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Abstract— We present a decentralized, real-time, cooperative
avoidance control law for a group of nonlinear Lagrangian
systems with bounded control inputs, limited sensing ranges,
and bounded sensing errors. The control formulation builds
on the concept of avoidance control and uses Lyapunov-based
analysis to guarantee collision-free trajectories for a group
of N vehicles with sensing uncertainties. Advantages of the
cooperative avoidance strategy include its easy synthesis with
other stable control laws and its null effect on the agent’s main
task when other vehicles and obstacles are sufficiently away.
Two numerical examples are finally presented that illustrate

the performance of the proposed control framework.

I. INTRODUCTION

One of the most critical challenges in multi-vehicle sys-

tems is to guarantee collision avoidance between neighboring

agents and obstacles at all times independently of sensing

errors. Unmanned vehicles and mobile robots typically rely

on navigation and localization sensors to estimate the dis-

tance to nearby agents and obstacles or on wireless commu-

nication networks for the broadcast of position coordinates

among agents. These sensing mechanisms, in which we

include communication networks, may inaccurately estimate

the position of obstacles and agents as a result of process

delays, interferences, noise, and quantization. For instance,

obstacle’s position measurements sampled by vision-based

sensing mechanisms on many mobile robotic systems are

easily affected by weather conditions and light variations

[1]. Similarly, underwater localization equipment on board

of unmanned vehicles, such as sonar radars and inertial

measurements units, may also experience substantial delays,

slow sampling rates, and dead reckoning errors [2]. If these

estimation errors are not carefully considered when con-

trolling the motion of the vehicle, the system may become

vulnerable to collisions. Therefore, avoidance strategies for

autonomous navigation must provide robustness to sensing

uncertainties.

Collision avoidance strategies coping with sensing uncer-

tainties have been predominantly studied within the field of

path planning, where a complete obstacle-free path from the

agent’s current location to the next target is developed based

on estimates of the initial position of obstacles. Examples

include the certainty [3] and occupancy grid [4], where the
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robot’s environment is divided into an array of cells with

each cell containing a probability of having an obstacle.

Then, a safe path, which the robot is meant to follow, is

traced according to this probability map. Although these

control strategies have been shown to be robust to common

sensor uncertainties, they require other agents and obstacles

to be static or to move at low speeds such that the agent’s

initial sensing observation remains true throughout the entire

trajectory. An alternate approach with a similar drawback is

proposed in [5], where a noncooperative collision avoidance

strategy based on the concept of reachable sets [6] is de-

scribed for zero-velocity obstacles.

In contrast to path planning algorithms, real-time collision

avoidance strategies compute the avoidance control inputs

online as obstacles are detected, therefore, facilitating (in

most cases) the treatment of fast-moving obstacles. Real-

time collision avoidance algorithms considering sensing un-

certainties have been introduced in [7] and [8] based on

a variation of the occupancy grid [4] that incorporates

estimates of the obstacles’ velocities. Yet, these previous

control approaches do not fully investigate the case of time-

varying speed obstacles and assume the worst case scenario

in which other agents do not try to avoid a collision (i.e.,

a noncooperative strategy). In [9], a decentralized real-time

avoidance strategy for the case of two agents with double

integrator dynamics and bounded control inputs is presented

using Lyapunov-based analysis. However, the theoretical

results are not extended to the general case of multiple

nonlinear agents.

In this paper, we now introduce a decentralized, real-

time, cooperative avoidance control strategy for a group of

heterogeneous nonlinear Lagrangian systems with bounded

control inputs and limited sensing. The collision avoidance

control formulation is based on the concept of avoidance

control [10], [11], yet the avoidance functions and control

inputs proposed herein are bounded. The overall control

framework is able to cope with bounded sensing errors

(including those caused by delays, noise, and quantization)

by treating the effect of uncertainties as a disturbance in

the control input, similar to [12]. However, the control for-

mulation in [12] does not guarantee robustness with respect

to sensing uncertainties and assumes unbounded control

inputs. Advantages of the proposed controller also include

the activation of the avoidance control only when the vehicle

is close to another agent and the relative easy synthesis with

other stable control laws. By using Lyapunov-based analysis

we are able to present sufficient conditions that guarantee

collision-free transit for a group of N nonlinear agents.
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A. Notation

As standard notation, we denote the p-norm of a vector

x = [x1, · · · , xn]
T ∈ ℜn as ‖x‖p := (|xi|p+ · · ·+ |xn|p)1/p

for 1 ≤ p < ∞ and ‖x‖p = maxi |xi| for p = ∞, where |xi|
is the absolute value of a real scalar xi. We define the induce

p-norm of a matrix A ∈ ℜm×n as ‖A‖p := supx 6=0

‖Ax‖
p

‖x‖p
.

For the 2-norm of a vector or matrix we use the simpler

notation ‖·‖. As a shorthand for a matrix A ∈ ℜm×n we use

[akl]m×n, where akl is the klth entry of A.

II. MULTI-LAGRANGIAN SYSTEM WITH BOUNDED

CONTROL INPUTS AND SENSING UNCERTAINTIES

Herein, we address the task of controlling a group of

N n-degree-of-freedom (DOF) vehicles with Lagrangian

dynamics given by

Mi(qi(t))q̈i(t) + Ci(qi(t), q̇i(t))q̇i(t) =ui(t) (1)

where qi ∈ ℜn are the generalized coordinates, Mi ∈ ℜn×n

are the positive definite inertia matrices, Ci ∈ ℜn×n are

the centrifugal and Coriolis matrices, and ui ∈ Ui ⊂ ℜn

are the control inputs for i ∈ {1, · · · , N}. We assume that

gravitational forces are negligible or compensated via active

control and that the magnitudes of the control inputs are

radially bounded, i.e., ∃µi > 0 such that ‖ui(t)‖ ≤ µi ∀i ∈
{1, · · · , N}, t ≥ 0. Moreover, we assume that each agent

can locate other near agents with a known bounded error.

That is, we suppose that the ith agent is able to sense the

jth agent as being located at q̂i
j(t) = qj(t)+dij(t) whenever

the jth agent is sufficiently close to the ith agent. The vector

dij ∈ ℜn represents the uncertainty (e.g., due to delays,

noise, and quantization) incurred during the localization of

the jth vehicle by the ith agent and is considered to be

upper bounded by some positive constant ∆i, i.e., ‖dij(t)‖ ≤
∆i, ∀t ≥ 0 and j 6= i.

Finally, we make the assumption that the agents under

consideration satisfy the following properties, which is true

for a wide class of nonlinear systems [13].

Property 2.1: Ṁi(qi) = Ci(qi, q̇i) + CT
i (qi, q̇i).

Property 2.2: ∃ positive constants λi and λi such that

λiI ≤ Mi(qi) ≤ λiI , where I ∈ ℜn×n is the identity matrix.

III. CONTROL OBJECTIVE AND DEFINITIONS

Our control goal is to design decentralized collision

avoidance strategies that guarantee the safe navigation of a

group of vehicles with sensing uncertainties. Specifically, we

would like to guarantee a minimum safe distance between

any two vehicles at any time regardless of measurement

errors, delays, and noise incurred in the detection process.

Additionally, we would like to design the avoidance control

strategy to be active only when another vehicle or obstacle

is within a short distance. With this in mind, we introduce

the following definitions.

First, we define the group Ni as the set of agents in the

vicinity of the ith vehicle. We assume that any jth agent in

r∗

r

r̄
R

R∆

Wij

Tij

Ωij

Dij

qi

h

Fig. 1. Antitarget (Tij), Avoidance (Ωij ), Conflict (Wij ), and Detection
(Dij) Regions for the ith agent.

Ni can be located by the ith vehicle if the former lies within

the bounded Detection Region, Dij , of the latter given as

Dij =
{
q : q ∈ ℜ2n, ‖qi − qj‖ ≤ Ri

}

where Ri > 0 is the ith vehicle’s detection radius and q(t) =
[qT

i (t),q
T
j (t)]

T . In addition, we define an Antitarget Region,

Tij , as the collision zone for the ith agent, i.e.,

Tij =
{
q : q ∈ ℜ2n, ‖qi − qj‖ ≤ r∗ij

}

where r∗ij ∈ (0, Ri) is the minimum safe distance between

the ith vehicle and any jth agent in Ni. Similarly, we define

an Avoidance Region, Ωij ⊇ Tij , as a restricted zone for

which any agent in Ni is forbidden. That is,

Ωij =
{
q : q ∈ ℜ2n, ‖qi − qj‖ ≤ rij

}

where rij ∈ [r∗ij , Ri) is the desired minimum distance

between the ith and jth agents. Therefore, any collision

avoidance strategy designed to avoid Ωij , will also avoid

Tij .

Finally, since the control input and acceleration for the

ith vehicle are bounded, any collision avoidance control law

must be effected with enough anticipation, such that the

ith vehicle has sufficient time to decelerate and prevent a

collision. Hence, we define a Conflict Region, Wij , as

Wij =
{
q : q ∈ ℜ2n, rij < ‖qi − qj‖ ≤ r̄ij

}

where r̄ij ∈ (rij , Ri) is a lower bound on the distance that

the ith agent can come from the jth vehicle and still be

able to decelerate and avoid Ωij . Therefore, any collision

avoidance strategy for the ith agent must take effect as soon

as qi and qj enter Wij .

Having defined the Antitarget, Avoidance, Conflict, and

Detection regions, we can state the control objective as fol-

lows. Given {∆1, · · · ,∆N}, T =
⋃

i∈N,j∈Ni
Tij , and D =

⋃

i∈N,j∈Ni
Dij , design control inputs {ui(t), · · · ,uN (t)}

such that [qT
1 (t), · · · ,qT

N (t)]T /∈ Ω =
⋃

i∈N,j∈Ni
Ωij for

all t ≥ 0, where Ω ⊇ T .

For simplicity, we define R = mini{Ri}, r∗ =
maxi{r∗ij}, and ∆ = maxi{∆i}, and let r̄ij = r̄ ∀i ∈
{1, · · · , N}, j ∈ Ni. An illustration is presented in Fig. 1.
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IV. CONTROL FRAMEWORK

In order to achieve our control objectives, we consider the

following control input

ui =uo
i + ua

i , ‖ui‖ ≤ µi (2)

where uo
i and ua

i are the objective and collision avoidance

control laws, respectively. The objective input is taken to be a

stable control law designed to achieve a particular task such

as trajectory tracking or set-point regulation. The collision

avoidance input is a control policy aimed to guarantee

collision-free transit among agents independently of bounded

sensing uncertainties. Ideally, ua
i must be designed such that

it does not interfere with the objective control uo
i when no

potential collision is present.

According to this formulation, we propose the objective

control law to be computed as

uo
i = −µ̄i

∂V oT

i (qi)

∂qi
(3)

where V o
i is an objective function satisfying the following

two properties.

Property 4.1: 0 ≤ V o
i (qi) ≤ αi, for some αi > 0.

Property 4.2: ‖∂V o
i (qi)/∂qi‖ ≤ βi, for some βi > 0.

On the other hand, we propose the collision avoidance

control to be given as

ua
i = −µ̄i

∑

j∈Ni

∂V aT

ij (qi, q̂
i
j)

∂qi
−
∑

j∈Ni

γiθij(q̇i,qi, q̂
i
j) (4)

where µ̄i =
µi

N−1+ε+βi
, γi = εµ̄i, and θij = θij(q̇i,qi, q̂

i
j)

is given by

θij =







q̇i

(N − 1) ‖q̇i‖
, if ‖q̇i‖ > 0 and

∥
∥qi − q̂i

j

∥
∥ ≤ R

0, otherwise

for some ε ∈ [0, 1). The avoidance function V a
ij , illustrated

in Figure 2, is defined as

V a
ij(qi,qj) =







0, if ‖qi − qj‖ ≥ R∆

R∆+h
2 − ‖qi − qj‖ , if ‖qi − qj‖ < h

(‖qi−qj‖−R∆)2

2(R∆−h) , otherwise

(5)

where R∆ = R − ∆ and h = r̄ + ∆ < R∆. The reader

can easily verify that V a
ij is positive semi-definite, almost

everywhere continuously differentiable, and that its partial

derivative is given by

∂V aT

ij (qi,qj)

∂qi
=







0, if ‖qi − qj‖ ≥ R∆

not defined, if ‖qi − qj‖ = 0

− qi−qj

‖qi−qj‖ , if 0 < ‖qi − qj‖ < h
(

1− R∆

‖qi−qj‖

)
qi−qj

R∆−h , otherwise

(6)

Note that in contrast to the avoidance function and control

inputs in [11], [14], both V a
ij and ua

i (proposed herein and

depicted in Fig. 2) are bounded. Moreover, as the next lemma

‖qi − qj‖

V
a ij
(q

i
,q

j
)

‖qi − qj‖

∥ ∥

∂
V

a ij
(q

i
,q

j
)/
∂
q
i

∥ ∥

r∗ r r̄ h R∆Rr∗ r r̄ h R∆ R
0

1

0

R∆+h

2

Fig. 2. Bounded avoidance function and bounded avoidance control.

will show, the gradient of the avoidance function (6) is

locally Lipschitz.

Lemma 4.1: ∂V a
ij(qi,qj)/∂qi is Lipschitz continuous in

qj on the domain Y = {q : q ∈ ℜ2n, ‖qi − qj‖ ≥ r −∆}
with Lipschitz constant given by

L = max{L1,min{L2a, L2b}} (7)

where

L1 =
3 + 2

√
n− 1

4(r −∆)
(8)

L2a =
1

h
+

R∆
√
n

h(R∆ − h)
(9)

L2b =
1

R∆ − h
+

(3 + 2
√
n− 1)R∆

4h(R∆ − h)
. (10)

Proof: Define [akl]n×n = ∂2V a
ij(qi,qj)/∂qi∂qj and

let akl denote the klth entry of ∂2V a
ij(qi,qj)/∂qi∂qj . Then,

we have that (6) is locally Lipschitz continuous on Y if
∥
∥
∥
∥
∥

∂2V a
ij(qi,qj)

∂qi∂qj

∥
∥
∥
∥
∥
=
∥
∥[akl]n×n

∥
∥ ≤ L

for some non-negative constant L, except possibly on

a set of Lebesgue measure zero. In addition, since

∂2V a
ij(qi,qj)/∂qi∂qj is symmetric, we have that

∥
∥
∥
∥
∥

∂2V a
ij(qi,qj)

∂qi∂qj

∥
∥
∥
∥
∥
∞

=

∥
∥
∥
∥
∥

∂2V a
ij(qi,qj)

∂qi∂qj

∥
∥
∥
∥
∥
1

and, therefore,

∥
∥
∥
∥
∥

∂2V a
ij(qi,qj)

∂qi∂qj

∥
∥
∥
∥
∥
≤
√
∥
∥
∥
∥

∂2V a
ij(qi,qj)

∂qi∂qj

∥
∥
∥
∥
1

∥
∥
∥
∥

∂2V a
ij(qi,qj)

∂qi∂qj

∥
∥
∥
∥
∞

=

∥
∥
∥
∥
∥

∂2V a
ij(qi,qj)

∂qi∂qj

∥
∥
∥
∥
∥
1

. (11)

Hence, the choice of Lipschitz constant L is invariant under

the use of ‖·‖1, ‖·‖, or ‖·‖∞.

Now, let us divide the problem in three domains: Y1 =
{q : q ∈ ℜ2n, r − ∆ ≤ ‖qi − qj‖ < h}, Y2 = {q :
q ∈ ℜ2n, h < ‖qi − qj‖ < R∆}, and Y3 = {q : q ∈
ℜ2n, ‖qi − qj‖ > R∆}.
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For qi = [x1, · · · , xn]
T ∈ ℜn, qj = [y1, · · · , yn]T ∈ ℜn,

and q ∈ Y1 we have that
∥
∥
∥
∥
∥

∂2V a
ij(qi,qj)

∂qi∂qj

∥
∥
∥
∥
∥
1

=max
l

n∑

k=1

|akl|

where

akl =







‖qi − qj‖2 − (xk − yk)
2

‖qi − qj‖3
, if k = l

−(xk − yk)(xl − yl)

‖qi − qj‖3
, if k 6= l

.

Hence,
∥
∥
∥
∥
∥

∂2V a
ij(qi,qj)

∂qi∂qj

∥
∥
∥
∥
∥
1

≤

∣
∣
∣‖qi − qj‖2 − |xl − yl|2

∣
∣
∣

‖qi − qj‖3

+
|xl − yl|

∑n
k=1,k 6=l |xk − yk|

‖qi − qj‖3

=
‖qi − qj‖2 − |xl − yl|2 +

√
n− 1 |xl − yl| ‖qi − qj‖

‖qi − qj‖3
.

By noting that the numerator is maximized for |xl − yl| =
‖qi−qj‖

2 and recalling (11), we then obtain that
∥
∥
∥
∥
∥

∂2V a
ij(qi,qj)

∂qi∂qj

∥
∥
∥
∥
∥
≤ 3 + 2

√
n− 1

4 ‖qi − qj‖
≤ 3 + 2

√
n− 1

4(r −∆)
= L1

for all q = [qT
i ,q

T
j ]

T ∈ Y1.

Now, for q ∈ Y2 we have that

akl =







−‖qi − qj‖3 +R∆ ‖qi − qj‖2 −R∆(xk − yk)
2

(R∆ − h) ‖qi − qj‖3
,

if k = l
−R∆(xk − yk)(xl − yl)

(R∆ − h) ‖qi − qj‖3
,

if k 6= l

.

Therefore,
∥
∥
∥
∥
∥

∂2V a
ij(qi,qj)

∂qi∂qj

∥
∥
∥
∥
∥
1

≤ ‖qi − qj‖2 (R∆ − ‖qi − qj‖)
(R∆ − h) ‖qi − qj‖3

+
R∆ |xl − yl|

∑n
k=1 |xk − yk|

(R∆ − h) ‖qi − qj‖3

≤ ‖qi−qj‖2(R∆− ‖qi−qj‖)+R∆‖qi−qj‖ ‖qi−qj‖1
(R∆ − h) ‖qi − qj‖3

≤ R∆ − ‖qi − qj‖+R∆
√
n

(R∆ − h) ‖qi − qj‖
which can be reduced to
∥
∥
∥
∥
∥

∂2V a
ij(qi,qj)

∂qi∂qj

∥
∥
∥
∥
∥
≤ 1

h
+

R∆
√
n

h(R∆ − h)
= L2a, ∀q ∈ Y2.

(12)

Alternatively, we can compute a different upper bound for

(12). After some calculations we can also show that
∥
∥
∥
∥
∥

∂2V a
ij(qi,qj)

∂qi∂qj

∥
∥
∥
∥
∥
≤4h+ (3 + 2

√
n− 1)R∆

4h(R∆ − h)
= L2b (13)

which becomes a less conservative upper bound on the

Lipschitz property if

h >
(1 + 4

√
n− 2

√
n− 1)R∆

8
.

Therefore, by combining (12) and (13) we obtain that
∥
∥
∥
∥
∥

∂2V a
ij(qi,qj)

∂qi∂qj

∥
∥
∥
∥
∥
≤ min {L2a, L2b} , for q ∈ Y2.

Finally, since ∂V a
ij(qi,qj)/∂qi ≡ 0 for q ∈ Y3, we have

that
∥
∥∂2V a

ij(qi,qj)/∂qi∂qj

∥
∥ = 0. Consequently,

∥
∥
∥
∥
∥

∂2V a
ij(qi,qj)

∂qi∂qj

∥
∥
∥
∥
∥
≤ max{L1,min{L2a, L2b}} = L

for all q ∈ Y , except on the set Y0 = {q : q ∈
ℜ2n, ‖qi − qj‖ ∈ {h,R∆}} of Lebesgue measure zero.

Thereby, we can conclude that (6) is locally Lipschitz

continuous with Lipschitz constant given by (7).

V. COLLISION AVOIDANCE ANALYSIS

We now show that the proposed collision avoidance con-

trol law, along with the control objective input, guarantees

collision-free trajectories for a group of N vehicles with

bounded control inputs, limited sensing range, and detection

uncertainties.

Theorem 5.1: (Collision Avoidance for Multiple Agents

with Sensing Uncertainties): Consider the multi-Lagrangian

system in (1) with control inputs given by (2) to (6). Suppose

that ‖q̇i(0)‖ ≤ ηi, ‖qi(0)− qj(0)‖ ≥ R, and ‖dij(t)‖ ≤ ∆
for some known ηi ≥ 0 and ∀i, j, i 6= j. Let ε ∈ [0, 1),

L̄ ∈
(

0, ε
(N−1)∆

]

, and choose r, h, and αi such that

(i) r∗ ≤ (3+2
√
n−1)

4L̄
+∆ ≤ r < R∆,

(ii) r < h ≤ h ≤ h̄ < R∆, where

h = min

{

L̄R∆+1−
√

1+L̄2R2

∆
−2L̄R∆(1+2

√
n)

2L̄
,

L̄R∆−1−
√

1+L̄2R2

∆
−L̄R∆(5+2

√−1+n)
2L̄

}

h̄ = max

{

L̄R∆+1+
√

1+L̄2R2

∆
−2L̄R∆(1+2

√
n)

2L̄
,

L̄R∆−1+
√

1+L̄2R2

∆
−L̄R∆(5+2

√−1+n)
2L̄

}

(iii) and
∑N

i=1 αi <
R∆+h

2 − r −∑N
i=1

λ̄iη
2

i

2µ̄i
, where λi

is the larger eigenvalue of Mi.

Then, [qi, · · · ,qN ] /∈ Ω ∀t ≥ 0.

Proof: Consider the following Lyapunov function

V =
1

2

N∑

i=1

∑

j∈Ni

V a
ij(qi,qj) +

N∑

i=1

V o
i (qi)

+
1

2

N∑

i=1

1

µ̄i
q̇T
i Mi(qi)q̇i. (14)

4210



Taking its time-derivative and invoking Property 2.1 yields

V̇ =
1

2

N∑

i=1

∑

j∈Ni

(
∂V a

ij(qi,qj)

∂qi
q̇i +

∂V a
ij(qi,qj)

∂qj
q̇j

)

+

N∑

i=1

∂V o
i (qi)

∂qi
q̇i

+
N∑

i=1

1

µ̄i

(

q̇T
i Mi(qi)q̈i +

1

2
q̇T
i Ṁ(qi)q̇i

)

=
N∑

i=1

∑

j∈Ni

∂V a
ij(qi,qj)

∂qi
q̇i

︸ ︷︷ ︸

Due to symmetry

+
N∑

i=1

∂V o
i (qi)

∂qi
q̇i

+
N∑

i=1

1

µ̄i



−µ̄i

∑

j∈Ni

∂V a
ij(qi, q̂

i
j)

∂qi

−γi
∑

j∈Ni

θT
ij(q̇i,qi, q̂

i
j)− µ̄i

∂V o
i (qi)

∂qi



 q̇i

=
N∑

i=1

∑

j∈Ni

(

∂V a
ij(qi,qj)

∂qi
−

∂V a
ij(qi, q̂

i
j)

∂qi

)

q̇i

−
N∑

i=1

∑

j∈Ni

γi
µ̄i

θT
ij(q̇i,qi, q̂

i
j)q̇i.

Now, by applying Lemma 4.1 we obtain

V̇ ≤
N∑

i=1

∑

j∈Ni

L∆ ‖q̇i‖ −
N∑

i=1

∑

j∈Ni

γi
µ̄i(N − 1)

‖q̇i‖

=

N∑

i=1

∑

j∈Ni

(

L∆− ε

(N − 1)

)

‖q̇i‖

where L is the Lipschitz constant for ∂V a
ij(qi,qj)/∂qi. It

is easy to show that if we choose r and h according to

conditions (i) and (ii), then L ≤ L̄ ≤ ε
(N−1)∆ and V̇ ≤

0. The semi-negative definite property on V̇ (t) implies that

V (t) ≤ V (0) ≤∑N
i=1

(
λ̄iη

2

i

2µ̄i
+ αi

)

, ∀t ≥ 0, where we have

used Property 2.2.

Now assume that (iii) holds and suppose that for at least

some pair i, j, ‖qi(t)− qj(t)‖ → r. As a consequence,

V (t) ≥ V a
ij(t) → R∆+h

2 −r >
∑N

i=1

(
λ̄iη

2

i

2µ̄i
+ αi

)

. Since we

reached a contradiction, we conclude that ‖qi(t)− qj(t)‖ /∈
Ωij for all i, j, i 6= j and t ≥ 0.

Theorem 5.1 provides sufficient conditions for the safe

navigation of a group of N Lagrangian vehicles. It, however,

does not provide information about the fulfillment of the ob-

jective control. We can only deduce that whenever the agents

are outside of the Detection Regions, i.e., [qi, · · · ,qN ] /∈
D, the collision avoidance control inputs do not affect the

objective control laws.

In the following we posit sufficient conditions for collision

avoidance of nonlinear vehicles with zero uncertainties but

limited sensing range and bounded control inputs. The results

along this line are of relevance given that vehicles with

bounded control inputs and accelerations cannot react (e.g.,

evade or escape) instantaneously to a collision threat.

Corollary 5.1: (Collision Avoidance for Multiple Agents

without Sensing Uncertainties): Consider the multi-

Lagrangian system in (1) with control inputs given by

(2) to (6) for ε = 0. Suppose that ‖dij(t)‖ = ∆ = 0
and ‖q̇i(0)‖ ≤ ηi, ‖qi(0)− qj(0)‖ ≥ R ∀i, j, i 6= j.

Furthermore, assume ∃ r ≥ r∗, h < R, and αi > 0 such

that

N∑

i=1

αi <
R+ h

2
− r −

N∑

i=1

λ̄iη
2
i

2µ̄i
(15)

Then, [qi, · · · ,qN ] /∈ Ω ∀t ≥ 0.

Proof: Consider the Lyapunov candidate function given

in (14). Its time-derivative along the trajectories of the system

are computed as

V̇ =

N∑

i=1

∂V o
i (qi)

∂qi
q̇i +

N∑

i=1

∑

j∈Ni

∂V a
ij(qi,qj)

∂qi
q̇i

+

N∑

i=1



−
∑

j∈Ni

∂V a
ij(qi,qj)

∂qi
− ∂V o

i (qi)

∂qi



 q̇i ≤ 0.

Therefore, V (t) ≤ V (0) ≤ ∑N
i=1

(
λ̄iη

2

i

2µ̄i
+ αi

)

. Now sup-

pose (15) is satisfied and that for at least some pair i, j, i 6= j
and some t ≥ 0, [qi(t),qj(t)] → Ωij(t). This would implies

that V (t) ≥ V a
ij(t) → R+h

2 − r >
∑N

i=1

(
λ̄iη

2

i

2µ̄i
+ αi

)

,

which is a contradiction. Consequently, we can conclude that

[qi(t), · · · ,qN (t)] /∈ Ω(t) ∀t ≥ 0.

The need to satisfy the inequality constraints in Theorem

5.1 and Corollary 5.1 in order to guarantee collision-free

transit for a group of agents may seems very restrictive at

first glance. However, the sufficient conditions established in

the previous statements can be easily satisfied if the detection

radii for the agents are large enough. For instance, if the

agents have unlimited detection radius (i.e., the vehicles can

detect any other agent in their environment), then we can

always find a set of parameters r, h, ε, and αi for which

collision avoidance can be guaranteed. The next section will

illustrate two examples for which the conditions in Theorem

5.1 and Corollary 5.1 are satisfied.

VI. EXAMPLES

In order to validate the proposed avoidance strategy, we

now present two numerical examples. The first example

illustrates the performance of the cooperative collision avoid-

ance strategy under sensing uncertainties, whereas the second

evaluates its performance under perfect sensing information.

A. Collision Avoidance with Bounded Sensing Error

We simulate the behavior of four 2-DOF vehicles with

dynamics governed by

miq̈i = ui − ρiq̇i (16)
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where mi = 1.5kg, ρi =
1
15kg/s, and ‖ui‖ ≤ 100kgm/s2

for i = {1, 2, 3, 4}. The minimum safety distance and

detection radius for all vehicles are assumed to be r∗ = 2m
and R = 20m, respectively. In addition, we assume that the

sensing uncertainty for all agents can be characterized as

dij(t) = ζij(t), where ζij is a random noise with uniform

distribution on the set Zij = {ζ : ζ ∈ ℜ2, ‖ζ‖ ≤ 0.15m}.

Therefore, ∆ = 0.15m.

The control objective is to safely drive the vehicles from an

initial configuration to a desired final position. To reach this

goal, we propose the use of the following objective function

V o
i (qi) =αi

(

1− sech

(∥
∥qi − qd

i

∥
∥

σi

))δi

(17)

where α1 = α2 = 3, α3 = α4 = 2.5, σi = 5, and δi =
7 for i ∈ {1, 2, 3, 4}. The desired final configurations are

chosen as qd
1 = −qd

3 = [−15m, 15m]T and qd
2 = −qd

4 =
[15m, 15m]T . The collision avoidance control input for the

four agents are computed according to Theorem 5.1 as r =
3.67m, h = 10.19m, β1 = β2 = 0.234, β3 = β4 = 0.196,

µ̄1 = µ̄2 = 29.46N, µ̄3 = µ̄4 = 29.80N, γ1 = γ2 = 4.71N,

and γ3 = γ4 = 4.78N, where we have chosen ε = 0.16 and

assumed that initial velocities for all agents are bounded by

η1 = η2 = 1m/s, η3 = 2m/s, and η4 = 3m/s.
The response of the four agents to the objective and

collision avoidance control inputs is illustrated in Fig. 3.

The agents start from positions q1(0s) = −q3(0s) =
[35m, 0m]T and q2(0s) = −q4(0s) = [0m,−35m]T moving

in a counter-clock wise direction (see Fig. 3(b)) with initial

velocities given by q̇i(0s) = ηi
q
d
i

‖qd
i‖ . Notice that at t ≈ 19s,

the second and fourth agent come into close proximity to the

third agent, entering its Detection Region. They, however,

managed to keep a safe distance among each other while

continuing toward their final destination. Similarly, observe

that at t ≈ 44s (corresponding to Fig. 3(e)), the first

and second agent entered each other’s Detection Region.

This event repeats twice, after which all agents are able to

converge to their desired locations as illustrated in Fig. 3(f).

Fig. 4 depicts the distances among the four agents. Note

that the pairs of agents {2, 3}, {3, 4}, and {1, 2} entered

the Detection Regions at different instances of time. Yet, no

collision took place.

B. Collision Avoidance with Zero Sensing Uncertainty

We now evaluate the performance of the control strategy

considering zero sensing uncertainty. We simulate the re-

sponse of three 2-DOF vehicles with dynamics governed by

(16), where ρ1 = ρ2/2 = ρ3 = 0.2kg/s, mi = 2kg, and

‖ui‖ ≤ 100kgm/s2 for i ∈ {1, 2, 3}. The minimum safety

distance and detection radius for all vehicles are assumed

to be r∗ = 2m and R = 10m. The control objective is

chosen such that the first agent remains at the origin (i.e.,

qd
1 = [0m,m]T ), while the second and third vehicle are

driven toward opposite corners of their workspace (i.e., qd
2 =

−qd
3 = [10m, 9m]T ). Accordingly, the objective function is

constructed as in (17) with α1 = 1, α2 = α3 = 2.12, σ1 = 3,
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Fig. 3. Collision avoidance with bounded sensing error. The initial positions
of the four agents at the start of each simulation interval are indicated by the
small circles of darker color. Subsequence positions are traced by circular
markers of lighter color and time-spaced by 0.5s. The desired final positions
are indicated by the star-shaped markers in plot (a). The Avoidance, Conflict,
and Detection Region for all agents at the end of each simulation interval
are delimited by the bold, thin, and dashed lines, respectively.
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Fig. 4. Distances among agents.

σ2 = σ3 = 7, and δ1 = δ2 = δ3 = 2. The avoidance

control input parameters are chosen satisfying Corollary 5.1

as r = 2m, h = 5m, βi = 0.15, and µ̄i = 46.51N, where

we have assumed that η1 = 0m/s and η2 = η3 = 3m/s.
Fig. 5 illustrates the response of the three agents to the

4212



objective and avoidance control inputs. The agents start

from positions q1(0s) = qd
1 and q2(0s) = −q3(0s) =

[−9m,−10m]T , and with initial velocities q̇i(0s) = ηi
q
d
i

‖qd
i ‖ .

Note that shortly after the initial time, the second and third

agent enter the first vehicle’s Detection Region as they try to

move toward their desired configurations (see Fig. 5(b)). The

second and third agent immediately react by retreating from

the potential collision as seen in Fig. 5(c). Gradually, the

agents are able to resolve the conflict by departing slightly

from their objective paths (refer to Fig. 5(d)) ultimately

reaching their final destinations (see Fig. 5(f)).

The distances among the three agents are reported in Fig.

6. Observe that the second and third agent entered repeatedly

the first agent’s Detection Region. Despite these conflicts,

they successfully evaded the Avoidance Region.

VII. CONCLUSION

In this paper, we presented a real-time, cooperative col-

lision avoidance control strategy for a group of nonlin-

ear Lagrangian systems with bounded control inputs and

bounded sensing uncertainties. By applying Lyapunov-based

analysis and constructing avoidance control inputs based

on avoidance functions, we were able to derive sufficient

conditions for the collision-free navigation of a group of N
vehicles independently of obstacle localization errors. It is

shown that if the detection and avoidance radii satisfy a set

of design inequalities, then we can formulate control laws

that keep the agents safely apart.
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“Cooperative avoidance control for multiagent systems,” J. Dyn. Syst.

Meas. Control, vol. 129, pp. 699–707, Sept. 2007.
[12] P. F. Hokayem, D. M. Stipanović, and M. W. Spong, “Coordination
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Fig. 5. Collision avoidance with zero uncertainty. The agents’ initial
positions at the start of each simulation interval are indicated by the small
circles of darker color. Subsequence positions are traced by circular markers
of lighter color and time-spaced by 0.25s. The desired final positions are
indicated by the star-shaped markers in plot (a). The Avoidance, Conflict,
and Detection Region for all agents at the end of each simulation interval
are delimited by the bold, thin, and dashed lines, respectively.
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