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Abstract— In this paper we consider a supervisory control
scheme for non-homogenous multi-agent systems. Each agent
is modeled through an independent strictly proper SISO state
space model, and the supervisory controller, representing the
information exchange among the agents, is implemented in turn
via a linear state-space model. Controllability of the overall
system is characterized, and some preliminary results about
stability and stabilizability are provided. The paper extends
to non-homogenous multi-agent systems some of the results
obtained in [2], [3], [4] for the homogenous case.

I. INTRODUCTION

Several systems in the areas of manufacturing, transporta-
tion, and telecommunications can be effectively represented
as networks of agents, mutually interacting and exchanging
information. Dynamical interactions among agents, and the
intrinsic complexity of many physical networks, make the
analysis and control of multi-agent network systems quite a
challenging task, mostly due to complexity issues. Research
efforts in this area have been quite significant in the last
decade. Some fundamental contributions on this topic ap-
peared in [1], [5], [7].

In order to make the analysis computationally more
tractable, the simplifying assumption that the agents have
common dynamics and identical local controllers is often in-
troduced. As a consequence, they can all be described by the
same state-space model and by the same transfer function.
So, the overall formation dynamics can be represented as the
interconnection of a scalar (diagonal) transfer matrix and of
a feedback control block, that represents the communication
exchange among the agents [1].

Under these assumptions, Hara and co-authors have been
able to describe the overall homogeneous multi-agent system
dynamics as a linear system with generalized frequency
variable [2], [3], [4], [9], and to derive powerful results
regarding controllability, H2- and H∞-norm computation,
stability and stabilizability of the overall system.

In this paper we consider the same control configuration
as in [2], [3], but we drop the homogeneity assumption
on the agents, thus considering the more realistic scenario
when each agent is characterized by a distinct strictly proper
transfer function. Consequently, the overall system is an in-
terconnection of a diagonal transfer matrix and of a supervi-
sory controller. This apparently small change has significant
consequences in terms of complexity, as the analysis of the
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system properties turns out to be much more involved. In
this paper we provide a complete characterization of the
controllability (and, by duality, of the observability) property
of the overall dynamic system, as well as some preliminary
results about stability and stabilizability. Comparisons with
the results derived in [2], [3], [4], [9] are performed, and
results are illustrated with several examples.

In section II we introduce the system model: the agents
dynamics will be the plant, while the information exchange
among the agents will be described by the supervisory
controller. Sections III and IV provide a complete character-
ization of the controllability property of the overall system.
Comments and comparisons regarding this characterization
are provided in section V. Finally, in section VI, the stability
and stabilization problems are introduced and framed in the
general setting of output feedback problem. Some either
necessary or sufficient conditions are provided, together with
counter-examples.

Before proceeding, we introduce some notation. Given two
integers k, n ∈ Z+, with k ≤ n, we denote by [k, n] the set
{k, k+1, . . . , n}. We let ei,n denote the ith canonical vector
of Rn, namely the n-dimensional vector with all its entries
equal to zero except for the ith which is 1. For en,n we will
use the simpler notation en. If M is a matrix, we denote
by [M ]ij its (i, j)th entry. The diagonal (or block diagonal)
matrix with diagonal entries (blocks) Mi, i ∈ [1, n], is
denoted by diag{M1,M2, . . . ,Mn}. A diagonal matrix with
all identical diagonal entries is called a scalar matrix.

We let C− and C+ be the open left half complex plane and
the closed right half complex plane, respectively. A square
polynomial matrix (in particular, a polynomial) is Hurwitz if
it is of full rank at every point s ∈ C+. Given a polynomial
matrix P (s) ∈ R[s]n×k, we say that P (s) is left prime if it
has full row rank in every point s of the complex plane C.

II. SYSTEM DESCRIPTION AND CORRESPONDING STATE
REALIZATION

We consider n SISO autonomous agents, each of them
described by a strictly proper state-space model Σi =
(Ai,bi, c>i ) of size ki, i ∈ [1, n]. Let hi(s) ∈ R(s), i ∈
[1, n], be the strictly proper scalar transfer function of the
ith agent. We represent the transfer functions of the n agents
by means of the diagonal transfer matrix

H(s) = diag{h1(s), h2(s), . . . , hn(s)}. (1)

Accordingly, the matrix H(s) has a state space realization
Σp = (A,B,C) (referred to in the following as, “the plant”),
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of dimension K := k1 + k2 + . . .+ kn, given by the direct
sum of the n realizations Σi, i.e.

A = diag{A1, A2, . . . , An}, B = diag{b1,b2, . . . ,bn}
C = diag{c>1 , c>2 , . . . , c>n }. (2)

It is worthwhile to point out that the block diagonal structure
of the matrices A,B and C in (2) allows us to say that Σp =
(A,B,C) is controllable (observable) if and only if each
realization Σi = (Ai,bi, c>i ) is controllable (observable).

We consider a (proper rational) supervisory controller
Σc = (A0, B0, C0, D0) of transfer matrix G0(s) ∈ R(s)p×m,
that acts on the plant in such a way that the overall
interconnected scheme has desired properties (specifically,
controllability and stability) and/or performances (normally
expressed in terms of H2 or H∞ norms [?]). The logical
scheme describing the plant and the supervisory controller
connection is given in Figure 1.

-

A0 B0

C0 D0 -

-

�

264 h1(s)
. . .

hn(s)

375

u y

yp up

Σp

Fig. 1: Supervisory control scheme.

If we denote by up and yp the input and the output of the
plant, and by u and y the input and output of the controller
(as well as of the overall system), the system in Figure 1
corresponds to feeding the plant state-space model Σp =
(A,B,C) with the output feedback signal

up = A0yp(t) +B0u(t), (3)

and to represent as output, the measurement of the overall
system

y(t) = C0yp(t) +D0u(t).

Equivalently, we can think of the system as one obtained
by replacing the integrator block in the standard scheme
describing the state space realization (A0, B0, C0, D0), with
a state space realization of H(s). In both cases, the block
diagram of the overall interconnected system becomes

- B0
- d+ -(A,B,C) - C0

- d+ -
A0
�

6

?

- D0

u(t) y(t)

up(t) yp(t)

Fig. 2: Block diagram for the overall system Σsc.

and the state-space model of the overall system Σsc is

ż(t) = (A+BA0C)z(t) +BB0u(t), (4)
y(t) = C0Cz(t) +D0u(t). (5)

Using standard computation, it is easy to show that the
transfer matrix of the system Σsc is Wsc(s) = C0(H(s)−1−
A0)−1B0 + D0 ∈ R(s)p×m. In the sequel we will refer to
the overall system matrices as to Σsc = (A,B, C,D).

In sections III and IV we investigate controllability of
the overall system (4)-(5) in detail, and extend the results
obtained to the observability analysis.

III. CONTROLLABILITY OF THE OVERALL SYSTEM:
PRELIMINARIES

The following lemma extends Lemma 2.1 in [2] (Lemma
3.1 in [3]), by resorting to a different approach.

Lemma 1: If the controlled system Σsc = (A,B, C,D) is
controllable then all the realizations Σi = (Ai,bi, c>i ), i ∈
[1, n], are controllable.

Proof: Suppose, by contradiction, that at least one of
the Σi’s is not controllable and hence the pair (A,B) is not.
Then a number λ ∈ C and a nonzero vector v ∈ RK can be
found such that

v> [λIK −A B ] = [ 0> 0> ] .

But then, it is easy to see that

v> [λIK −A B ] = v> [λIK −A−BA0C BB0 ]
= [ 0> 0> ] .

This implies that (A,B) is not controllable.

As a matter of fact, if B0 has rank n, then the con-
trollability of each realization Σi is also sufficient for the
controllability of Σsc.

Proposition 1: If rank(B0) = n, then Σsc is controllable
if and only if all the realizations Σi = (Ai,bi, c>i ), i ∈ [1, n],
are controllable.

Proof: The necessity has been proved in Lemma 1.
So, we only need to prove the sufficiency. Suppose, by
contradiction, that Σsc is not controllable. Then a number
λ ∈ C and a nonzero vector v ∈ RK can be found such that

v> [λIK −A B ] = v> [λIK −A−BA0C BB0 ]
= [ 0> 0> ] .

But since B0 is of full row rank, condition v>BB0 = 0>

implies v>B = 0>. Therefore the previous identity implies

v> [λIK −A B ] = [ 0> 0> ] .

This means that (A,B) is not controllable and hence at least
one of the pairs (Ai,bi) is not controllable.

In view of Proposition 1, in the sequel we will assume
that rank(B0) < n. Also, as a consequence of Lemma 1,
we will assume that all the realizations Σi, i ∈ [1, n], are
controllable. Therefore, without loss of generality (w.l.o.g.)
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we assume (as in [2]), that they are in canonical controller
form:

Ai =


0 1 0
0 0 1

. . .
...

...
. . . . . . 0

1
−a(i)

0 −a(i)
1 −a(i)

2 . . . −a(i)
ki−1

bi =


0
0
...
0
1


c>i = [ c(i)0 c

(i)
1 c

(i)
2 . . . c

(i)
ki−1 ] .

(6)
From the canonical controller form, it is clear that,

hi(s) =
c
(i)
ki−1s

ki−1 + . . .+ c
(i)
1 s+ c

(i)
0

ski + a
(i)
ki−1s

ki−1 + . . .+ a
(i)
1 s+ a

(i)
0

.

In order to simplify the notation, we set bi = eki
,

a>i := [ a(i)
0 a

(i)
1 a

(i)
2 . . . a

(i)
ki−1 ] ,

and refer to the matrix Ai in companion form of size ki, with
characteristic polinomial ski +a(i)

ki−1s
ki−1+. . .+a(i)

1 s+a(i)
0 ,

as Cki
(−a>i ). As a consequence,

A =

Ck1(−a>1 )
. . .

Ckn(−a>n )


B = diag{ek1 , . . . , ekn} C = diag{c>1 , . . . , c>n }.

Before proceeding we notice that in order to study the
controllability of the pair (A,B) we can introduce w.l.o.g.
the simplifying assumption that B0 is of full column rank
and takes the following form

B0 =


Im

b>m+1
...

b>n

 , b>i ∈ R1×m, i ∈ [m+ 1, n].

Indeed, if B0 = BlBr, with Bl of full column rank and Br of
full row rank, it is easy to see that (A, BB0) is controllable
if and only if (A, BBl) is controllable. On the other hand,
once we assume that B0 is of full column rank m, we can
always postmultiply it by the inverse of one of its nonsingular
m × m submatrices, thus obtaining an identity submatrix.
Finally, by applying suitable permutations to the blocks of
BB0 (and hence of A = A+BA0C), we can assume that

B := BB0 =



ek1
ek2

. . .
ekm

ekm+1b
>
m+1

...
ekn

b>n


, (7)

namely that in the upper part we have a block diagonal
matrix whose diagonal blocks are canonical vectors, while
the bottom part consists of n − m blocks, each of them

composed of all zero rows except for the last one that
coincides with b>i , i ∈ [m+1, n]. This amounts to assuming
for B0 the aforementioned structure.

We are in a position now, to state the characterization
of the controllability for the overall controlled system. The
proof is rather long and it is omitted due to the page
constraints. The interested reader is referred to [10].

IV. CONTROLLABILITY CHARACTERIZATION

Theorem 1: Suppose that rank(B0) < n and all the
realizations Σi = (Ai,bi, c>i ), i ∈ [1, n], are controllable.
Then Σsc is controllable if and only if the polynomial matrix

Ψ(s) =

 −b>m+1
...
−b>n

In−m

 · (8)

·

 d1(s)
. . .

dn(s)

−A0

n1(s)
. . .

nn(s)

 ,
.

where

ni(s) := c>i adj(sIki
−Ai)bi = c>i


1
s
...

ski−1

 , (9)

di(s) := det(sIki −Ai) = a>i


1
s
...

ski−1

+ ski , (10)

is left prime.

V. COMMENTS ON THEOREM 1

Remark 1: The characterization of controllability of Σsc
provided in Theorem 1 relies on checking the primeness of
a polynomial matrix. Appropriate caution must be exercised
to take into account numerical difficulties encountered when
dealing with large-order polynomial matrices.

Remark 2: It can be shown that the scalar plant case
studied in [3], when H(s) = h(s)In, namely when all
the agents have the same dynamics, is a special case of
the characterizations obtained in the previous sections. For
the case when rank(B0) = n the result is quite obvious,
since Proposition 1 provides precisely the same result as
Proposition 3.1 (ii) in [3]. Hence, it suffices to prove that
the necessary and sufficient condition given in Theorem 1 is
equivalent to the one obtained in Proposition 3.1 (i) in [3],
namely that, when rank(B0) = m < n, Σsc is controllable
if and only if the realization (A,b, c>) of h(s) is minimal
and the realization (A0, B0) of G0(s) is controllable.

To this end we have to prove that Ψ(s) is left prime if and
only if the triple (A,b, c>) is controllable and observable
and the pair (A0, B0) is controllable.
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We first notice that, when H(s) = h(s)In and all the
realizations Σi are (A,b, c>), the matrix Ψ(s) becomes

Ψ(s) =

 −b>m+1
...
−b>n

In−m

 · (d(s)In − n(s)A0) ,

where n(s) = c>adj(sI−A)b and d(s) = det(sI−A). For
every s ∈ C, we distinguish three cases:

a) d(s) = n(s) = 0;
b) d(s) 6= 0, n(s) = 0;
c) d(s) 6= 0, n(s) 6= 0.

In case a) it is clear that Ψ(s) = 0, and this case occurs if and
only if s is a common zero of n(s) and d(s), which implies
that the realization (A,b, c>) is either not controllable or not
observable. In case b) it is easy to see that rank(Ψ(s)) =
n−m. Finally, in case c), it is a matter of easy computation
to verify that rank(Ψ(s)) = n−m if and only if

rank(
[ d(s)
n(s)In −A0 B0

]
) = n.

This corresponds to the controllability of the pair (A0, B0).
So, since we have evaluated all possible cases, we have
shown that the characterization given in [3] holds true, as
a special case of Theorem 1.

Remark 3: It is worthwhile noticing that when dealing
with the general diagonal case, namely H(s) is not scalar,
then the controllability of the overall system only requires
that the agent state-space models (Ai,bi, c>i ) are control-
lable, and does not require any constraints on the realization
of the controller G0(s). Indeed, by resorting to this supervi-
sory controller we may ensure controllability of the overall
system, even if the original plant is not observable, and the
supervisory controller is not controllable. This result is quite
different from the case of n identical models for the agents.

Example 1: Suppose that n = 2,m = 1 and that the plant
has the following transfer matrix

H(s) =
[
h1(s)

h2(s)

]
=
[

1
s+1

1
s−1

]
.

We assume that the realization of h2(s) is minimal, while
the realization of h1(s) is not observable and it has a not
observable eigenvalue at 0, so that d1(s) = s(s + 1) and
n1(s) = s. We assume that the supervisory controller is
described by the quadruple Σc = (A0, B0, C0, D0) with

A0 =
[

0 2
4 2

]
, B0 =

[
1
2

]
that is a not controllable pair. Then it easy to verify that

Ψ(s) = [−2 1 ]
([

s(s+ 1) 0
0 s− 1

]
−
[

0 2
4 2

] [
s 0
0 1

])
= [−2s2 − 6s s+ 1 ]

is left prime, and hence the overall system is controllable.

Remark 4: The previous characterization of controllabil-
ity has been obtained under the simplifying assumption that
B0 is of full column rank and its first m×m submatrix is the

identity matrix. The generalization of the characterization to
the case of an arbitrary B0, however, is quite immediate. It
is easy to see that, under our assumptions, the matrix −b>m+1

...
−b>n

In−m


has rows which are a basis for the vector space (Im(B0))⊥.
So, in the general case, we should just replace this matrix in
Ψ(s) with any full row rank matrix whose rows are a basis
for the vector space (Im(B0))⊥.

VI. STABILITY AND STABILIZABILITY ANALYSIS

The aim of this section is to provide some preliminary
results about the stability and stabilizability of the controlled
system Σsc = (A,B, C,D). Specifically, we will deal with
two issues:
1) [Stability problem] assuming that A0 is given, under what
conditions the matrix A has all the eigenvalues within the
open left half complex plane C−?
2) [Stabilizability problem] assuming that the supervisory
controller is not given, under what conditions a matrix A0

can be found such that A has all the eigenvalues in C−?
We first note that, by resorting to standard matrix compu-
tations, we can express the characteristic polynomial of A
as

∆A(s) = det(sIK −A−BA0C) =
∏n
i=1 ∆Ai

(s)∏n
i=1 d̂i(s)

·∆∗(s),

where ∆∗(s) := detM∗(s), with

M∗(s) :=

264 d̂1(s)
. . .

d̂n(s)

375−A0

264 n̂1(s)
. . .

n̂n(s)

375 (11)

and each pair (n̂i(s), d̂i(s)) provides a coprime representa-
tion of the function hi(s). So, it is clear that A is Hurwitz
if and only if all the eigenvalues of the non-controllable
or non-observable part of each system Σi belong to C−
and the polynomial ∆∗(s) is Hurwitz. So, in the sequel
we will always assume that all the systems Σi are minimal
realizations (as a consequence, n̂i(s) and d̂i(s) will coincide
with ni(s) and di(s), defined in (9) and (10)), and we
will focus on the conditions under which ∆∗(s) is (or may
become) Hurwitz.

As far as stability analysis is concerned, the structure of
M∗(s) is more complicated than the structure of the analo-
gous matrix for the case of homogeneous agents, thus making
it significantly more difficult to extend the characterizations
obtained in [2], [3], [9]. Indeed, when H(s) = h(s)In, and
n(s)/d(s) is a coprime representation of h(s), then

∆∗(s) = det[d(s)In −A0n(s)],

and it has been shown that ∆∗(s) is Hurwitz if and only if for
every λ ∈ σ(A0), p(λ, s) := d(s) − λn(s) is Hurwitz. This
result can be partially extended to a necessary condition for
∆∗(s) to be Hurwitz in the general non-homogeneous case.

5067



Proposition 2: A necessary condition for ∆∗(s) =
detM∗(s), with M∗(s) given in (11), to be Hurwitz is that

∀ λ ∈ σ(A0),@ ŝ ∈ C+ :
pi(λ, ŝ) := di(ŝ)− λni(ŝ) = 0,∀ i ∈ [1, n]. (12)

Proof: Suppose, by contradiction, that ∃ λ ∈ σ(A0) and
ŝ ∈ C+, such that di(ŝ) − λni(ŝ) = 0,∀ i ∈ {1, 2, . . . , n}.
So, if v> is a left eigenvector of A0 corresponding to λ, it
is easily seen that v> lies in the left kernel of M∗(ŝ). This
contradicts the fact that M∗(s) and hence ∆∗(s) is Hurwitz.

Unfortunately, while necessary, condition (12) is not suf-
ficient, as illustrated in the example below.

Example 2: Assume

d1(s) = s2−s+5, n1(s) = 1, d2(s) = s2+s, n2(s) = s+1,

A0 =
[

1 1
−1 −1

]
→ σ(A0) = {0, 0}.

It is easily seen that p1(0, s) = d1(s) and p2(0, s) = d2(s)
have no common zero in C+, however ∆∗(s) = (s+1)(s3 +
0s2 + 3s + 5) is not Hurwitz. Note, however, that a matrix
A0 such that M∗(s) is Hurwitz exists. For instance

A0 =
[
−12 6

3 −2

]
.

As far as the stabilization problem is concerned, due to
the structure of the overall system matrix A = A+ BA0C,
it is immediately seen that this is a static output feedback
problem, where A0 is the static output feedback matrix.
Notice that this is consistent with what we said in section II
and, in particular, with equation (3). Unfortunately, it is well
known that the static output feedback problem is difficult
and still unsolved (see [8] for a survey).

When Kimura’s condition [6] is satisfied, which in this
specific case means that K =

∑n
i=1 ki ≤ 2n − 1, then a

solution can always be found. The case when all hi(s) are
first order transfer functions trivially falls in this case, but
it is interesting to notice that the structure of M∗(s) allows
to immediately find a diagonal solution A0. Indeed, if we
assume w.l.o.g. that di(s) = s − λi and ni(s) = βi, then it
is easily seen that for [A0]ii = λi+1

βi
, we get

di(s)− ni(s)[A0]ii = s− λi + βi
λi + 1
βi

= s+ 1,

and hence for

A0 = diag
{
λ1 + 1
β1

, . . . ,
λn + 1
βn

}
we obtain ∆∗(s) = (s+ 1)n.

A similar reasoning applies to the case when all transfer
functions hi(s) are of second order with a stable zero. If
so, we may assume without loss of generality that di(s) =
s2 + ais + bi and ni(s) = cis + pi, with ci · pi > 0. So, a
sufficiently large ri > 0 can be found such that

di(s) + sign(ci)rini(s) = s2 + (ai + |ci|ri)s+ (bi + |pi|ri)

has all positive coefficients. But then, by Descartes’ rule of
signs, the polynomial is Hurwitz and

A0 = diag {sign(c1)r1, . . . , sign(cn)rn}

is the matrix that stabilizes the system.
Generally speaking, the stabilization by means of a di-

agonal A0 is possible if and only if, for every i ∈ [1, n],
there exists [A0]ii such that di(s)− [A0]iini(s) is Hurwitz, a
condition that can be easily tested via the Routh-Hurwitz
criterion, or by the root locus criterion (or by Nyquist
criterion) by noticing that this is equivalent to find Ki such
that the feedback system Kihi(s)

1−Kihi(s)
is BIBO stable. Indeed,

a simple root-locus argument allows to say that if each
hi(s) is minimum phase, and either one of the following
two conditions holds: (a) the relative degree of each hi(s)
(namely deg di(s)−deg ni(s)) is not greater than 1 or (b) the
relative degree of each hi(s) is 2 and the sum of the poles
is smaller than the sum of the zeros; then a sufficiently large
Ki can be found such that Kihi(s)

1−Kihi(s)
is BIBO stable [8].

Stabilization by means of a diagonal A0 is referred to in
[4] as solely stabilization, to mean that each single agent
can be independently stabilized, as opposed to cooperative
stabilization, obtained by means of a matrix A0 whose off-
diagonal entries are not all zeros. In the special case when
H(s) is a scalar matrix, solely stabilization and cooperative
stabilization prove to be equivalent properties for certain
classes of functions h(s), but they are nonetheless distinct.
However, even when a diagonal scalar matrix A0 cannot
be found, the stabilization problem can be significantly
simplified, as shown in the following proposition that extends
a result given in [4].

Proposition 3: Given a scalar matrix H(s) = h(s)In,
with strictly proper diagonal entries h(s) = n(s)

d(s) ∈ R(s),
the following facts hold:
i) If n is odd, there exists A0 such that det[d(s)In−A0n(s)]
is Hurwitz if and only if there exists a scalar matrix A0 for
which this is true.
ii) If n is even, there exists A0 such that det[d(s)In−A0n(s)]
is Hurwitz if and only if there exists a block-diagonal A0,
with 2× 2 identical diagonal blocks, for which this is true.

Proof: Clearly, for each item only one implication
needs to be proved. According to [4], [9], if there exists A0

such that det[d(s)In − A0n(s)] is Hurwitz, then, for every
λ ∈ σ(A0), p(λ, s) = d(s)− λn(s) is Hurwitz.
i) If n is odd then at least one of the eigenvalues of A0, say
λ∗, is real, but then we have that A0 = λ∗In is the desired
diagonal matrix.
ii) If n is even and at least one of the eigenvalues of A0

is real, we can apply the same reasoning as in point i)
(and the 2 × 2 diagonal blocks are, in fact, diagonal). If
all the eigenvalues of A0 are complex, then we can always
assume that they are all distinct conjugate pairs σi±jωi, i ∈
[1, n/2] (indeed if A0 makes ∆∗(s) Hurwitz, then so does
a slightly perturbed version of it, and the eigenvalues of A0

are a continuous function of its parameters). Let T be a
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nonsingular matrix such that

T−1A0T = diag
{[

σ1 ω1

−ω1 σ1

]
, . . . ,

[
σn/2 ωn/2
−ωn/2 σn/2

]}
.

Then the result is true, for instance, for

A0 = diag
{[

σ1 ω1

−ω1 σ1

]
, . . . ,

[
σ1 ω1

−ω1 σ1

]}
.

The previous result, for n odd, allows us to derive a
sufficient condition for stabilizability in the general non-
homogeneous case.

Proposition 4: Set d(s) :=
∏n
i=1 di(s) and n(s) :=∏n

i=1 ni(s). If K =
∑n
i=1 ki =

∑n
i=1 deg di(s) is an odd

number and there exists Ã0 such that det[d(s)IK − Ã0n(s)]
is Hurwitz, then there exists A0 such that ∆∗(s) is Hurwitz.

Proof: If the assumptions in the proposition hold, then,
as in the proof of the previous proposition, there exists λ ∈
R such that d(s) − λn(s) =

∏n
i=1 di(s) − λ

∏n
i=1 ni(s) is

Hurwitz. But then for

A0 =


0 1

. . . . . .
. . . 1

λ 0


the matrix M∗(s) has determinant d(s) − λn(s) and hence
it is Hurwitz.

The converse, however, is not true, as shown by the simple
example hi(s) = 1/(s−1), (namely di(s) = (s−1), ni(s) =
1) for i ∈ [1, 3], for which A0 (= −ρI3, ρ > 1) can be found
such that ∆∗(s) is Hurwitz, but the stabilization problem for
d(s) = (s− 1)3 and n(s) = 1 is not solvable.

As a general statement, it is rather intuitive that solely
stabilization is a stronger property with respect to cooperative
stabilization for diagonal matrices H(s). A guess one could
make is that they are equivalent properties for transfer
functions with no zeros, and hence described in the form

hi(s) =
βi
di(s)

, βi ∈ R \ {0}, deg di ≥ 1.

However, this is not generally true, as shown by the following

Example 3: Assume

d1(s) = s2−s+5, n1(s) = 1, d2(s) = s2 +2s, n2(s) = 1.

It is easily seen that d1(s) − [A0]11n1(s) = s2 − s + (5 −
[A0]11) is never Hurwitz, and hence a diagonal solution A0

does not exist. However, for

A0 =
[

2 2
4 −4

]
we get

∆∗(s) = s4 + s3 + 5s2 + 2s+ 4,

which can be verified to be Hurwitz by means of the Routh-
Hurwitz criterion.

Up to now we have derived sufficient conditions for stabi-
lizability. We now provide a necessary condition for diagonal
matrices H(s) whose diagonal entries hi(s) = ni(s)

di(s)
have all

relative degree greater than or equal to 2. Assume without
loss of generality, that each di(s) is monic and hence can
be described as di(s) = ski +

∑ki−1
j=0 dijs

j . By recalling the
standard formula for the determinant of a matrix:

∆∗(s) =
∑
π

(−1)sign(π)[M∗(s)]1π(1) . . . [M∗(s)]nπ(n),

where the summation is taken over all possible permutations
π of the first n positive integers, we can easily deduce that

∆∗(s) =
n∏
i=1

di(s)−
n∑
i=1

aiini(s) ·

∏
j 6=i

dj(s)

+ ∆lo(s),

where ∆lo(s) is a polynomial of lower order with respect to
the other two terms. As the relative degree of each hi(s) is
greater than or equal to 2, then

deg

(
n∏
i=1

di(s)

)
≥ deg

 n∑
i=1

aiini(s)

∏
j 6=i

dj(s)

+ 2,

and hence the leading coefficient (the coefficient of sK ,
K =

∑
i=1 ki), as well as the coefficient of sK−1 in ∆∗(s)

depend uniquely on
∏n
i=1 di(s). So, a necessary condition

for ∆∗(s) to be Hurwitz is that the coefficient of sK−1 in
∆∗(s),

∑n
i=1 di,ki−1, is strictly positive.

Example 4: Assume

d1(s) = s2− s+ 5, n1(s) = 1, d2(s) = s2 + s, n2(s) = 1.

It is easily seen that d1(s)d2(s) = s4 +0s3 +4s2 +5s, while
deg nidj = 2 and deg ninj = 1. Consequently, for every
choice of A0, we have ∆∗(s) = s4+0s3+as+b,∃ a, b ∈ R,
which is never Hurwitz.
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