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Abstract— Although many papers address the issue of ther-
apy design for HIV-1 infection based on control methods, the
results available in the literature do not in general consider
the fact that the manipulated variable is not continuous but
a train of pulses. In addition, they are usually concerned
only with the relation between drug effect (assumed to be
manipulated) and virus dynamics. In order to improve the
direct relation with actual clinical practice, the present work
takes as manipulated variable a train of impulses that represent
the pills taken by the patient and includes pharmacokinetics
(PK) and pharmacodynamic (PD) drug models. In addition,
patient adherence to treatment and their impact on virus drug
resistance is also modeled. The problem of driving the viral
load to a low specified value while minimizing the amount of
drugs administered to the patient is thus addressed by nonlinear
model predictive control (NMPC) with periodic inputs. There-
fore, the paper contributions consist in the characterization of
the results obtained with this type of control strategy in a HIV-
1 infection model comprising drug PK and PD, development of
virus resistance to drugs and virus dynamics. Furthermore,
it is shown that various amounts of reverse transcriptase
inhibitor (RTI) and protease inhibitor (PI) drugs can be given
depending on the weights of the cost function minimized by
periodic NMPC, while attaining the same control objective. It
is proposed that these weights can be adjusted to minimize the
toxicity of the drug cocktail administered.

Index Terms— Nonlinear Model Predictive Control, Periodic
control, HIV-1 infection control, immunology, biomedical sys-
tems.

I. INTRODUCTION

A. Motivation

In recent years, an increasing number of papers have

addressed the issue of therapy design for HIV-1 infection

based on control methods. Nevertheless, in general, the

available literature does not consider the fact that the manip-

ulated variable is a train of pulses and is usually concerned

only with the relation between drug effect (assumed to

be manipulated) and virus dynamics. In order to approach

clinical practice, control algorithms must take into account

that manipulated variables are drug doses taken periodically,

usually once or twice a day, and resort to models that

incorporate pharmacokinetics (PK) and pharmacodynamics

(PD) of the drugs considered. Furthermore, modeling of

patient adherence to prescribed therapy and the development
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of virus resistance and the impact of these issues on control

performance is also important.

B. Literature review

A recent paper [1] addresses the application of periodic

control to drug delivery. Since the seminal paper [2] that

pointed the attention to the importance of phenomena that

take place in time scales of days and weeks, that are

fast when compared with the time scale of AIDS, many

works have been reported in the literature concerning both

model development and analysis [3] and therapy design

using control algorithms [4], [5]. Other examples of control

techniques used include nonlinear control [6], [7], [8] and

optimal control [9], [10].

Predictive control is currently receiving an increased atten-

tion in relation to HIV-1. In [11] MPC is used to schedule in-

terruptions in highly active anti-retroviral therapy (HAART)

used to simulate a therapeutic vacine. Treatment schedules

based on robust multirate MPC are proposed in [12]. In order

to minimize drug consumption, [13] proposes a MPC based

algorithm in which the dose (given with a sampling time of

one week) is restricted either to be zero or the maximum

acceptable value. In [14] a model of pharmacodynamics of

antiretroviral drugs in HIV-1 infected patients that incorpo-

rates drug susceptibility and patient adherence is discussed.

C. Paper contributions and structure

The problem of driving the viral load in HIV-1 infection

to a low specified value while minimizing the amount of

drugs administered to the patient is addressed by a nonlin-

ear model predictive control (NMPC) with periodic inputs.

The paper contributions consist in the characterization of

the results obtained with this type of control strategy in

a HIV-1 infection model that includes drug PK and PD,

virus resistance depending on patient adherence to therapy

and virus dynamics. Furthermore, it is shown that various

amounts of reverse transcriptase inhibitor (RTI) and protease

inhibitor (PI) drugs can be given resulting in the same final

virus load, depending on the weights of the cost function

minimized by periodic NMPC, a result that may be used to

minimize toxicity of the drug cocktail administered.

The paper is organized as follows: After the Introduction

(this section) that motivates the problem, performs a concise

literature review and describes the paper contributions and

structure, the HIV-1 infection model used is presented in

section II. This model is exploited in section III to address

nonlinear state estimation, required for the control algorithm

used, and in section IV to develop a nonlinear model

predictive control (NMPC) algorithm with periodic inputs.
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Fig. 1: Pharmacokinetic/pharmacodynamic model of HIV-1

infection incorporating adherence and resistance models.

This section also includes a discussion, based on simulation

results, of the effect of controller parameters on the type of

response obtained. Finally, section V draws conclusions.

II. PK/PD MODEL FOR HIV-1 INFECTION

Figure 1 shows the model of HIV-1 infection and drug

interaction considered in this work, including a model of

patient adherence to the therapeutics, drug pharmacokinetics

and pharmacodynamic model. The pharmacodynamic model

includes a model of the development of virus resistance

to drugs, for patients without perfect adherence that is a

variant of the one presented in [14]. The pharmacodynamic

model includes a model of the development of resistances in

response to non-perfect adherence.

It is assumed that two different types of drugs are being

administered to the patient: A reverse transcriptase inhibitor

(RTI, drug number 1) and a protease inhibitor (PI, drug

number 2). Hence, corresponding to each drug, there is

one pharmacokinetics and one pharmacodynamic model,

corresponding to indexes 1 and 2 in the block diagram of

figure 1.

The inputs to the the model are the drug doses of each

type, uPK1 for the RTI dose and uPK2 for the PI dose and

the patient adherence A. The drug doses are assumed to be

trains of square pulses of very small duration and with an

height proportional to the dose taken. The adherence A is

defined as the probability that the patient will actually take

the dose prescribed by the controller. Hence, at each discrete

time k, the adherence model generates a random number αA

with a uniform distribution between 0 and 100. If αA ≤ A
then the dose effectively taken of drug i, at time k, ūPKi(k)
is made equal to uPKi(k); otherwise, it is made equal to 0.

The pharmacokinetics (PK) model of drug i (block PKi

in figure 1) is a linear, time invariant, model, with 3 poles,

3 zeros and unit delay. These PK models relate the amounts

of drug administered to the patient with the drug plasma

concentration cp1 and cp2. Figure 2 shows the impulse

response of the PK model used for the RTI drug. The impulse

response used for PI is similar. These are typical curves,

adapted from published drug PK data with modifications

and taken for exemplificative purposes. Of course the results

depend on the specific drugs considered.

The pharmacodynamic (PD) model consists of two cas-

cade parts (figure 1). The first part relates the plasma con-
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Fig. 2: RTI pharmacokinetics model impulse response.
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Fig. 3: Resistance model of HIV-1.

centration of each drug with the corresponding drug effect

(u1 for RTI and u2 for PI). This is assumed to be the static

nonlinear relation known as the ”Hill equation”:

ui =
cpi

ci50 + cpi
(1)

where ci50 is a parameter for each i. For drug i, when the

plasma concentration is cpi = 0 the corresponding effect ui

is zero. When the plasma concentration cpi grows, the effect

ui approaches 1. For cpi = ci50, the effect is ui = 0.5.

The resistance model tries to represent the effect that

low plasma drug concentrations induce virus mutations that

render the virus more resistant to the drug used. The increase

of virus resistance means that the same effect can only

be achieved with an higher plasma concentration. A way

of representing this effect consists in increasing the ci50
parameter depending on the periods in which the plasma

concentration is below the threshold LR that allows virus

mutation [14]. This is the resistance model that is detailed

in figure 3 (for simplicity the index of the drug has been

dropped in this figure).

Figure 4 is a sketch of the time dependency of plasma

concentration, used to explain the resistance model. It is

assumed that the parameter C50 increases proportionally

cp

LR

t

Fig. 4: Explaining the resistance model of HIV-1.
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to the area of the shadowed zones. Whenever the plasma

concentration decreases below LR this area will increase,

causing the factor f and, consequently, C50 to increase. In

compact terms, this reads

C50(t) = f(t)Cbase
50 (2)

where Cbase
50 is a constant giving the initial value of C50 and

f(t) is given by

f(t) = 1 +Kr

∫ t

0

max[0, Lr − cp(τ)]dτ (3)

where Kr is a parameter that measures the capacity of the

virus to develop resistance in the presence of a drop of drug

plasma concentration. For simplicity of notation the index of

the drug has been omitted.

The second block of the PD model represents the interac-

tion between drug effects u1 and u2 and virus dynamics. A

simple model is used that considers only the following three

state variables [2]:

• x1, plasma concentration of healthy T-CD4+ cells;

• x2, plasma concentration of infected T-CD4+ cells;

• x3, plasma concentration of free virus particles (viri-

ons).

A balance, together with simple assumptions on interaction

rates between the different elements involved yields the

following nonlinear state space model:






ẋ1 = s− dx1 − (1− u1)βx1x3

ẋ2 = (1− u1)βx1x3 − µx2

ẋ3 = (1− u2)kx2 − cx3

y =

[

y1
y2

]

=

[

1 1 0
0 0 1

]





x1

x2

x3





(4)

where β, µ, k and c are patient dependent parameters.

For the sake of simplicity in mathematical manipulations,

model (4) can be written in the following condensed form

ẋ = φ(x(t), u(t))
y = h(x, u)

(5)

with obvious definitions for functions φ and h.

Since the control algorithms considered operate in discrete

time, the above model is approximated using the Euler

method. Let ∆ be the sampling interval. With an obvious

definition for Φ, the discrete model is written as

x(k + 1) = Φ(x(k), u(k)) (6)

III. NONLINEAR STATE ESTIMATION

The NMPC algorithm used requires knowledge of the

state variables. Since not all of these are directly measured,

the Extended Kalman Filter (EKF) is used to produce state

estimates according to the following equations:

For prediction:

x̂k|k−1 = Φ(x̂k−1|k−1, uk−1) (7)

Pk|k−1 = FkPk−1|k−1F
T
k +Qk (8)
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Fig. 5: Multi-rate EKF estimate of the viral load for a

sampling interval of Tm = 30 day.

with the jacobian given by

Fk−1 =
∂Φ

∂x
|x̂k−1|k−1,uk−1

=

=





1−∆(d+ U1)βx3 0 −∆U1βx1

∆U1βx3 1−∆µ ∆U1βx1

0 ∆U2k 1−∆c



 (9)

where U1 = 1 − u1, U2 = 1 − u2 and ∆ is the sampling

interval chosen to be a submultiple of the one used for

control.

For update:

ỹk = zk − h(x̂k|k−1) (10)

Sk = HkPk|k−1H
T
k +Rk (11)

with

Hk−1 =
δh

δx
|x̂k−1|k−1

=

[

1 1 0
0 0 1

]

(12)

and
Kk = Pk|k−1H

T
k S

−1

k

x̂k|k = x̂k|k−1 +Kkỹk
(13)

Pk|k = (I −KkHk)Pk|k−1 (14)

The noise variances are selected as

Qk =





0.5 0 0
0 0.001 0
0 0 50



Rk =

[

0.5 0
0 0.0005

]

(15)

and the initial error covariance matrix is P0|0 = I .

A multi-rate version of EKF is used. The prediction stage

is used in every iteration while filtering is used in a multiple

of this time unit. Figure 5 shows the result for the estimate of

the viral load (x3). In order to test filter robustness, a value

of k with a 10% error has been used.

IV. PERIODIC NONLINEAR MPC OF HIV-1 INFECTION

The control problem consists in bringing down the vi-

ral load, that corresponds to the state x3, to a level of

50 copies/mm3 and keeping it there, in less than 56 days.

The manipulated variables are the drug doses uPK1 and

uPK2
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A. NMPC algorithm

The NMPC control is obtained by solving in a receding

horizon way, at each current discrete time t, the following

constrained minimization problem:

min
ū
t+Tc−1

t

J(x(t), ūTc

t , Tc, Tp) (16)

where Tc is the control horizon and Tp is the prediction

horizon, verifying Tp ≥ Tc. The sequence of virtual control

ū is

ūt+Tc−1

t := [ū(t) . . . ū(t+ Tc − 1)]T

The receding horizon cost J is defined as

J(x(t), ūTc

t , Tc, Tp) =

Tp
∑

k=1

L[x̄(t+ k), ū(t+ k − 1)] (17)

where the stage cost is defined by

L(x, u) = (x− xs)
TQ(x− xs) + uTRu

with

Q =





0 0 0
0 0 0
0 0 1



 R =

[

wu1
0

0 wu2

]

(18)

and xs is the reference, given by

xs,3(t) = 50 + (902.8− 50)e−τrt (19)

The variable τr is the time constant that determines the

speed at which the reference signal decreases towards the

desired value of 50 copies/mm3, and was selected as τr =
0.2 days−1.

It is assumed that, for i = 1, . . . , Tp − Tc

ū(Tc + i) = ū(Tc) (20)

The virtual state trajectory satisfies the system dynamics

with initial condition x̄(t) given by the actual state x at

time t. Since the actual state is not available for direct

measurement, it is replaced by its EKF estimate, x̂. Thus,

for k = 0, . . . , Tp−1:

x̄(t+ k + 1) = Φ(x̄(t+ k), ū(t+ k)) (21)

starting from

x̄(t) = x̂(t) (22)

According to a receding horizon strategy, once the problem

(16) is solved with respect to the virtual control ū, the value

of the manipulated variable to actually apply to the plant at

time t is u(t) = ū(t). The same procedure is again repeated

at time t + 1. Figures 6 and 7 show the viral load and

the drug dosage for a patient with an adherence of 95%

controlled with NMPC. Figure 8 shows the corresponding

plasma concentration of RTI and PI. As seen in figure 7 the

doses of both drugs applied grow initially such as to drive

the viral load to a low level. Then, the doses are reduced, to

keep the viral load where desired. After the fail of a control

sample, the controller raises the value of subsequent samples

to compensate the drop of drug concentration in plasma.
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95% and Kr = 1× 10−4.
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B. Selecting the controller parameters

1) Sampling interval: Figure 9 shows the dependency of

the cost on the sampling interval.

2) Prediction horizon: Figure 10 shows the dependence

of the cost on the prediction horizon. It should be remarked

that the horizon actually ”seen” by the algorithm is the

product of Tp by the sampling interval. Smaller sampling

intervals require a bigger Tp so that the same performance

is achieved. For a given sampling rate, when Tp increases, the

performance increases. However, this increase is smaller and

smaller as Tp gets bigger. Due to plant model mismatches,

it is expected that, when Tp grows, after the initial decrease

of the cost this will increase again, for larger values of Tp,

due to the degradation of prediction performance over long

time horizons.

3) Cost weights and toxicity: The plots in figure 11 show

the effect of the cost weight parameter wu1
. Plots for the

influence of wu2
are similar, being omitted for lack of space.

When wu1
increases there is a decrease in the average of the

amount of RTI that is administered to the patient and an

increase in PI. Thus, the parameter wu1
regulates a trade-off

between these two types of drug (shown in figure 12) that

can be explored to minimize toxicity of the overall treatment.
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the function that measures toxicity for drug i, i = 1, 2. The

average toxicity of both dugs is given by

Tx = g1(< uPK1 >) + g2(< uPK2 >)

Using NMPC, the average values of both drugs are related

by the function plotted in figure 12, that we call Υ. Hence,

we can find a value for the weight wu1
that minimizes

treatment toxicity, by finding the function uPK1 that solves

the optimization problem

min
<uPK1>

{g1(< uPK1 >) + g2(Υ(< uPK1 >))} (23)

and then computing the corresponding value for wu1
from

figure 12.

C. Modeling errors

Figure 13 shows the dependence of the cost on modeling

errors for parameter k. There is a graceful degradation of

performance in the presence of a mismatch between the

model used by the controller and the ”true” model. The

behavior is similar with respect to other parameters.
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D. Patient adherence and virus mutation

An adherence value smaller than 1 has two consequences:

First, the drug doses not taken in due time are seen by the

controller as disturbances. More important, they may lead to

an increase of virus mutation probability that is modeled by

an increase in C50. Figure 14 shows the time increase of C50

for two patients with different adherence and figure 15 shows

the dependency of optimal cost on the patient adherence

parameter. When adherence reduces the performance quickly

degrades.

V. CONCLUSIONS AND DISCUSSION

The use of a periodic nonlinear MPC, together with a

model incorporating drug PK and PD, virus dynamics and

patient adherence provides an adequate way to compute

optimal drug dosage for HIV-1 infection therapy. For a

patient adherence of 90% the controller could still meet the

specifications. The cost dependence on controller parameters

as well as on model parameters have been studied, including

parameter mismatching. The choice of weights in the cost

function minimized by periodic NMPC provides a degree of

freedom that can be explored to optimize therapy toxicity.

Future work should remove a number of simplifications

in order to make the controller more realistic. These include

assuming drug dose quantification, the use of PK models
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Fig. 15: Cost as a function of adherence.

for specific drugs, inclusion of an effect compartment and

improved observation noise models.
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