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Abstract—In this paper, we present an observer based output
feedback controller for a thrust magnetic bearing system. A
model independent variable structure like observer is used to
determine the rotor velocity in order to remove the velocity
dependency of the controller. The desired system dynamics
have been utilized in the controller design and asymptotic
stability of the observer-controller couple is guaranteed via
Lyapunov based arguments. Experimental results are presented
to illustrate the performance and feasibility of the proposed
method.

I. INTRODUCTION
Active Magnetic Bearings (AMBs) consist of opposing

electromagnets to support a rotor without physical contact.
AMBs use magnetic forces to levitate a rotor and magnetic
forces are naturally unstable [1]. Thus an AMB system have
to be stabilized around an unstable equilibrium state of the
overall system via a closed loop active controller. Magneti-
cally levitated rotors have many useful advantages like non-
contact and frictionless movement. Owing to these, AMBs
allow rotors to reach high rotational speeds [2]. However
due to the nature of magnetic field, magnetically levitated
rotor systems are nonlinear and AMBs are represented by
nonlinear mathematical expressions [3]. Nevertheless they
can be linearized successfully around the operating point
thanks to the restricted and very small air gap between
AMB stator and rotor [1]. As a result many linear and
local controllers like PID or fuzzy logic controllers [2],
[4] have been successfully applied to AMB systems. These
controllers can offer good performance around the operating
point but outside these local regions where the effects of the
nonlinearities become more evident, local controllers do not
operate properly.
Model–based controllers are developed to increase the per-

formance of the AMB system. But in model based controllers
parametric uncertainties and measurement of the velocity
become new issues to overcome. Parameters are very hard to
define in magnetic bearings due to the magnetic saturation
and eddy current effects. To our best knowledge nearly all
AMBs do not have velocity sensors to measure rotor velocity
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in the AMB. The numerical derivation of the rotor position
which is provided by very sensitive position sensors adds an
evident noise to the closed loop control system.
In this study, we apply a model–based output feedback

tracking controller with a model–free observer presented in
[5] to the thrust magnetic bearing of a 5–axis flexible rotor–
AMB system. A continuous model-free observer formulation
together with the desired system dynamics have been utilized
in the controller design and global asymptotic stability of the
observer-controller couple is guaranteed via Lyapunov based
arguments.
The remaining of the paper is organized as follows: The

mathematical model of a thrust magnetic bearing system
is given in Section 2, while the problem formulation and
error system development are stated in Section 3. Section
4 contains the observer-controller design with the stability
analysis to ensure asymptotic tracking and boundedness of
the closed-loop system. Results of the experimental stud-
ies performed on the thrust magnetic bearing of a 5 axis
magnetic rotor levitation system are presented in Section 5.
Concluding remarks are given in Section 6.

II. THRUST MAGNETIC BEARING MODEL
The linearized mathematical model for a one degree–of–

freedom thrust magnetic bearing (as shown in Figure 1) is
assumed to have the following form [1]

mz̈ = kzz + kiiz (1)

where z (t), z̈ (t) ∈ R denote the rotor position and accel-
eration, respectively, iz (t) ∈ R represents the control input
current, m ∈ R represents the mass, ki ∈ R is the current
displacement factor, and kz ∈ R is the force displacement
factor.

Fig. 1. Schematic Representation of a Magnetically Levitated Rotor

To ease the presentation of the subsequent control devel-
opment, we divide both sides of (1) by the non–zero constant
ki to obtain

Mz̈ − Cz = iz (2)
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where M , m/ki and C , kz/ki are constant parameters.
The modified rotor magnetic bearing system dynamics given
in (2) can be written in terms of the desired rotor position
and acceleration, denoted by zd (t), z̈d (t) ∈ R, respectively,
in the following manner

Wd ,Mz̈d − Czd (3)

where Wd (zd, z̈d) ∈ R is assumed to be a known function.
III. PROBLEM FORMULATION

The control objective is to design an axial position track-
ing controller for horizontal rotor AMB systems under the
restrictive constraint that only the rotor position variable z (t)
is available for control development.
We will quantify the control objective by defining the

position tracking error, denoted by e(t) ∈ R, as follows
e , zd − z. (4)

In the subsequent stability analysis, the standard assumption
that zd (t) and its first three time derivatives being bounded
functions of time will be utilized. To account for the un-
measurable velocity constraint, we define ˙̂z (t) ∈ R as the
observed velocity signal. The corresponding position and
velocity observer error signals, denoted by z̃ (t), ˙̃z (t) ∈ R,
respectively, are defined as

z̃ , z − ẑ (5)
˙̃z = ż − ˙̂z. (6)

To ease the presentation of the analysis, we will introduce
filtered version of tracking error, denoted by r (t) ∈ R, and
filtered version of velocity observer error, denoted by s (t) ∈
R, as

r , ė+ αe and s , ˙̃z + αz̃ (7)

where α ∈ R is a positive control gain. It should be noted
that, regulating r (t) and s (t) ensures the regulation of e (t)
and z̃ (t), respectively.

IV. OBSERVER–CONTROLLER DESIGN
Based on the subsequent error system development and the

stability analysis, we propose the following velocity observer

˙̂z = p+ k0z̃ − kce (8)
ṗ = k1sgn (z̃) + k2z̃ − αkce (9)

where p (t) ∈ R is an auxiliary filter signal, sgn (·) ∈ R
is the standard signum function, k0, kc, k1, k2 ∈ R are
positive gains and α was previously introduced in (7). It is
straightforward to show that the time derivative of (8) yields

¨̂z = k1sgn (z̃) + k2z̃ + k0 ˙̃z − kcr (10)

where the definition of r (t) given in (7) was utilized. Based
on the subsequent stability analysis, and after assuming exact
knowledge of all the system parameters, the current input
iz (t) is designed as

iz =Wd + kpe+ kcα (zd − ẑ) + kc

³
żd − ˙̂z

´
(11)

where kp ∈ R is a positive control gain. It should be noted
that, after using the fact that

zd − ẑ = e+ z̃ (12)

the control input given in (11) can be rewritten in the
following form

iz =Wd + kpe+ kcr + kcs (13)

which will be preferred in the subsequent stability analysis.

A. Observer Analysis
The observation error dynamics can be obtained as

¨̃z = z̈ − ¨̂z
= N0 − k1sgn (z̃)− k2z̃ − k0 ˙̃z + kcr (14)

where (2) and (10) were utilized, and the auxiliary term
N0 (t) ∈ R is defined as

N0 ,
1

M
(Cz + iz) . (15)

After substituting (13) into (15), the following expression
can be obtained

N0 = Nd +Nb (16)

where (3) was utilized and the auxiliary variables Nd (t),
Nb (t) ∈ R are defined as

Nd , z̈d (17)

Nb , − C

M
e+

1

M
(kpe+ kcr + kcs). (18)

Remark 1: After exploiting the boundedness properties of
the desired trajectory, we can show that Nd (t) and its time
derivative are bounded functions of time. Furthermore, the
right–hand–side of (18) can be upper–bounded as follows

|Nb (t)| ≤ ρ01 |e|+ ρ02 |r|+ ρ03 |s| (19)

where ρ0i ∈ R, i = 1, 2, 3 are known positive bounding
constants (see Appendix I).
After taking the time derivative of s (t) in (7) and substi-

tuting (14), the dynamics for the filtered observation error
s (t) can be obtained as

ṡ = Nd +Nb − k1sgn (z̃)− k2z̃ − (k0 − α) ˙̃z + kcr. (20)

It should be noted that, when the observer gains are selected
to satisfy

α (k0 − α) = k2 (21)

the expression in (20) can be rearranged to have the following
form

ṡ = Nd +Nb − k1sgn (z̃)− k2
α
s+ kcr. (22)

The following preliminary Lyapunov–like analysis can be
done for the observer design. Specifically, we define a non
negative scalar function, denoted by V0 (t) ∈ R, as follows

V0 =
1

2
s2 + P0 (23)
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where the scalar auxiliary function P0 (t) ∈ R is defined as

P0 , ζ0 −
tZ

t0

w0 (σ) dσ (24)

where w0 (t) ∈ R and the non–negative constant ζ0 ∈ R are
defined as

w0 , s (Nd − k1sgn (z̃)) (25)
ζ0 , k1 |z̃ (t0)|− z̃ (t0)Nd (t0) . (26)

Following a similar analysis1 to that of [6] and [7], it can
be proven that when k1 satisfies the following sufficient
condition

k1 > |Nd (t)|+ 1

α

¯̄̄
Ṅd (t)

¯̄̄
(27)

then P0 (t) is always non–negative and V0 (t) is a non–
negative Lyapunov function with respect to s (t) andp
P0 (t). Taking the time derivative of (23) results in

V̇0 = s

µ
−k2
α
s+ kcr +Nb

¶
(28)

where (22), time derivative of (24), and (25) were utilized.
The first term in the brackets of (28) will be used for both
damping the unwanted effects of the term Nb (t) in the
composite stability analysis and to ensure the convergence of
the observation error. The second term is designed to cancel
out the interconnection term between the observer/controller
subsystem. At this point, we are ready to proceed to the error
system development.

B. Error System Development
After taking the time derivative of r (t), premultiplying the

resulting equation with M , utilizing (2), (4), and performing
some straightforward algebraic manipulation, the following
expression can be obtained for the dynamics of r (t)

Mṙ =Ws − iz (29)

where the auxiliary term Ws (t) ∈ R is defined as
Ws ,M (z̈d + αė)− Cz. (30)

After substituting the control law (13) into (29), the following
closed–loop dynamics for r (t) can be obtained

Mṙ = χ− kcr − kcs− kpe (31)

where the term χ (e, r, t) ∈ R is defined as
χ ,Ws −Wd (32)

where Wd (·) was previously defined in (3).
Remark 2: As illustrated in Appendix I, it can be shown

that χ (·) can be upper bounded as
|χ (·)| ≤ ρ1 |e|+ ρ2 |r| (33)

where ρ1, ρ2 ∈ R are known positive bounding constants.
The above bound will be exploited in the stability analysis.

1Though the analysis very similar to that of the one given in the
references, for the completeness of the presentation we have included it
in Appendix II

C. Stability Analysis
The combination of error systems for (22) and (31) yields

the following stability result for the observer error z̃ (t) and
the position tracking error e (t).
Theorem 1: The velocity observer in (9) and the control

law in (11) ensure that the closed–loop observer/controller
couple is globally asymptotically stable in the sense that

|e (t)| , ¯̄ ˙̃z (t)¯̄→ 0 as t→∞ (34)

provided that the controller and observer gains are selected
to satisfy (21), (27) with controller gain kc and observer gain
k2 are chosen as

kc = 1 + ρ2 + knρ
2
1 (35)

k2 = α
¡
1 + ρo3 + kn

¡
ρ2o1 + ρ2o2

¢¢
(36)

where kn ∈ R is a nonlinear damping gain, ρ1, ρ2 and ρoi,
i = 1, 2, 3 were introduced in (33) and (19), respectively.

Proof: We start our proof by introducing a non–negative
function, denoted by V (t) ∈ R, as follows

V = V0 +
1

2
Mr2 +

1

2
kpe

2. (37)

From (37), V (t) can be upper and lower bounded as

λ1 kxk2 ≤ λ1 kyk2 ≤ V (y) ≤ λ2 kyk2 (38)

where x (t) ∈ R3 and y (t) ∈ R4 are defined as follows
x ,

£
s r e

¤T (39)

y ,
£
s
√
P0 r e

¤T (40)

and the positive constants λ1, λ2 ∈ R are defined as
λ1 , 1

2
min {1,M, kp} (41)

λ2 , 1

2
max {2,M, kp} . (42)

After taking the time derivative of (37), we obtain

V̇ = s

µ
−k2
α
s+Nb

¶
+ r (χ− kcr)− αkpe

2 (43)

where (7), (28) and (31) were utilized. After substituting
(19), (33), (35) and (36) into (43), the following upper bound
can be formed

V̇ ≤ −kpα |e|2 − |r|2 − |s|2

+
³
ρ01 |e| |s|− knρ

2
01 |s|2

´
+
³
ρ02 |r| |s|− knρ

2
02 |s|2

´
+
³
ρ1 |r| |e|− knρ

2
1 |r|2

´
. (44)

After completing the squares of the terms in the brackets we
obtain

V̇ ≤ −
µ
kpα− 1

2kn

¶
|e|2 −

µ
1− 1

4kn

¶
|r|2 − |s|2 (45)

which, after using the definition of x (t) in (39), can be
further upper bounded as

V̇ ≤ −β kxk2 (46)
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where β ∈ R is some positive constant.
That is, when the gain conditions in (21), (27), (35)

and (36) are satisfied, V (t) ∈ L∞; thus, y (t), x (t),
e (t), r (t), s (t) ∈ L∞. Following standard signal chasing
arguments, it can be shown that all closed–loop signals are
bounded, and e (t) and ˙̃z (t) are uniformly continuos (from
the boundedness of their derivatives over time). Furthermore,
from the integration of both sides of (46), it is easy to see
that x (t) ∈ L2 and therefore e (t), ˙̃z (t) ∈ L2. Finally, after
utilizing a direct application of Barbalat’s Lemma [8], we
can obtain the result given in (34) provided that the gain
conditions are satisfied.

V. EXPERIMENTAL RESULTS
To illustrate the performance of the proposed control

scheme, we have implemented the proposed observer-
controller couple on the thrust magnetic bearing of a 5
degree of freedom magnetic bearing system (shown in Figure
2) manufactured by the The Shanghai Bo-hong Science
and Manufacturing Trade Corporation. The overall system
is composed of 3 magnetic bearing (one thrust and two
radial) and is driven by 5 individual amplifiers. Capacitive
sensors are used to measure the position of each magnetic
bearing. The experiments were performed on the thrust
magnetic bearing while the radial magnetic bearings were
controlled by conventional PID controllers. The controller
algorithm were implemented using Matlab/Simulink simu-
lation environment while the data acquisition and controller
implementation were performed using dSpace ACE Kit 1103
system. The observer and controller gains were selected as

Fig. 2. 5 Degree of Freedom Magnetic Bearing Experimental Setup

α = 2

k0 = 1200, kc = 150

k1 = 2, and kp = 200000.

The desired end position of the rotor is selected as the mid-
point of the bearing (i.e. zd = 0 ). The position observation
error during the experiments are presented in Figure 3. Figure
4 shows the position tracking error while the control input
to the system is presented in Figure 5. As can be seen form
the Figures the data logging starts at time t = 0 while the
controller action starts around t = 0.4sec and regulation of

the system around the desired end point is obtained very
quickly.

VI. CONCLUSION

In this work, we have presented an observer based con-
troller formulation for the output feedback control of thrust
magnetic bearing systems. Specifically a model indepen-
dent variable structure like observer in conjunction with
the desired system dynamics have been utilized to remove
the velocity dependency of the controller. Despite the lack
of velocity measurement the proposed observer-controller
couple achieves global asymptotic stability. Stability of the
proposed method have been proven via Lyapunov based
arguments and experimental results are presented to illustrate
the performance and feasibility of the proposed method.
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APPENDIX I
PROOF OF BOUNDS

In this appendix, we illustrate how the upper bounds of
Nb (t) in (19) and χ (t) in (33) are obtained.
We start with exploting the expression given in (18), which

can be rewritten in the following form

Nb =
kp − C

M
e+

kc
M

r +
kc
M

s. (47)

From the structure of (47), it is clear that the bounding
constants ρoi, i = 1, 2, 3 in (19) are defined as

ρ01 ,
¯̄̄̄
kp − C

M

¯̄̄̄
, ρ02 ,

kc
M

,ρ03 ,
kc
M

. (48)

To obtain the upper bound in (33), we start with substitut-
ing (3) and (30) into (32) to obtain the following expression

χ =
¡
C − α2M

¢
e+ αMr (49)

where the definitions of e (t) and r (t) in (4) and (7),
respectively, were utilized. From the structure of (49), it

is clear that the bounding constants ρ1 and ρ2 in (33) are
defined as

ρ1 ,
¯̄
C − α2M

¯̄
and ρ2 , αM. (50)

APPENDIX II
THE GAIN CONDITION OF k1

In this appendix, we will illustrate how the sufficient
condition of (27) is obtained. After substituting the definition
of s (t) in (7) into (25) and then integrating w0 (t) in time
results in the following expressionZ t

t0

w0 (σ) dσ =

Z t

t0

z̃ (σ)α (Nd (σ)− k1sgn (z̃ (σ))) dσ

+

Z t

t0

dz̃ (σ)

dσ
Nd (σ) dσ

−k1
Z t

t0

dz̃ (σ)

dσ
sgn (z̃ (σ)) dσ. (51)

After integrating the second integral on the right–hand–side
of (51) by parts, the following expression is obtainedZ t

t0

w0 (σ) dσ =

Z t

t0

z̃ (σ)α (Nd (σ)− k1sgn (z̃ (σ))) dσ

+ (z̃ (σ)Nd (σ))|tt0 −
Z t

t0

z̃ (σ)
dNd (σ)

dσ
dσ

− k1 (|z̃ (σ)|)|tt0 . (52)

After combining common terms, from (52), the following
expression can be obtainedZ t

t0

w0 (σ) dσ =

Z t

t0

z̃ (σ)α[Nd (σ)

− 1
α

dNd (σ)

dσ
− k1sgn (z̃ (σ))]dσ

+z̃ (t)Nd (t)− z̃ (t0)Nd (t0)

−k1 (|z̃ (t)|− |z̃ (t0)|) . (53)

The right–hand–side of (53) can be upper bounded as followsZ t

t0

w0 (σ) dσ ≤
Z t

t0

|z̃ (σ)|α[|Nd (σ)|

+
1

α

¯̄̄̄
dNd (σ)

dσ

¯̄̄̄
− k1]dσ

+ |z̃ (t)| (|Nd (t)|− k1) + ζ0. (54)

If k1 is chosen to satisfy (27), from (54), it is easy to obtain
the following expressionZ t

t0

w0 (σ) dσ ≤ ζ0 (55)

thus; from (24), it can be concluded that P0 (t) is non–
negative.

1643


