviously y is a ¢-PD random sequence if and only
if there is a R%-valued function f(k), k € N, such that

q

vi =1 (R)x = filk)x;,

i=1

keN, (19

where the functions f1(-), f2(:), ... fy(-) must be linearly
independent, for otherwise the rank of y would be smaller
than gq.
We want to relate this concept with the idea of aggrega-
tion subspace of y, as defined earlier. Let now x be an
orthonormal basis in G(y); quite unfortunately, there are
nontrivial sequences representable in the form (19) which
are idiosyncratic (or contain idiosyncratic sequences). See
Example 3 below.

Example 3: Consider a sequence y whose k—th element
is

yi=Mx A <1, (20)

where x is a zero—mean random variable of variance 2.

Clearly, y is non—stationary and 1-PD, its spanning subspace
H(y) being the one-dimensional space H(x). The covari-
ance matrix of the first n components of y is

A2 A3 cooAntt
A3 D D
Zn _ EynynT _ 0_2 ) ) (21)
AL X2
Being rank(X,,) = 1 for every n, we have
y . . 2N~ 2k 0N
M = i () = Jim o® ) N =7 @)

thus, in force of Theorem 1, y is idiosyncratic. Hence there
are non-stationary ¢g—PD sequences which are idiosyncratic.
This is a possibility which we clearly must exclude if the
decomposition (7) has to be unique. To this end Forni and
Lippi seem to impose a condition on the eigenvalues of the
covariance matrix of a ¢g—PD sequence. We introduce the
following definition.

Definition 5: Lety be a g—PD sequence; then 'y is called
q-aggregate if the q nonzero eigenvalues of its covariance
matrix are all infinite.

The question now is which properties need to be satisfied

by the functions fi, fo, ... fq for y to be a g-aggregate

sequence. The answer is in the following theorem.
Theorem 2: Let'y be a q—PD sequence, i.e. let

r=fTRx =Y filk)x;, keN; (23)
i=1

then y is q—aggregate if and only if, for each 1 = 1,...q,
it holds that

T [1£76) = I C) | 7l = +0o

where 11 is the orthogonal projection onto the Euclidean
space

(24)

The proof of this theorem is rather long and will be given
elsewhere.
Example 4: Consider the 2—PD sequence

2
ye =Y filk)x; (26)
=1

with

k
1
fi(k) =1 Vk, fz(/f)zl—(2> :
It is not difficult to check that this sequence does not satisfy
condition (24). We shall show that this sequence is not
2-aggreggate. The Gramian matrix of the functions fi, fo
restricted to [1, n] is

1£7113 < ST, 13 >2
< ST 13 >2 175113

and it is easy to see that as n — oo, the second eigenvalue
5

converges to 3. Hence one eigenvalue of the covariance
matrix of y is finite and the sequence is not 2-aggregate.

The following proposition, which follows trivially from
Theorem 1, guarantees uniqueness of the decomposition (7)
when y is g-aggregate and y is idiosyncratic.

Proposition 1: A q-aggregate sequence y can be idiosyn-
cratic only if it is the zero sequence.
The next definition is the static version of a similar one of
[14] for the dynamic setting.

Definition 6: The sequence y is a q—factor sequence

(q—FS) if it can be written as an orthogonal sum

[ = ] 27)

Vi = fi X+ 3k, (28)

where Vi = fkTX is a q-aggregate sequence and y is
idiosyncratic (and orthogonal to x). The representation (28)
is called a generalized factor model with ¢ factors.

Hence y is a ¢—FS if and only if it admits a representation
by a generalized factor model with ¢ factors.

The crucial question is now to give a criterion telling us
which random sequences are ¢—FS. Forni and Lippi [14]
provide a criterion based on the unboundedness of the eigen-
values of the covariance matrix. The criterion is rephrased
below for the static setting which concerns us here.
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Theorem 3: If the sequence y is a q—FS then \}j = 400
but N}, | is bounded.
The condition is clearly necessary since the sequence y
is idiosyncratic iff the first (i.e. maximal) eigenvalue of
¥ is finite and the covariance matrix 3 of the sequence
yi={yr= fka, n € N} has ¢ unbounded eigenvalues, i.e.
)\g = +o00. The proof of sufficiency in [14] is very involved
and we shall not discuss it.
Unfortunately, as shown by Example 2, there are sequences
which do not admit a ¢—FS (with ¢ finite). The covariance
matrix of the scalar sequence y of Example 2 is diagonal
with infinitely many eigenvalues of X equal to +o0, accord-
ing to the definition given above. Hence the sequence may
be called a co—aggregate sequence. However y cannot be
g—aggregate since it cannot be ¢g—PD for any finite ¢; in
fact, it can be shown that y is a purely-non-deterministic
sequence. On the other hand y is not idiosyncratic either
since we have shown that G(y) = {0}.

IV. STATIONARY SEQUENCES AND THE WOLD
DECOMPOSITION

As we have just seen, non-stationarity can bring in many
pathologies which seem to be difficult to rule out. We
consider now the special case in which the sequence Yy,
defined on Z, is (weakly) stationary; i.e. Ey;ys = r(t — )
for t,s > 0. It is well known, see e.g. [11], [27] that,
introducing the remote future subspace of y:

Hao(y) = () Hi(y)

>0

(29)

the sequence of orthogonal wandering subspaces E; :=
H,(y) © Hy+1(y) and their orthogonal direct sum

H(Y):GBEt

t>0

one has a unique orthogonal decomposition

Vi € H(y) (30)

for all £ € Z_, the component § being the purely determin-
istic (PD) component while y the purely non deterministic
(PND) one. The two sequences are orthogonal and uniquely
determined. Furthermore, it is well known that y has an abso-
lutely continuous spectrum with a spectral density function,
say Sy(w), while y has a singular spectral distribution (for
example consisting only of jumps) possibly together with a
singular spectral density such that

/log Sy(w) dw = —00.

In this section we want to give an interpretation of the
decomposition (7) in the light of the the Wold decomposition.
First we prove the following lemma.

Lemma 1: Let 'y be stationary and PND and assume that
its spectral density is bounded; i.e.

Sy(w) € L= (|-, 7).

y=y+Yy, Vi € Ho(y)

€1y

(32)

Then y is idiosyncratic.

Proof: Consider an AS a,,; then
layyll® = lanlls = a) San < Mlan]?.  (33)

Since y is PND and its spectral density is bounded, for a
well known theorem of Szegd [16, p.65], ¥ has bounded
eigenvalues, thus |a] y||? — 0, i.e. y is idiosyncratic. ~— ®
Lemma 1 has an important consequence, namely

Lemma 2: Let'y be a stationary sequence with a bounded

spectral density, then G(y) C Huo(y) .
Note that the statement holds in particular for PD processes
with a singular spectrum, as in this case Sy(w) = 0.
The converse inclusion, i.e. Hy(y) € G(y), is in general
not true. However, for stationary sequences with a finite
dimensional remote future, we can state the following.

Theorem 4: Assume that y is a stationary sequence with
a bounded spectral density and that dim Hoo(y) < oo
Then Hy(y) = G(y).

Hence,

Theorem 5: Every stationary sequence with bounded
spectral density and remote future space of dimension q is a
q—factor sequence and admits a unique generalized factor
analysis decomposition (28) where y is the PD and y the
PND components of y.

It is not hard to show that the assumption of stationarity here
is crucial. In fact, Example 3 discussed before shows that in
the non-stationary case a PD process y whose remote future
is the one-dimensional space H(z) may be idiosyncratic.

In the following example, we show how to build an AS that
generates a basis in a finite-dimensional remote future space.

Example 5: Consider a PD process y, with a remote
future of finite dimension 2v. It is well-known that any such
process can be expressed as a sum of elementary oscillations
of the form y, = > ., v;cosw;k + w;sinw;k, where
v; and w; are mutually uncorrelated zero—mean random
variables with var[v;] = var[w;]. It can be seen that
Ho(y) = span{v;, w;, i = 1, ..., v}. Consider the AS
a, whose elements have components

e = { % Yoi_jcoswik +sinwk k<n (34)
0 k>n

Applying a,, to y we obtain the random variable

n n v v
3 1 D S
Zn = an LYk = E Zn,k + Znk | o
k=1 k=1 |i=1 ij=1,i#j
where
) . Vi +WwW; .
Z;,k = v; cos® wik + w; sin? w;k + % sin 2w; k
i, _ Y1 7 ) ) [ 7
2%, chos(wz+wj)k+72 X

... [eos(wi — wj)k + sin(w; + w;)k + sin(w; — w;)k]
As n tends to infinity, all the non quadratic terms vanish,

giving

1 n v
z = lim fz Z v; cos® wik + w; sin® w;k (35)
n—o0o N,
k=11i=1
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and so

z = Z ciVi + dzwz s (36)

i=1

where ¢;, d; are constants in the interval [0, 1]. Thus the
random variable z is an aggregate of y, so G(y) # {0} and
y is not idiosyncratic. This example suggests a method to
obtain a basis of Hu(y). In order to obtain only one of
the random variables spanning Ho,(y), say for example v,
p < v, it is sufficient to apply to y the AS a,, of components
Qn,k = %coswpk for £ < n and equal to zero for k > n,
obtaining

n

: § 2
z= lim a y = — vV, COs” wpk =,V
n n nk ‘ p p PP

(37

with ¢, > 0. Analogously, one can obtain the random
variables w; using a sine instead of the cosine.

V. DISCUSSION

In the paper [14] stationarity with respect to the cross-
sectional index is not required. However without stationar-
ity, there may be sequences which satisfy the eigenvalue
conditions of Theorem 3 but do not admit a generalized
factor analysis decomposition. Example 2 shows one such
sequence. Understanding which class of non-stationary se-
quences admits a generalized factor analysis decomposition
seems still to be an open problem.
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