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Abstract—The stability of a class of Markov jump
linear systems (MJLS) characterized by constant
transition rates and piecewise-constant system dy-
namics is investigated. For these Switching Dynamics
Markov jump linear systems (SD-MJLS), almost sure
exponential stability (ASE-stability) is analyzed by
applying the ergodic law of large numbers under
the assumption that suitable average contractivity
conditions are satisfied. The main result is a sufficient
condition that guarantees ASE-stability under con-
straints on the dwell-time between switching instants.

I. Introduction

The study of hybrid systems, characterized by the
interconnection of logical and continuous dynamics, is
motivated by a variety of applications in diverse fields [7],
[26], [24], [15], [19], [9], [1]. The commutations between
logical variables can be given either a probabilistic or
deterministic description.
In the former case, an important class of hybrid systems
is that of Markov jump systems whose logical states are
subject to stochastic jumps governed by a Markov chain.
The stability analysis of these systems is a particular case
of stability analysis of random systems, see [21], [22], [23].
It is important to note that there exist several different
notions of stochastic stability including mean square, δ-
moment, and almost sure stability. Even for the restricted
class of Markov jump linear systems (MJLS), numerous
works were devoted to the derivation of sufficient and/or
necessary conditions for different types of stability [17],
[16], [14], [8], [12], [3], [6], [4], [29], [28]. Recent sta-
bility results for neural Markov jump network systems
are reported in [30], [31]. It is worth observing that
mean square stability is somehow easier to analyze since
Lyapunov-type equations can be employed. A less con-
servative and more useful notion is almost sure stability
as it guarantees (with probability one) the convergence
to zero of sample paths of the state trajectory. However,
almost sure stability results are generally more difficult
to establish, as the determination of the sign of the
top Lyapunov exponent is usually a rather difficult task
[2], [13]. A possible way to prove almost sure stability
relies on the ergodic law of large numbers under the
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assumption that suitable average contractivity properties
hold. In particular, in [14] almost sure exponential (ASE)
stability was established under an average instantaneous
contractivity condition. More recently, sufficient condi-
tions, based on average contractivity on a finite interval
or over a single jump, were established [3], [4], [28].
When it is not possible, or desirable, to assume a prob-
abilistic model, the evolution of the logical state can be
described as a deterministic switching signal. This might
be the case when commutations are not governed by
nature but orchestrated by a supervisor attempting to
improve or optimize system performance. In this case,
the analysis aims to guarantee stability for all switching
signals belonging to a suitable class. In particular, it is
rather natural to impose dwell-time constraints to the
switching signal, meaning that there exists a minimum
dwell-time between two consecutive switching instants.
Some results on the stability under this kind of constraint
are reported in [25], [27], [20], [18].
In the present paper, we consider hybrid systems subject
to both stochastic jumps and deterministic switches.
Given that Markov jumps are an appropriate model for
random faults and unexpected events, these stochastic-
deterministic hybrid systems are well suited to describe
the dynamics of fault-prone systems managed by a su-
pervisor whose actions are represented by deterministic
switches. Stochastic stability of switching MJLS was first
studied in [5], where sufficient conditions for mean square
stability were proven. As already mentioned, almost sure
stability is less restrictive than mean square stability,
but is also more difficult to prove. The main purpose
of the present paper is to derive an easy-to-check suf-
ficient condition ensuring ASE stability of a class of
switching MJLS under dwell-time constraints on the
deterministic switching signal. In particular, we consider
deterministic switchings between MJLS that share the
underlying Markov chain. These systems are dubbed as
Switching Dynamics Markov jump linear systems (SD-
MJLS). The extension to MJLS with different underlying
Markov chains is nontrivial because the uniqueness of
the Markov chain is instrumental to the application of
the ergodic law of large numbers, that represents the key
point of the stability proof. The obtained ASE stability
condition is easily verified on the basis of a few scalars
providing bounds on the norm of the transition matrices
of the subsystems. As a corollary, it is shown that, under
average instantaneous contractivity, ASE stability holds
for an arbitrarily short dwell-time.
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Notation Throughout the paper, ‖A‖ will denote the
usual spectral norm of A, i.e. its maximum singular value.
The notation A[γ(t)] will denote the dependence of matrix
A on the piecewise constant switching signal γ(t). Con-
versely, the notation Aσ(t) will denote the dependence of
matrix A on the Markovian form process σ(t).

II. Preliminaries and problem formulation

A continuous-time Markov jump linear system (MJLS)
is a stochastic system described by the state equation

ẋ(t) = Aσ(t)x(t) , t ≥ 0 (1)

where x(t) ∈ IRn, and the form process σ(t) is a
finite-state, time homogeneous, Markov stochastic pro-
cess taking values in a finite set S = {1, 2, . . . , N}, with
stationary transition probabilities

Pr{σ(t + h) = j|σ(t) = i} = λijh + o(h) , i 6= j (2)

where h > 0, and λij ≥ 0 is the transition rate from
mode i at time t to mode j at time t + h. Letting

λii = −

N
∑

j=1,j 6=i

λij

and defining Λ = [λij ], the matrix Λ is called the
transition rate matrix of the Markov process.

Let pi(t) = Pr{σ(t) = i} and

p(t) =
[

p1(t) . . . pN (t)
]′

Given an initial probability distribution

p0 =
[

p01 . . . p0N

]′

where p0i := Pr{σ(0) = i}, the probability distribution
p(t) obeys the differential equation

ṗ(t)′ = p(t)′Λ (3)

Hereafter, we assume that the Markov chain is recurrent,
irreducible and aperiodic, so that ergodicity is guaran-
teed, see e.g. [9]. Under this assumption, it is well known
that the solution of (3) asymptotically converges to a
constant vector

π =
[

π1 . . . πN

]′

representing the stationary probability distribution of
the logical state.

The class of systems studied in this paper is given by
MJLS with switching dynamics (SD-MJLS). More pre-
cisely, consider a set of M MJLS sharing the same state
order n, the same number of modes N , and the same
underlying Markov chain, but having different dynamic
matrices. The overall dynamics undergoes deterministic,
yet unknown, switching between the M elements of this
set. More formally, we consider the system

ẋ(t) = A
[γ(t)]
σ(t) x(t) , t ≥ 0 (4)

where x(t) ∈ IRn and the stochastic jumping signal

σ(t) is a form process, taking values in the finite set
S = {1, 2, . . . , N}, with transition rate matrix Λ. The
deterministic switching signal γ(t) ∈ M = {1, 2, . . . , M}
is an exogenous piecewise constant function.

We are interested in the stability properties of the
SD-MJLS (4). Since the system is stochastic, different
notions of stability can be used, see e.g. [16].

Definition 1: For a given switching signal γ(t), the SD-
MJLS (4) is said to be mean square stable (MS-stable)
if

lim
t→∞

E[‖x(t)‖2] = 0

for any initial condition x(0) and any initial probability
distribution p(0).

Definition 2: For a given switching signal γ(t), the SD-
MJLS (4) is said to be almost sure exponentially stable
(ASE-stable) if there exists ρ > 0 such that, for any
x(0) ∈ IRn and any initial distribution p(0), it results
that

Pr{lim sup
t→∞

1

t
ln ‖x(t)‖ ≤ −ρ} = 1

�

It is immediate to see that Definition 2 implies that
Pr{limt→∞ ‖x(t)‖ = 0} = 1, i.e. almost all realizations
of the stochastic process x(t) converge to zero. As such,
ASE-stability is related to sample-path stability prop-
erties and is usually regarded as the most appropriate
stability notion for practical purposes. Conversely, MS-
stability is an ensemble property but has the advantage
of being more easily assessed. For non-switching MJLS,
it is known that MS-stability implies ASE-stability [11].
It can be easily seen that the same holds for SD-MJLS.

Checking ASE-stability of a MJLS involves the deter-
mination of the sign of the top Lyapunov exponent, which
is usually a rather difficult task [2], [13]. This motivated
the development of easy-to-check sufficient conditions for
ASE-stability, based on the notion of average contrac-
tivity (namely the expectation of the logarithm of the
norm of the transition matrix over a suitable interval
is negative). A first result in this direction hinges on
the definition of AINC (Average Instantaneous Norm-
Contractivity), based on the notion of matrix measure
µ(A) of a square matrix (see e.g. [10]). The matrix
measure µ(A) is defined as

µ(A) = lim
t→0

‖I + At‖ − 1

t

where I is the identity matrix. Note that µ(A) is the
derivative of the norm of exp(At) at t = 0. It is easy
to see that, if µ(A) < 0, then A is ”instantaneously
norm-contractive”, in the sense that ‖ exp(At)‖ ≤
exp(µ(A)t), ∀t ≥ 0. In [14], the following sufficient con-
dition for ASE-stability can be found.

Theorem 1: If

N
∑

i=1

πiµ(Ai) < 0, then the MJLS (1) is

ASE-stable. �

Such a condition is tantamount to requiring that
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E [µ(Aσ] < 0, namely that the system is ”averagely
instantaneously norm-contractive” (AINC).

A second less conservative condition for ASE-stability
was originally developed in [28], and it is here recalled
with slightly different notation.

Theorem 2: Consider the MJLS (1) and let αi ≥ 0,
and βi, i ∈ S be such that

‖eAit‖ ≤ eαi−βit, t ≥ 0

Then, the system is ASE-stable if

N
∑

i=1

(λiiαi + βi)πi > 0

�

The above condition is sufficient to ensure average norm-
contractivity of the system over a single jump of the
underlying Markov chain (Average One-Jump Norm-
Contractivity, AOJNC). It is easily seen that the suffi-
cient condition of Theorem 1 implies the fulfillment of the
sufficient condition of Theorem 2, with αi = 0, βi = −µi,
∀i ∈ S.

In this paper we restrict our attention to the class of
switching signals γ(t) with minimum dwell-time T ≥ 0,
i.e.

ΓT = {γ(·)|tk+1 − tk ≥ T }

where t0, t1, t2, . . . denote the switching time instants
of the deterministic switching signal. Hereafter, without
loss of generality, we take t0 = 0.

Our aim is to derive sufficient conditions to guarantee
that the SD-MJLS (4) is ASE-stable for all γ(t) ∈ ΓT .
In this case, we will say that the system is ASE-stable in
ΓT . The obtained conditions will lead to a computable
upper bound of the minimum dwell-time ensuring ASE-
stability. Since the set ΓT includes all constant signals
γ(t) = i, ∀t, i ∈ M, a necessary condition for ASE-
stability in ΓT is that all the M individual MJLS are
ASE-stable.

III. ASE-stability with dwell-time

In order to derive the main result, we first introduce
some useful notation. For each A

[j]
i , i ∈ S, j ∈ M, let

α
[j]
i ≥ 0, and β

[j]
i be two real constants such that

‖eA
[j]
i

t‖ ≤ eα
[j]
i

−β
[j]
i

t, t ≥ 0

Moreover define

η[j] =

N
∑

i=1

(

λiiα
[j]
i + β

[j]
i

)

πi

and

η̃[j] =

N
∑

i=1

(

λiiᾱi + β
[j]
i

)

πi (5)

where ᾱi = maxj α
[j]
i . According to Theorem 2, the

condition η[j] > 0 is sufficient to guarantee ASE-stability
of the j-th MJLS. Moreover, by recalling that λii < 0, it

is immediate to see that η̃[j] > 0 implies that η[j] > 0,
and hence ASE-stability of the j-th MJLS.

We are now in a position to prove the main result of
the paper.

Theorem 3: If

η̃[j] > 0, ∀j ∈ M, T >
maxi ᾱi

minj η̃[j]

then the SD-MJLS (4) is ASE-stable in ΓT . �

Proof: For a given switching signal γ(t), let Ψ(t, 0)
be the transition matrix of the stochastic system (4). The
thesis will be proved by showing that the associated top
Lyapunov exponent is negative, i.e.

lim sup
t→∞

1

t
ln ‖Ψ(t, 0)‖ < 0, a.s. (6)

Assume that k switches occur in the interval (0, t), and
let Φ[j](t, τ) be the stochastic transition matrix of the
j-th MJLS. Note that

ln ‖Ψ(t, 0)‖ ≤ ln ‖Φ[γ(tk)](t, tk)‖ (7)

+

k−1
∑

m=0

ln ‖Φ[γ(tm)](tm+1, tm)‖

≤

N
∑

i=1

(

α
[γ(tk)]
i Ni(t, tk) − β

[γ(tk)]
i Ti(t, tk)

)

+

k−1
∑

m=0

N
∑

i=1

α
[γ(tm)]
i Ni(tm+1, tm)

−
k−1
∑

m=0

N
∑

i=1

β
[γ(tm)]
i Ti(tm+1, tm) (8)

where Ni(t, τ) represents the number of activations of
mode i in the interval [τ, t), and Ti(t, τ) represents the
cumulative residence time of mode i in the interval [τ, t).
Notice that Ni(t, τ) and Ti(t, τ) do not depend on γ(t)
because the underlying Markov process is unique.

It is useful to introduce the following indicator func-
tions:

Ji(t) =

{

1, σ(t) = i
0, σ(t) 6= i

, I [j](t) =

{

1, γ(t) = j
0, γ(t) 6= j

Moreover, let

r[j](t) =
1

t

∫ t

0

I [j](τ)dτ

denote the fraction of time in the interval [0, t] when the
j-th MJLS is active. Finally, let

T
[j]
i (t) =

∫ t

0

I [j](τ)Ji(τ)dτ

be the cumulative residence time of mode i when the j-th
MJLS is active.
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By rearranging the terms in the sums of (7), we obtain

ln ‖Ψ(t, 0)‖ ≤
N
∑

i=1

α
[γ(tk)]
i Ni(t, tk)

+

N
∑

i=1

k−1
∑

m=0

α
[γ(tm)]
i Ni(tm+1, tm)

−

N
∑

i=1

β
[γ(tk)]
i Ti(t, tk)

−

N
∑

i=1

k−1
∑

m=0

β
[γ(tm)]
i Ti(tm+1, tm)

≤

N
∑

i=1

ᾱi

(

Ni(t, tk) +

k−1
∑

m=0

Ni(tm+1, tm)

)

−

N
∑

i=1

M
∑

j=1

β
[j]
i T

[j]
i (t)

Note that, almost surely,

Ni(t, tk) +

k−1
∑

m=0

Ni(tm+1, tm) > Ni(t, 0)

due to the fact that, with probability 1, σ(t) does not
change across the switching instants tm. Hence, the
summation on the left hand side contains extra terms
with respect to Ni(t, 0). As a matter of fact,

Ni(t, tk) +

k−1
∑

m=0

Ni(tm+1, tm) = Ni(t, 0) + ki,

N
∑

i=1

ki = k

where ki is the number of switching instants tm occurring
when the mode i is active. Hence

ln ‖Ψ(t, 0)‖ ≤

N
∑

i=1

ᾱi (Ni(t, 0) + ki) +

−

N
∑

i=1

M
∑

j=1

β
[j]
i T

[j]
i (t)

≤ kᾱmax +

N
∑

i=1

ᾱiNi(t, 0) +

−

N
∑

i=1

M
∑

j=1

β
[j]
i T

[j]
i (t)

where ᾱmax = maxi ᾱi.

As proved in Lemma 1, when the Markov process is at
steady state, it holds that

E[Ni(t, τ)] = πi − πiλii(t − τ)

E[Ti(t, τ)] = πi(t − τ)

E[T
[j]
i (t)] = r[j](t)πit

Observing that γ(t) ∈ ΓT implies that k ≤ t/T , and
exploiting the ergodic law of large numbers, one obtains

that, with probability 1,

lim sup
t→∞

1

t
ln ‖Ψ(t, 0)‖ ≤

ᾱmax

T
−

N
∑

i=1

ᾱiπiλii +

−

N
∑

i=1

πi

M
∑

j=1

β
[j]
i r̄[j] (9)

where
r̄[j] = lim sup

t→∞
r[j](t) ≤ 1

It is also easily seen that

M
∑

j=1

r̄[j] ≥ 1 (10)

It is only left to show that the right hand side of
inequality (9) is strictly negative. To this purpose, note
that the assumptions of the Theorem, inequality (10) and
the definition (5) of η̃[j] entail that

ᾱmax

T
< min

j
η̃[j] ≤

M
∑

j=1

r̄[j] η̃[j] =

=
M
∑

j=1

r̄[j]
N
∑

i=1

ᾱiπiλii +
N
∑

i=1

πi

M
∑

j=1

β
[j]
i r̄[j]

Since ᾱiπiλii < 0, ∀i and recalling (10), then

ᾱmax

T
<

N
∑

i=1

πi



ᾱiλii +
M
∑

j=1

β
[j]
i r̄[j]





so that, from (9), it results that

lim sup
t→∞

1

t
ln ‖Ψ(t, 0)‖ < 0, a.s., ∀γ(t) ∈ ΓT

and the proof is completed. �

Remark 1: A special case occurs when all MJLS are
AINC (averagely instantaneously norm-contractive), see

Theorem 1. Then, by applying Theorem 3 with α
[j]
i = 0,

β
[j]
i = −µ(A

[j]
i ), ∀i, j, it turns out that the SD-MJLS is

ASE-stable ∀T > 0, i.e. under arbitrary switching.

Conversely, when all MJLS are AOJNC (averagely one-
jump norm-contractive), see Theorem 2, the fulfillment
of condition η̃[j] > 0, ∀j ∈ M of Theorem 3 is not
guaranteed. Comparing η̃[j] and η[j], it appears that our
main Theorem needs a slightly stronger assumption on
the properties of the individual MJLS.

IV. Numerical example

Consider the SD-MJLS (4) with M = 2, N = 2, n = 2,
and

A
[1]
1 =

[

2 0
0 −1

]

, A
[1]
2 =

[

−5 1
0 −2

]

A
[2]
1 =

[

1 0
1 −1

]

, A
[2]
2 =

[

−5 0
0 −2

]
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Let the transition matrix of the Markov process σ(t) be
given by

Λ =

[

−1 1
0.96 −0.96

]

so that the stationary probability distribution of the
logical state is π = [0.49 0.51]

′
. The matrix measures

of the matrices A
[j]
i are

µ(A
[1]
1 ) = 2, µ(A

[1]
2 ) = −1.92

µ(A
[2]
1 ) = 1.12, µ(A

[2]
2 ) = −2

Moreover, it can be verified that suitable values for α
[j]
i

and β
[j]
i ar given by

α
[1]
1 = 0, α

[1]
2 = 0.058, β

[1]
1 = −2, β

[1]
2 = 2

α
[2]
1 = 0.010, α

[2]
2 = 0, β

[2]
1 = −1.12, β

[2]
2 = 2

It turns out that the condition of Theorem 1 is satisfied
for the second MJLS but not for the first one. Hence,
it is not true that both MJLS are AINC. However, by
applying Theorem 2, it can be shown that both MJLS
are AOJNC, so that the procedure presented in section
III can be used to establish the existence of a dwell time
for which ASE-stability of the SD-MJLS is guaranteed.
To this purpose, compute η̃[j], for j = 1, 2, recalling that
ᾱ1 = 0.010, ᾱ2 = 0.058. Since it turns out that

η̃[1] = 0.0067 > 0, η̃[2] = 0.4379 > 0

the first condition of Theorem 3 is satisfied. According
to this theorem, the SD-MJLS is ASE-stable in ΓT , with
T > 0.058/0.0067 = 8.66.

In summary, both MJLS are ASE-stable, but ASE-
stability of the overall system can be guaranteed only
if the switches of the deterministic signal γ(t) are suffi-
ciently far apart in time. Of course, since the conditions
of Theorem 3 are only sufficient, the actual minimum
dwell-time preserving stability may well be lower than
the calculated bound.

V. Concluding remarks

In this paper almost sure exponential stability for
Markov jump linear systems subject to deterministic
switching dynamics has been investigated. A sufficient
condition for stability under a dwell-time constraint has
been provided. The proof is based on the ergodic law of
large numbers and exploits average contractivity prop-
erties of each individual Markov jump subsystem. The
extension to switching probabilities is nontrivial due to
the impossibility of resorting to ergodic arguments, and,
as such, is an open and challenging research topic.
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Appendix

Lemma 1: Consider the SD-MJLS (4), where σ(t) is
a form process, taking values in the finite set S =

{1, 2, . . . , N}, where Λ is the transition rate matrix and
πi denote the stationary probability of mode i. The
function γ(t) ∈ M = {1, 2, . . . , M} is a deterministic
switching signal. Moreover recall that

Ni(t, τ) is the number of activations of mode i in the
interval [τ, t);

Ti(t, τ) is the cumulative residence time of mode i in
the interval [τ, t);

r[j](t) is the fraction of time in the interval [0, t] when
the j-th MJLS is active;

T
[j]
i (t) is the cumulative residence time of mode i when

the j-th MJLS is active.
Then, when the Markov process is in stationary con-

ditions,

(i) E[Ti(t, τ)] = πi(t − τ)
(ii) E[Ni(t, τ)] = πi − πiλii(t − τ)

(iii) E[T
[j]
i (t)] = r[j](t)πit

Proof: The proof of (i) is immediate in view of the
very definition of πi.

To prove (ii), observe that, in stationary conditions,

E[Ni(t, τ)|Ti(t, τ)] = −λiiTi(t, τ) + πi

As a matter of fact, the first term on the right-hand
side is the average number of transitions out of mode i
within the interval [τ, t] (recalling that these transitions
are Poisson events). The second term takes into account
the probability that the i-th mode is active at the final
time t of the interval. Now, the proof follows from the
total probability theorem:

E[Ni(t, τ)] =

∫

E[Ni(t, τ)|Ti(t, τ)]dp(Ti)

= −λiiE[Ti(t, τ)] + πi

= πi − πiλii(t − τ)

Property (iii) follows immediately from property (i) in
view of the very definition of r[j](t) �
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