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Abstract— Mathematical models of networked systems often
take the form of a set of complex large-scale differential
equations. Model reduction is a commonly used technique
of producing a simplified, yet accurate, description of these
systems. Most available model reduction techniques require
state transformations, which can cause the structural infor-
mation of the system to be lost. In this paper, a systematic
methodology is proposed for reducing linear network system
models without employing state transformations. The proposed
method is based on minimising the Hankel error norm between
the original system and the reduced order model while ensuring
that the state vector in the reduced model is a subset of
the original state vector, which preserves the model structure.
An error bound between the original and reduced models is
ensured and the steady-state behaviour of the system is also
preserved. The methodology can be automated so that it be
applied to large scale networks. The proposed method can be
extended to uncertain systems described by linear parameter
varying models. The effectiveness of the proposed methods is
demonstrated through simulation examples.

I. INTRODUCTION

Mathematical modelling approaches are widely used in
a range of disciplines for understanding and making pre-
dictions about system behaviour under different operating
conditions. For many networked systems (e.g. biological
networks and power networks), the resulting mathematical
models often take the form of a large set of differential
equations. Direct systems analysis and design on the full
model requires considerable computation effort, which in
extreme cases can become unmanageable. For this reason,
model order reduction techniques are often used to obtain
a lower order, simplified model, which captures the impor-
tant system architecture and dynamic characteristics of the
original large-scale model.

Model reduction techniques have received significant at-
tention in different research areas [1]–[5]. Traditional ap-
proaches can be roughly classified into lumping techniques,
time-scale analysis approaches, optimisation based methods,
balanced truncation techniques and Krylov subspace reduc-
tion methods. Lumping techniques have been extensively
used in biological/chemical reaction network systems [6]–
[8], where several states are combined (linearly or nonlin-
early) into a ‘superstate’ and hence the dimension of the
state vector can be reduced. However, this implies that the
states in the reduced order model consists of combinations
of the original states, which usually do not have physical
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meaning; this destroys the structure of the original system
and limits the practical use of the reduced model for analysis
and design.

Time-scale analysis based methods and in particular, sin-
gular perturbation methods [9]–[14], have also been used
extensively in biological/chemical systems. These methods
take advantage of the fact that frequently, these systems
contain states that evolve over different time scales; fast
states evolve to quasi-steady state faster than other states.
Collapsing the dynamics of these fast states retains the low-
frequency behavior of the system by replacing the differential
equations associated with the fast states by a set of algebraic
equations. Eliminating these fast states from the remaining
equations results in a reduced order model. Time-scale anal-
ysis methods are capable of preserving the physical meaning
of the states, but identifying and separating fast/slow states
is not always obvious and these methods are not particularly
suitable for automation. Moreover, deriving an error bound
between the original system and the reduced model is not
straightforward.

Considerable research effort has concentrated on optimi-
sation based model reduction techniques. These methods
aim to obtain a reduced order model that minimises the
difference (usually measured by system norms) between the
original model and the reduced model, while preserving the
main system dynamics, such as stability. Various approaches
have been proposed [15]–[18], among which, optimal Hankel
norm approximation is a popular approach [19], [20]. In
the optimal Hankel norm approximation method, the Hankel
norm is used to measure the difference between the original
and reduced order models, and this quantity is minimised
during the model reduction process. Optimisation based
model reduction methods have the advantage that an error
bound between the original and reduced order models can
be guaranteed. However, the structural information of the
system is lost during the optimisation process.

The balanced truncation method is one of the most suc-
cessful model order reduction approaches in systems and
control theory [21]–[23]. The model is firstly transformed
into standard balanced realisation form using a state trans-
formation, from which a reduced order model is obtained by
applying state space truncation. The most important feature
of balanced truncation is that the error between the original
and the reduced order models can be characterised by a
given upper bound, which is very desirable in practical
applications. However, because a state transformation is
required during the model reduction process and unless the
transformation preserves the structure (e.g. when the state
transformation matrix is diagonal), the structural information
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of the system is lost.
Krylov subspace reduction methods are based on moment

matching [24]–[26]. The idea is to find a projection from
a high order to a lower order space in order to obtain a
reduced order model, such that the moments and/or Markov
parameters of the original and reduced order models are
matched up to a given frequency. The desired projection
is constructed using bases of particular Krylov subspaces.
The main advantage of Krylov methods is that they involve
simple calculations and thus allow applications to relatively
large scale models. However, the stability of the reduced
order model cannot be guaranteed and characterising the
error bound between the original and reduced order system
is not an easy task.

Recently, methods that obtain a reduced order model when
the original system possesses certain structured properties
that need to be preserved [27]–[29] have been developed. In
[27], a model reduction technique was proposed to reduce
the system according to a particular partition of the system
states. The problem was formulated into the coprime factor
framework and the solution was expressed as a set of Linear
Matrix Inequalities (LMIs). In [28], the authors considered
the problem of model reduction with certain interconnected
structure based on the Linear Fractional Transformation
(LFT) framework. Two different model reduction methods
were proposed and compared. These approaches provided
useful results for structured model reduction, but they are
based on balanced truncation, and state transformations are
still involved in the model reduction process. In these meth-
ods, the transformation is required to have a special structure
(consistent with the structure of the system) to preserve the
structural information. The difficulty is that constructing the
particular transformation is not always possible and within
the substructure of the system, the state meaning is lost. It
is also not easy to determine an error bound between the
original and reduced models.

In recent work [30], [31], a structured model reduc-
tion technique for nonlinear autonomous network models
was proposed. The proposed method is similar to singular
perturbation, but does not explicitly separate the slow/fast
modes, and an error bound between the original and reduced
models can be ensured. Inspired by this approach, this paper
proposes a systematic methodology for reducing large scale
network system models with control inputs (rather than au-
tonomous systems), which avoids the use of state transforma-
tion. The resulting state vector in the reduced order model is
a subset of the original states and hence the system structural
information is preserved. It also ensures that steady-state
properties are preserved. The method provides an error bound
between the original and reduced order models. The method
can also be extended to uncertain systems described by linear
parameter varying (LPV) models.

The remainder of the paper is organised as follows.
Section II presents the main results of the paper. The model
reduction algorithm is described and the error between the
original and reduced models is characterised. A systematic
structured model reduction approach is then proposed using

a greedy algorithm. Its possible extension to LPV systems
to solve the uncertain model reduction problem is also
discussed briefly at the end of this section. In Section III,
the proposed method is firstly applied to a mass-spring-
damper network, and then to a more practical system, the UK
4see model (a model for the UK economy) to demonstrate
its effectiveness. Finally, concluding remarks are given in
Section IV.

II. STRUCTURED MODEL REDUCTION ALGORITHM

Consider the following stable linear time invariant (LTI)
system G(s),

ẋ = Ax+Bu, y = Cx+Du, x(0) = x0

where y(t) ∈ Rq, u(t) ∈ Rp, x(t) ∈ Rn. The objective is to
find a reduced order system G̃(s)

˙̃x = Ãx̃+ B̃u, ỹ = C̃x̃+ D̃u, x̃(0) = x̃0

where ỹ(t) ∈ Rq, x̃(t) ∈ Rñ, ñ < n and the set of elements
of x̃ is a strict subset of those in x. The aim is to choose x̃
so that the difference between the original and the reduced
order system models, G(s) − G̃(s) is as small as possible
in some norm. In this paper, the Hankel norm is used as a
measure of system size, so that ∥G(s)−G̃(s)∥H is minimised
under the constraint that x̃ is a strict subset of x, in order to
preserve structural information.

The model reduction procedure we follow in this paper
is based on a standard singular perturbation approach, as in
[30]. Suppose the states to be collapsed have been identified
and the original state vector has been reordered as

x =

[
x̃
x̂

]
where x̃ is the state vector to be retained and x̂ are the
states to be collapsed to algebraic relations using singular
perturbation. Assuming A22 is invertible, the reduced order
system G̃(s) can then be obtained as follows by back
substituting in the expressions of the collapsed states

˙̃x = (A11 −A12A
−1
22 A21)︸ ︷︷ ︸

Ã

x̃+ (B1 −A12A
−1
22 B2)︸ ︷︷ ︸

B̃

u

ỹ = (C1 − C2A
−1
22 A21)︸ ︷︷ ︸

C̃

x̃+ (D − C2A
−1
22 B2)︸ ︷︷ ︸

D̃

u (1)

The first question to answer is how to characterise the
difference between the original system G(s) and the reduced
order system G̃(s).

To characterise this difference, the error system G(s) −
G̃(s) is constructed in state space (Ae, Be, Ce, De) as

ż =

[
A 0

0 Ã

]
︸ ︷︷ ︸

Ae

z +

[
B

B̃

]
︸ ︷︷ ︸

Be

u

e =
[
C −C̃

]︸ ︷︷ ︸
Ce

z + (D − D̃)︸ ︷︷ ︸
De

u (2)
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with initial condition z(0) = z0 =

[
x0

x̂0

]
=

 x̃0

x̂0

x̃0

 . We

now have the following theorem giving the approximation
error bound in terms of the Hankel norm of the error system.

Theorem 1: Consider the error system (2). Suppose that
there exist Φ ≥ 0 and Ψ ≥ 0 such that

AeΦ+ ΦAT
e +BeB

T
e = 0

AT
e Ψ+ΨAe + CT

e Ce = 0.

Denote

M =

 I 0
0 I
I 0


conforming to the structure of z0. Now define

P = (MTΦ−1M)−1, Q = MTΨM.

Then the Hankel norm of the error system is

∥G(s)− G̃(s)∥H =
√

λmax(PQ).

Proof. Note that the error system has a specific structure, i.e.
the initial condition has to satisfy

z0 ∈ Struct z0 =

z0 : z0 =

[
x0

x̃0

]
=

 x̃0

x̂0

x̃0


The Hankel norm of the error system is

∥G(s)−G̃(s)∥2H = sup
u∈L2(−∞,0], z0∈Struct z0

( ∫∞
0

yT y dt∫ 0

−∞ uTu dt

)
Suppose u ∈ L2(−∞, 0] results in the current state z(0) =
z0, then ∫ ∞

0

yT y dt = zT0 Ψz0

and
min

u∈L2(−∞,0]

∫ ∞

0

uTu dt = zT0 Φ
−1z0.

Hence

∥G(s)− G̃(s)∥2H = sup
z0∈Struct z0

zT0 Ψz0
zT0 Φ

−1z0
.

Following from x0 =

[
x̃0

x̂0

]
, we have

z0 =

 x̃0

x̂0

x̃0

 =

 I 0
0 I
I 0

[ x̃0

x̂0

]
= Mx0.

The above expression of Hankel norm can then be written
as

∥G(s)− G̃(s)∥2H = sup
x0

xT
0 M

TΨMx0

xT
0 M

TΦ−1Mx0

= λmax((M
TΦ−1M)−1MTΨM),

where the second equation results from the fact that x0 is
unstructured. Defining

P = (MTΦ−1M)−1, Q = MTΨM

completes the proof.
Remark 1: In Theorem 1, two matrices P and Q need

to be computed. The computation of Q is straightforward.
Suppose Ψ is partitioned conforming to z0 as

Ψ =

 Ψ11 Ψ12 Ψ13

ΨT
12 Ψ22 Ψ23

ΨT
13 ΨT

23 Ψ33


then Q can be obtained

Q = MTΨM =

[
Ψ11 +Ψ13 +ΨT

13 +Ψ33 Ψ12 +ΨT
23

ΨT
12 +Ψ23 Ψ22

]
.

The computation of P, however, needs more effort. Suppose
that I 0 −I

0 I 0
0 0 I

T

Φ

 I 0 −I
0 I 0
0 0 I

 =

 Φ̃11 Φ̃12 Φ̃13

Φ̃T
12 Φ̃22 Φ̃23

Φ̃T
13 Φ̃T

23 Φ̃33


(3)

and assuming that Φ̃33 is invertible, P can be computed as
(refer to [32] for a detailed proof)

P =

[
Φ̃11 Φ̃12

Φ̃T
12 Φ̃22

]
−
[

Φ̃13

Φ̃23

]
Φ̃−1

33

[
Φ̃T

13 Φ̃T
23

]
. (4)

Theorem 1 gives the Hankel norm of the error system
between the original and ñth order reduced models given a
particular choice of state vector x̂ to be collapsed. To obtain
a ñth reduced order system, n − ñ states will have to be
removed from the original state vector. The second question
about the model reduction process is which n − ñ states
should be collapsed such that the Hankel norm of the error
system between the original and ñth reduced order models
is minimised.

One obvious answer to the above question is to try
all the possible combinations of these n − ñ states and
choose the one producing the smallest approximation error
(in terms of Hankel norm), which gives the optimal solution.
However, optimising over all the possible combinations is
computationally expensive and when the system order is
large, the computational requirement will be considerable.
An alternative solution uses a greedy algorithm, which
requires much less computation and can be used to remove
the states from the original system iteratively. It is noted that
the greedy approach may produce suboptimal solutions, see
[1], [33] for more details. The pseudo-code of the algorithm
is shown in Table I and the input to the algorithm is the
system model to be reduced. The output is the reduced order
model and if there is no reduced model order specified, it
will produce an ordered list of states to be removed with
associated Hankel error norm. It will stop if no stable reduced
order models could be found. The algorithm will be used in
examples to demonstrate its effectiveness.

Because the proposed structured model reduction method
is based on a singular perturbation approach, the reduced
order model obtained has zero steady state approximation
error, which is often desirable in practical applications. The
proposed structured model reduction method can also be
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TABLE I
GREEDY LINEAR REDUCTION ALGORITHM

Greedy Reduction Algorithm
1 x̃← x, x̃← [ ]
2 For j = 1 : n
3 For i = 1 : length(x̃)
4 xc[j]← x̂[i]

5 Compute Ã, B̃, C̃, D̃
6 Construct Ae, Be, Ce, De

7 Solve Φ,Ψ
8 Compute P,Q

9 errornorm[i] ←
√

λmax(PQ)
10 End for
11 minerrornorm[j] ← min(errornorm)
12 xc[j]← species corresponding to minerrornorm[j]
13 Clear errornorm
14 Remove xc[j] from x̂
15 End for

extended to uncertain systems described by linear parameter
varying (LPV) models using the result from [34] and Schur
complement, following a similar approach as in [31], the
details of which are omitted here for brevity.

III. EXAMPLES

In this section, two examples are presented to demonstrate
the effectiveness of the proposed model reduction method.

A. A Simple Mass-Spring-Damper Network

Consider the 9-mass physical system shown in Figure 1
which is similar to, but more complex than the network
described in [27]. The states are chosen to be the position
and the velocity of each mass. There is a force input and
position output at each mass. The dynamics of each mass
Mi, i = 1, . . . , 9 satisfy

ẋi = vi, for i = 1, . . . , 9

Miv̇i = Ki(xi−1 − xi) +Ki+1(xi+1 − xi)

+d1(xi+4 − xi)− d0vi + ui, for i = 1, 2, 3, 4

Miv̇i = Ki(xi−1 − xi) +Ki+1(xi+1 − xi)

−d1(xi − xi−4)− d0vi + ui, for i = 5, 6, 7, 8

Miv̇i = Ki(xi−1 − xi) +Ki+1(xi+1 − xi)

−d0vi + ui, for i = 9

where x0 = x10 = 0. Note that the full system is an 18th
order dynamical system.

In this system, all the masses are taken to be of unit
size Mi = 1, and the damping parameters are chosen
to be d0 = 0.1 and d1 = 0.5. Spring parameters are
K = [50, 40, 3, 2, 1, 2, 3, 4, 5, 6], i = 1, . . . , 9, respectively.
Compared to the example in [27], the additional dampers
between masses M1 and M5, M2 and M6, M3 and M7,
M4 and M8 make the mass interactions more complex. We
seek to obtain a 16th order reduced system by removing two
states from the system.

For this mass-spring-damper network, partitioning the sys-
tem into different subsystems is not straightforward, which
may cause difficulties in using the model reduction methods
in [27], [28] that require a priori structural information. Our

proposed method, on the other hand, can still be used in
this case to obtain a reduced order model. Applying the
proposed method to obtain a 16th reduced order model
suggests two states, velocity v1 and position x1, should be
collapsed, which is because the spring parameters K1,K2

are large and the additional damping connections are strong
such that the movements of mass M1 can be neglected. The
approximation error is given by ∥G − Gred∥∞ = 0.4003.
For comparative purposes, a standard balanced truncation
method is applied and the approximation error is given by
∥G − Gbal

red∥∞ = 0.1579. The most appealing feature of
the proposed algorithm is that the structural information of
the model is preserved, so the meanings of the states in the
reduced order systems are kept unchanged, i.e. positions and
velocities of masses. However, as seen, this is achieved at
the expense of an increase in the H∞ approximation error.

B. The UK 4see Economic Model

Consider the UK 4see model, which describes the rela-
tionship of energy use polices and the dynamic evolution of
CO2 levels emitted by the UK economy, developed in [35].
A linearised state space model was obtained as

ẋ = Ax+Bu

y = Cx+Du (5)

where x ∈ R41 is the state vector with economic or physical
meanings (e.g. capital stock of dwellings); u ∈ R61, the
system inputs, are national energy use polices (e.g. fraction
of nuclear power and investment in energy efficiency ratio
in dwelling sector); y ∈ R2, the system outputs are the
variables that are of interest, CO2 generated index and
index material standard of living per capita (an index of
the economic growth); A,B,C,D are system matrices of
appropriate dimensions. Detailed data are omitted here for
brevity [35].

Model (5) has 41 states, corresponding to the states of 12
sectors (subsystems), namely, industry and growth, services,
dwellings, standard of living, employment, resource and
mining, electricity generation, transport, agriculture, water,
global and sectoral coefficients, carbon dioxide. As shown
in Figure 2, a graph illustrating the interactions between
the states of different sectors can be obtained, by exploring
the structure of the system matrix A, which demonstrates
the complex feedback mechanisms in the UK economic
system. Analysis on the model shows that although all the
12 subsystems are stable, the whole system (5) has an
unstable pole at s = 0.014. Further analysis reveals that this
instability is caused by the strong feedback interconnection
between service and dwelling sectors, which needs careful
consideration in system analysis and design.

Remark 2: It is interesting to see that the transport sector
does not have a direct effect on the carbon dioxide sector.
This is because in the 4see model, the information about
conventional transport methods (e.g. cars) which affect the
use of fuel (e.g. oil) and in turn affects the carbon dioxide
emissions, are not included in the states, which is a reflec-
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Fig. 1. Example A: a more complex mass-spring-damper network.

dwellings

services

agriculture

carbon

electricity

employment

global coef

industry

resource and mining

standard of living

transport

water

Fig. 2. Example B: UK 4see Model. This figure shows the interconnections
between different sectors of the UK 4see model. Thin line arrows represent
single direction effects and bold lines represent bi-directional effects. It can
be seen there are strong interconnections between different subsystems in
the UK economic system.

tion on the ECCO (Evolution of Capital Creation Options)
modelling methodology that the 4see model uses.

To facilitate further system analysis and design, a reduced
order model is needed, which preserves the structural infor-
mation of the system and ideally, keeps the physical meaning
of the states. Balanced truncation based methods will fail for
this purpose as state transformation is involved and unless
the transformation matrix is diagonal (which generally will
not be satisfied), the states’ physical meanings is lost. On the
other hand, our proposed method can meet this requirement.
Since the model is unstable, a shifting technique [36] is
used when computing the gramians in Theorem 1. Using the
method proposed in Section 2, a 35th order reduced model is
firstly obtained. The topological structure of the 35th order
model is shown in Figure 3. From the figure, it can been
seen that using the proposed methods to obtain a 35th order
reduced model, some of the interconnections are removed
and some new interconnections are created. The strengths
of these interconnections are also updated. It is important
to note that the meanings of the states are kept unchanged,

dwellings

services

agriculture

carbon

electricity

employment

global coef

industry

resource and mining

standard of living

transport

water

Fig. 3. Example B: UK 4see Model: A 35th order reduced model.

which satisfies our requirement.
A 20th order reduced model is then obtained to reveal the

‘supporting structure’ of the UK 4see model, the topological
graph of which is shown in Figure 4. From the figure,
it can be seen that the four sectors, industry, dwellings,
services and electricity, are the main sectors and among
these four sectors, the first three, i.e. industry, dwellings
and services are the dominant sectors. It is also seen that
there are bi-directional strong feedback interactions between
service and dwellings. As mentioned before, this causes the
instability of the whole system. It is interesting to note that
these observations are consistent with the analysis results in
[35] using hierarchy structure analysis, which demonstrates
another potential advantage of the proposed model reduction
method.

IV. CONCLUSIONS AND FUTURE WORK

In this paper, a systematic methodology has been proposed
for reducing networked system models that avoids the use
of state transformations. The proposed method is based on
minimising the Hankel error norm between the original
system and the reduced order model while ensuring that the
state vector in the reduced model is a subset of the original
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dwellings

services

agriculture

carbon

electricity

employment

global coef

industry

resource and mining

standard of living

transport

water

Fig. 4. Example B: UK 4see Model: A 20th order reduced model. From
the figure, the ‘supporting structure’ of the UK 4see model can be identified.

states. Compared to other model reduction methods, the
proposed method preserves the model structure and an error
bound between the original and reduced models is ensured.
The steady-state property of the system is also preserved.
The methodology can be automated and can be applied
to large scale networks. The proposed method can also
be extended to LPV systems to solve the uncertain model
reduction problem. Two examples are given to demonstrate
the effectiveness of the proposed method. Future research
includes extension of this approach to nonlinear systems,
which will be reported separately.
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