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Abstract— We consider a robotic network composed of mo-
bile robots capable of communicating with each other. We
study the problem of collectively tracking a number of moving
targets while maintaining a certain level of connectivity among
the robots, by moving them into appropriate positions. The
distances of the robots to each other and to the targets are
used to define a communication and target tracking graph,
respectively. We formulate the combined global objective as
a Semi-Definite Program (SDP) and propose a non-iterative
distributed solution consisting of localized SDP’s which use
information only from nearby neighboring robots. Numerical
simulations illustrate the performance of the algorithm with
respect to the centralized solution.

I. INTRODUCTION

Groups of mobile robots capable of communicating with

one another to collaboratively achieve a common goal, often

referred to as Robotic Networks, offer great promise in appli-

cations ranging from underwater and space exploration [1], to

search, rescue, and disaster relief [2], monitoring and surveil-

lance [3]. Collaborative multi-target tracking is considered

as a key enabling capability in the above scenarios, which

require maintaining a certain level of connectivity among

the robots while simultaneously ensuring that independent

moving “targets” stay in the visual/detection range of the

robots themselves.

The works of [4]–[10] provide a comprehensive overview

of the multi-target tracking problem. Typical approaches

consider a cost function based on the Fisher Information

Matrix in order to determine robot movements that lead to an

increase in the targets’ visibility. However, even for a single

target, the resulting optimization problem is nonlinear and

NP-hard [10]. As a result, several alternative formulations

relying on potential fields, gradient-descent, Monte Carlo

methods, and linear approximations have been proposed,

by sacrificing robot connectivity / target visibility guaran-

tees, generality of the framework, or real-time applicability.

Recently, an approximate formulation of the problem has

been suggested using Semi-Definite Programming [11], [12],

which is based on the tools of [13], [14]. Contrary to the

aforementioned literature, this framework allows both the

connectivity of the robotic network and the visibility of the

targets to be considered simultaneously, in the same opti-

mization problem. For this purpose two distance-dependent

graph Laplacians are defined (communication and visibility)

in order to describe the interconnection between robots and

targets. The approach assumes that each robot is capable of

communicating with any other team-mate and it guarantees

performance for an arbitrary number of robots and targets.
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In this paper, we first describe a more general version of

the approach in [11], [12] that accounts for uncertainty in

the targets’ positions, and we formulate the problem as a

joint maximization of connectivity and visibility. Then, as

our main contribution, we propose a distributed version of

the solution that addresses the realistic scenario where robots

are capable of communicating only with a few nearby team-

mates. Our distributed approach relies on localized Semi-

Definite Programs (SDPs) that are solved by each robot

using information only from nearby neighbors. In contrast

to iterative schemes such as super-gradient algorithms, e.g.,

[15], our approach does not require extensive communication

and iterations among the robots to converge to the final

solution, making it more suitable for real-time applications.

In addition, our proposed solution is characterized by the

following: (i) the local problems are derived via a suitable

decomposition of the centralized one, (ii) both connectivity

and tracking are guaranteed, (iii) the local solutions are feasi-

ble with respect to the constraints of the original centralized

problem, and (iv) the local cost function exhibits the same

improvement property as the global cost in the linearized

approximation.

The paper is organized as follows. Section II formu-

lates the approximate centralized problem. The proposed

distributed approach is described in Section III. Numerical

simulations are shown in Section IV to illustrate the behavior

of the distributed solution and compare it with the centralized

case. Conclusions and open issues are discussed in Section V.

II. PROBLEM FORMULATION

We consider a group of i = 1, . . . , N mobile robots

(agents) and q = 1, . . . ,M moving targets. We denote as

aj(k) the value of variable a for agent/target j at time k,

while we use the following notation for a change in its value:

δaj(k) = aj(k)−aj(k−1). IN represents the identity matrix

of dimension N ×N and || · || is the Euclidean norm.

Let xi(k) ∈ R
2 be the position of the i-th agent. For

simplicity of exposition, as in [11], [13], we assume discrete-

time agent dynamics of the following form:

xi(k) = xi(k − 1) + vi(k − 1)∆t, i = 1, . . . , N (1)

where vi(k) is the velocity control input and ∆t the sampling

time. We assume ||vi(k)|| ≤ vmax,i. Let x(k) ∈ R
2N

be the collection of the agents’ positions, i.e., x(k) =
(x⊤

1 (k), . . . , x
⊤
N (k))⊤. Let zq(k) ∈ R

2 be the position of the

q-th target at time k, and let z(k) = (z⊤1 (k), . . . , z⊤M (k))⊤

be the collection of the targets’ positions. We assume that

the agents know their own position and the position of

the targets they can detect, and that they have computa-
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tion/communication capability onboard. We assume the tar-

gets can be represented as discrete-time dynamical systems

zq(k) = zq(k − 1) + wq(k − 1)∆t, q = 1, . . . ,M (2)

where wq(k) ∈ R
2 is a bounded noise term, i.e. ||wq(k)|| ≤

wmax,q. The set of reachable positions Zq(k) at time k, is

the disc centered at the previous known position zq(k − 1)
with radius wmax,q∆t. In order to ensure that the tracking

problem is solvable, we make the following assumption:

Assumption 1: (Slow targets) The maximum noise input

is less than the agents’ maximum velocity, i.e., wmax,q <
vmax,i for all pairs (q, i).

Let the agent clocks be synchronized, and assume perfect

communication (no delays or packet losses). We model the

communication network among agents as graphs. The set

S contains the indices of the mobile agents (nodes), with

cardinality |S| = N . We use E to indicate the set of

communication links. The communication graph GC is then

expressed as GC = (S, E). The graph GC is assumed to be

undirected. All the agents with which agent i is connected

to are called neighbors and are contained in the set Ni.

Note that node i is not included in the set Ni. We define

N+
i = Ni ∪ {i} and Ni = |N+

i |. The collection of agents

that are within the detection range of target q is defined as

Nq . These are considered as the neighboring agents of target

q. We introduce the following assumptions:

Assumption 2: (Initial feasibility) At the initial time, the

communication graph GC is connected and ∀q, |Nq| > 0.

Assumption 3: (Well-posedness) At any time k > 0, there

exists an x(k), independent of x(k − 1), which guarantees

that the communication graph GC remains connected and for

each target q, |Nq| > 0.

This last assumption ensures that the problem is well-

posed, but it does not guarantee feasibility at each time

step. In fact, x(k) depends on x(k − 1) via the dynamical

equation (1), therefore the x(k) provided by the assumption

could be unreachable, given the current position x(k−1). In

practice, Assumption 3 requires that the targets do not move

arbitrarily far away from each other.

Let LC be the Laplacian matrix associated with the com-

munication graph GC . Its entries, ℓijC , depend on weights,

0 ≤ cij ≤ 1, which represent the “connection strength”

between agents i and j. Therefore, ℓijC = −cij if (i, j) ∈
E , i 6= j, ℓijC =

∑
l 6=i cil if i = j, and ℓijC = 0 if (i, j) /∈ E .

In a similar way, we use the weights 0 ≤ vqi ≤ 1 to model

the link between target q and agent i, if they fall within

the detection range. The weights cij and vqi are assumed to

depend on the physical distance between the nodes according

to

cij = fC(||xi(k)− xj(k)||
2), vqi = fV (||zq(k)− xi(k)||

2), (3)

where fC : R2 ×R
2 → [0, 1] and fV : R2 ×R

2 → [0, 1] are

smooth nonlinear functions with compact support. For the

proposed distributed solution in Section III, we assume:

Assumption 4: 2 supp(fV ) < supp(fC), where supp(·)
stands for support. In other words, each agent that can detect

a target is assumed to be able to communicate with all other

agents that detect the same target.

The weights model the interconnection strength between

two nodes. The closer two nodes are the higher the weight

TABLE I

THE WEIGHTING FUNCTIONS.

0    

0

 

1

ρ1 ρ2

w
ei

g
h
ts

cijvij

squared distance

is, representing an increase in the communication / detection

“quality”. For simulation purposes we use the functions

qualitatively represented in Tab. I, a more detailed discussion

on weight selection can be found in [11].

To characterize how a target is connected to agents we

introduce the sum of the detection weights vqi of a target q
as vq =

∑
i∈Nq

vqi; we note that if vq > n then |Nq| > n.

We are interested in maximizing visibility of the targets

and maximizing communication connectivity among the

agents. This can be posed as the joint maximization of the

algebraic connectivity of the communication and detection

graphs, respectively, by moving the agents into appropriate

positions. This goal can be formulated in each discrete time

step k as the following optimization problem, [11], [16]:

P : max
x(k),γ(k),ν[1,...,M](k)

αγ(k) +

M∑

q=1

βqνq(k) (4a)

subject to:

γ(k) > 0, νq(k) > 0 q = 1, . . . ,M (4b)

LC(x(k)) + 11
T ≻ γ(k)IN (4c)

vq(zq(k), x(k)) > νq(k), ∀zq(k) ∈ Zq(k), (4d)

q = 1, . . . ,M

||xi(k)− xi(k − 1)|| ≤ vmax,i∆t i = 1, . . . , N (4e)

where the decision variables are the agents’ locations and

the values of γ(k), νq(k)’s. Here the constants α ≥ 0 and

βq ≥ 0, q = 1, . . . ,M model the relative weights on the

maximization goals. When one selects α = 0, as in [11], the

problem becomes the maximization of detection connectivity

with the targets while guaranteeing that the communication

graph remains connected.

This problem (4) is non-convex given that we are opti-

mizing over the positions x and the entries of the Lapla-

cians are nonlinear functions of x. As a standard convex

approximation to this problem formulation, [11], [13], [17],

the following first-order Taylor expansions are used:

cij(k) = cij(x(k − 1)) +

(
∂fC

∂xi

)⊤

x(k−1)
︸ ︷︷ ︸

a⊤

ij

(δxi(k) − δxj(k)) (5)

vqi(k) = vqi(zq(k − 1), xi(k − 1))+
(
∂fV

∂xi

)⊤

(x(k−1),zq(k−1))
︸ ︷︷ ︸

h⊤

i

(δxi(k)− δzq(k)) (6)
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We employ the symbol ∆ to denote such linearized en-

tities: ∆LC(x(k)) has entries as expressed in (5), while

∆vq(zq(k), x(k)) is composed of the weights expressed

in (6). This allows us to formulate the following convex

approximation of the problem (4):

∆P(x(k − 1), z(k − 1), vmax,i) :

max
x(k),γ(k),ν[1,...,M](k)

αγ(k) +
M∑

q=1

βqνq(k) (7a)

subject to:

γ(k) > 0, νq(k) > 0 q = 1, . . . ,M (7b)

∆LC(x(k)) + 11
T ≻ γ(k)IN (7c)

∆vq(z
∗
q (k), x(k)) > νq(k) q = 1, . . . ,M (7d)

||xi(k)− xi(k − 1)|| ≤ vmax,i∆t i = 1, . . . , N (7e)

where z∗q (k) is the worst-case zq(k), which due to the

linearity of the scalar inequality (7d) can be computed

analytically (see Appendix).
Define ν−q (k) := νq(k − 1) −

∑
j∈Nq

h⊤
j δz

∗
q (k) which

represents the decrease of the detection quality due to the

targets’ motion. We note that ν−q (k) ≥ 0 by the defi-

nition of the weighting functions, therefore νq(k − 1) ≥∑
j∈Nq

h⊤
j δz

∗
q (k). This condition is useful when checking

the validity of the employed Taylor approximations.
The cost function of problem (7) at each time step k

satisfies:

αγ(k) +
M∑

q=1

βqνq(k) ≥ αγ(k − 1) +
M∑

q=1

βqν
−
q (k) (8)

which indicates that the agents move in a way that improves

the cost function if we consider only the current target

locations. This inequality also implies that when the targets

are stationary, the cost function is monotonically increasing.
The optimization problem that has been described in this

section attempts to solve the joint connectivity and detec-

tion maximization problem in a centralized manner using

linearization. In realistic application scenarios, computing the

desired positions and the corresponding motion commands

for the robots cannot be performed in a single centralized lo-

cation due to computational and communication constraints.

In the next section, we describe a solution approach that

allows the problem to be solved in a distributed fashion, us-

ing local computation and limited communication resources,

which increases the flexibility of the robotic network and is

thus appealing in practice.

III. THE PROPOSED DISTRIBUTED SOLUTION

In this section we present a non-iterative distributed so-

lution to solve (7). We note that this is not a trivial task,

since commonly use decomposition methods (if applicable,

e.g. in [15]) typically require iterative solutions which may

not be amenable to fast real-time implementations. Before

presenting the main contribution of this paper, we first

introduce some notation and definitions. We then proceed

to describe our non-iterative distributed solution method and

its properties.
In order to formulate the local problems each agent will

be solving, we define subgraphs that correspond to the

agents and their neighborhood. Let Ji denote the enlarged

neighborhood for each agent i defined as

N+
i Agent i

Ji

∂Ji

Target q Nq

Jq

Fig. 1. Notation for the distributed solution. The targets are represented
via squares, while the agents are circles. Communication links are shown
via solid lines, whereas detection links via dashed lines.

Ji =
⋃

l∈N+
i

N+
l , i = 1, . . . , N (9)

whose cardinality will be Ji. We denote the vector containing

all the positions of the agents in this set with xJi
. We define

∂Ji = {l|l ∈ Ji, l /∈ N+
i }, i = 1, . . . , N (10)

as the bordering set of Ji, while we call the set of agents

belonging to ∂Ji, the bordering agents of Ji. We denote the

communication graph Laplacian associated with subgraph Ji

as LCi
. We will assume that agent i is aware of the targets

it can detect directly and also the ones his neighbors can

detect. We will denote with Ti the set of all the targets that

agent i is aware of. Correspondingly, we denote the vector

containing all the positions of the targets in the set Ti with

zTi
. Similarly to the enlarged neighborhood set for the agents

we introduce the enlarged neighborhood set for the targets,

indicating which agents are aware of a specific target q:

Jq =
⋃

l∈Nq

Nl, q = 1, . . . ,M (11)

whose cardinality is Jq . We note that these neighborhood

sets contain only agents, and thus the maximum allowed

cardinality is N . Figure 1 provides a graphical illustration of

this notation. We also introduce a scaled maximum velocity

ṽmax,i defined as

ṽmax,i =
N

Ji
vmax,i, i = 1, . . . , N (12)

whose value varies from agent to agent. This quantity will

be used to change the local constraints in such a way that

the global solution constructed from the local ones satisfies

the original constraint (7e).

Our algorithm consists of two phases. First, each agent

solves problem ∆Pi defined as

∆Pi : ∆P(xJi
(k − 1), zTi

(k − 1), ṽmax,i) (13a)

s.t. xj(k) = xj(k − 1), for j ∈ ∂Ji (13b)

computing the solution x̂Ji
(k), which is composed of x̂ij(k)

for each j ∈ Ji. Thus, we will call x̂ij(k) the position of

agent j as computed by agent i. Note that the extra constraint

(13b) is an important requirement for feasibility of the local

problems as will be explained later in this section.

As a second phase, the solutions x̂Ji
(k) are shared within

the enlarged neighborhood Ji and averaged according to

xi(k) = xi(k − 1) +
∑

j∈Ji

1

N
δx̂ji(k), i = 1, . . . , N (14)
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Algorithm 1 summarizes the method. Note that steps 3-

5 are implemented only once between subsequent robot

movements, which makes the algorithm non-iterative.

Algorithm 1 Distributed algorithm.

1: Input: xJi
(k − 1), zTi

(k − 1)
2: Determine: z∗Ti

(k)
3: Solve: ∆Pi in (13) computing x̂ij(k), j ∈ Ji
4: Communicate: x̂ij(k) among members of Ji

5: Average: xi(k) = xi(k − 1) +
∑

j∈Ji

1

N
δx̂ji(k)

6: Output: xi(k)

We claim that if we consider the global position vector

x(k) = (x⊤
1 (k), . . . , x

⊤
N (k))⊤ resulting from (14), then

(C1) The algebraic connectivity of the corresponding global

linearized Laplacian ∆LC(x(k)) and ∆vq(z
∗
q (k), x(k))

are strictly positive;

(C2) all the constraints of the global problem are met.

Furthermore we claim that, as in the centralized approach:

(C3) The improvement property (8) remains to be valid

for the cost function of ∆P, which is monotonically

increasing when the targets are stationary.

We will prove these claims in three steps: Theorems 1, 2,

and 3 establish (C1), by linking the average value (14) and

the algebraic connectivity through the linear dependence of

the linearized Laplacians on x. The constraint (13b) plays

a crucial role here to ensure the feasibility of the local

solutions. Theorem 4 guarantees (C2), by showing how the

scaled velocity (12) of the local problems ensure that the

global solution, obtained via the average (14), satisfies the

global constraints. Theorem 5 establishes (C3) by linking

the variations of the local cost functions with the one of the

global problem.

Consider the local problem ∆Pi and its solution com-

prised of x̂ij(k) for all j ∈ Ji. Construct the vector

x̂(i)(k) = (x⊤
1 (k − 1), . . . , x̂⊤

ij(k), . . . , x
⊤
N (k − 1))⊤ (15)

where we keep those agent positions that have not been

optimized fixed, and we update the rest from the solution

of the local problem.

Theorem 1: (C1.0) The new positions x̂(i)(k) keep

the global linearized Laplacian matrix connected:

∆LC(x̂
(i)(k)) + 11⊤ ≻ 0.

Proof. At time step k − 1, the graph GC(x(k − 1)) is

connected. We can divide this graph in two overlapping

parts, GC(xJi
(k−1)), which is connected by definition, and

GC(x¬Ji
(k − 1)) ∪ GC(x∂Ji

(k − 1)), where with ¬Ji we

indicate the collection of agents not present in Ji. At time

step k we know that:

GC(x(k)) = GC(xJi
(k)) ∪

(
GC(x¬Ji

(k − 1)) ∪ GC(x∂Ji
(k − 1))

)

GC(xJi
(k)) ∩

(
GC(x¬Ji

(k − 1)) ∪ GC(x∂Ji
(k − 1))

)
=

GC(x∂Ji
(k − 1)) 6= {∅}

where we use the definition of x(i)(k) (15) and the

constraint (13b) on the bordering agents. Noticing that

GC(xJi
(k)) is also connected as imposed by the local

optimization problem, the claim follows. �

Lemma 1: The following equality holds:

∆LC(δx(k)) =
N∑

i=1

1

N
∆LC(δx̂(i)(k)) (16)

Proof. Let us consider the entry (i, j) of the Laplacian L
on both sides of the expression. For the right side, ℓij is

ℓij = a⊤ij
∑

p∈Ji∩Jj

δx̂pi(k)− δx̂pj(k)

N

For the left side,

ℓij =a⊤ij (δxi(k)− δxj(k))=a⊤ij




∑

p∈Ji

δx̂pi(k)

N
−

∑

p∈Jj

δx̂pj(k)

N





the last expression can be divided in three parts: p ∈ Ji∩Jj ,

p ∈ Ji ∧ p /∈ Jj , and p ∈ Jj ∧ p /∈ Ji. Since a⊤ij 6= 0
only if (i, j) are first order neighbors, we can make the key

observation that: {p|p ∈ Ji ∧ p /∈ Jj} ⊆ ∂Ji and {p|p ∈
Jj ∧ p /∈ Ji} ⊆ ∂Jj which leads to:

ℓij = a⊤ij
∑

p∈Ji∩Jj

δx̂pi(k)− δx̂pj(k)

N
+

a⊤ij
∑

p∈Ji∧p/∈Jj

δx̂pi(k)

N

︸ ︷︷ ︸

=0

− a⊤ij
∑

p∈Jj∧p/∈Ji

δx̂pj(k)

N

︸ ︷︷ ︸

=0

where the last two terms are 0 due to constraint (13b). �

Theorem 2: (C1.1) The algebraic connectivity of the

global linearized Laplacian ∆LC(x(k)) is strictly positive,

∆LC(x(k)) + 11
⊤ ≻ 0 where x(k) is computed by the

average (14).

Proof. Theorem 1 implies (∆LC(x̂
(i)(k)) + 11⊤)/N ≻ 0

for all i. Thus summing over all agents leads to
N∑

i=1

1

N
(∆LC(x̂(i)(k)) + 11⊤) ≻ 0

or

(∆LC(x(k − 1)) + 11⊤) +
N∑

i=1

1

N
∆LC(δx̂(i)(k)) ≻ 0

Considering the weighted sum xi(k) in (14), and the asso-

ciated global vector x(k), by Lemma 1 follows the desired

consistency property ∆LC(x(k)) + 11⊤ ≻ 0. �

Theorem 3: (C1.2) The local constraint ν̂q(k) > 0 is a

sufficient condition for all the targets to be connected at least

to one agent, i.e., νq(k) > 0 , ∀q = 1, . . . ,M .

Proof. Consider target q, which appears in the local

constraints of subproblem ∆Pp, p ∈ Jq as
∑

j∈Nq

∆vqj(z
∗
q (k), x̂pj(k)) > ν̂qp(k) > ν̂q(k) > 0

for a suitable ν̂q(k). This constraint can be written in the

equivalent form:
∑

j∈Nq

h⊤
j δx̂pj + bj > ν̂q(k) > 0 (17)

where:

0 ≤
∑

j∈Nq

bj =
∑

j∈Nq

vqj(zq(k − 1), xpj(k − 1))−

∑

j∈Nq

h⊤
j δz∗q (k) = ν−q (k)
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and we note that due to Assumption 4, ∀p ∈ Jq we have

Nq ⊆ Jp, therefore constraint (17) can indeed be computed

locally. Starting from Equation (17), summing over the p’s

and dividing by N :
∑

p∈Jq

∑

j∈Nq

h⊤
j

δx̂pj(k)

N
+

bj

N
>

∑

p∈Jq

ν̂q(k)

N

or ∑

p∈Jq

∑

j∈Nq

h⊤
j

δx̂pj(k)

N
>

Jq

N
ν̂q(k)−

Jq

N

∑

j∈Nq

bj (18)

Globally one would like to have
∑

j∈Nq

h⊤
j δxj(k) + bj > νq(k) > 0

substituting the average (14):
∑

j∈Nq

∑

p∈Jj

h⊤
j

δx̂pj(k)

N
+ bj > νq(k) (19)

since
⋃

j∈Nq

Jj = Jq ∪




⋃

j∈Nq

∂Jj





and due to constraint (13b), then the expression (19) be-

comes: ∑

j∈Nq

∑

p∈Jq

h⊤
j

δx̂pj(k)

N
+ bj > νq(k)

where we can switch the sum operators and substituting

expression (18), we obtain
Jq

N
ν̂i(k) +

∑

j∈Jq

bj −
Jq

N
bj = νq(k) > 0

for some νq(k). This leads to

ν̂q(k) +
N − Jq

Jq
ν−q (k) =

N

Jq
νq(k). (20)

Since we want νq(k) > 0, knowing that ν−q (k) ≥ 0, this

implies ν̂q(k) > 0. �

Theorem 4: (C2) The global constraints (7b)-(7e) are met

with the average solution (14).

Proof. The constrains (7b)-(7d) are ensured via Theorems

2-3. Consider now the constraint (7e), for each subproblem

we have
||δx̂ii(k)|| < ṽmax,i =

N

Ji
vmax,i

and for the global problem:

||δxi(k)|| <
∑

j∈Ji

1

N
||δx̂ji(k)|| < vmax,i

Thus x(k) satisfies also (7e) and (C2) is established. �

Theorem 5: (C3) Similarly to the centralized case, the

global cost function of ∆P satisfies the following improve-

ment property:

αγ(k) +
M∑

q=1

βqνq(k) ≥ αγ(k − 1) +
M∑

q=1

βqν
−
q (k) (21)

where the solution at time k is computed from the local

problems with the average (14).

Proof. We start rewriting (21) in the equivalent semi-

definite form:

α
(

∆LC(x(k)) + 11
⊤
)

+ IN

M∑

q=1

βqνq(k) �

α
(

∆LC(x(k − 1)) + 11
⊤
)

+ IN

M∑

q=1

βqν
−
q (k)

For optimality of the local problems, in each ∆Pi:

α
(

∆LCi
(x̂Ji

(k)) + 11
⊤
)

+ I|Ji|

∑

q∈Ti

βq ν̂q(k) �

α
(

∆LCi
(x̂Ji

(k − 1)) + 11
⊤
)

+ I|Ji|

∑

q∈Ti

βqν
−
q (k)

or

α∆LCi
(δx̂Ji

(k)) + I|Ji|

∑

q∈Ti

βq(ν̂q(k)− ν−q (k)) � 0

For constraint (13b) and Assumption 4, this can be written

as:

α∆LCi
(δx̂(i)(k)) + IN

∑

q∈Ti

βq(ν̂q(k)− ν−q (k)) � 0

Summing over the agents and dividing by N :

α
N∑

i=1

1

N
∆LCi

(δx̂(i)(k)) + IN

N∑

i=1

1

N

∑

q∈Ti

βq(ν̂q(k)− ν−q (k)) � 0

the second term can be written as:

N∑

i=1

1

N

∑

q∈Ti

βq(ν̂q(k)− ν−q (k)) =
M∑

q=1

Jq

N
βq(ν̂q(k)− ν−q (k))

by Theorem 2 and Eq. (20):

α∆LC(δx̂(k)) + IN

M∑

q=1

βq(νq(k)− ν−q (k)) � 0

�

Corollary 1: (Stationary targets) When the targets are sta-

tionary the global cost function of ∆P with the average (14)

is monotonically increasing.

The proof is straightforward by noticing that in this case

ν−q (k) = νq(k).

IV. SIMULATION RESULTS

In this section we present simulation results comparing the

centralized approximation with our distributed approach. We

consider N = 10 agents and M = 3 targets. The agents lie

initially close to the x-axis, while the targets start at (0, 0).
We consider vmax,i = 0.25, wmax,q = vmax,i/15, and ∆t =
1. For the weighting function of Table I, we take ρ1 = 0.75,

ρ2 = 3 for cij and ρ1 = 0.75, ρ2 = 1.25 for vqi.
We select α = 1 and βq = 104 for all three targets. We

drive the targets in opposite direction with a non zero-mean

bounded noise process. Figure 2 shows the trajectories of

the agents/targets for both the centralized and the distributed

solutions. Although the trajectories are different in the two

approximations, in both cases the agents maintain a certain

level of connectivity, while keeping track of the moving

targets. The differences are due to the linearizations, which

are trajectory dependent.

V. CONCLUSIONS AND FUTURE WORK

We proposed a distributed and non-iterative solution for

the problem of collectively tracking mobile targets while

maintaining a certain level of connectivity, using a robotic

network. More complex agent dynamics and full-state de-

pendent Laplacians, where the connectivity depends also

on the relative velocities, are topics of current research.

Collision avoidance as well as minimal distance separation
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Fig. 2. Centralized and distributed approximations at two different discrete
time instances k = 25 and k = 120. The thin black lines represent the
agents’ trajectories, which start from the points marked with black tiny
dots. The targets’ trajectories are in red and start from (0, 0). Black circles
represent the agents, squares the targets, solid lines are the communication
links and dashed lines the detection links.

are considered to be of paramount importance for real ap-

plications and they will be addressed in the near future. The

sub-optimality characterization for the distributed approach

along with extensive numerical simulations and experimental

validations are currently being investigated.

APPENDIX

Consider the linearized version of constraint (4d):
∑

j∈Nq

h⊤
j δxj(k)− h⊤

j δzq(k) > d(k), ∀zq(k) ∈ Zq(k)

for some constant d(k). The worst case, z∗q (k) is the one that

minimizes −
∑

j∈Nq
h⊤
j δzq(k). Therefore:

z∗q (k) = arg min
zq(k)∈Zq(k)

−
∑

j∈Nq

h⊤
j δzq(k)

This problem can be solved analytically, resulting in

z∗q (k) = zq(k − 1) − [h̄(2) − h̄(1)]
⊤wmax,q∆t

where h̄(1) and h̄(2) are the normalized components of∑
j∈Nq

hj .
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