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Abstract— Motivated by the increasing needs in the process
industry for designing fault tolerant feedback control systems
based on process data, data-driven design of feedback control
systems with embedded residual generation is addressed. For
this purpose, an extended internal model control (EIMC)
structure aiming at accessing the residuals embedded in control
loop is first proposed. Based on the identification of the so-called
parity subspace and a well-established mapping between the
parity vector and the solution of the Luenberger equations, a
direct design scheme of EIMC from process data is developed.
The achieved results are illustrated by an academic example.

I. INTRODUCTION

Due to the system complexity, the first principle modelling
of industrial processes is a critical issue. In addition, both
the modelling and design of advanced (model-based) control
and monitoring schemes may demand for considerable engi-
neering efforts. In practice, data-driven techniques often offer
alternative solutions, which make use of the available process
data to simplify the modeling and design procedure aiming
at (considerably) reducing the engineering efforts. Among
numerous schemes, the well-established subspace identifica-
tion method (SIM) [10], [17], [18] is a powerful technique,
based on which, for instance, the subspace predictive control
approaches [8], [9], [12] are developed for constructing the
predictive controller without explicitly identifying a system
model. Recently, Ding et al. [5] proposed an SIM aided data-
driven design of observer-based fault detection and isolation
(FDI) systems, based on a direct identification of parity
vectors from the process data proposed in [19], [20]. In
this way, the FDI system design becomes more convenient
for application engineers without special knowledge of e.g.
observer-based residual generators or solving Luenberger
equations. Moreover, its recursive form reduces the on-line
computation and the demand for working memory, and thus
such an FDI system can be easily integrated into the process
advanced control systems.

Associated with the increasing demands for high system
performance and more system safety and reliability, the
model-based FDI technique has received, both in application
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and research domains, more and more attention since the
early 70’s of the last century. For the design of the so-call
observer-based FDI systems, a well-established theoretical
framework and some design tools are available [1], [2], [4],
[11], [13]. A trend of integrating FDI into the feedback
control scheme as a possible solution with low needs for
resource can be currently observed [14],[15],[16].

[3] and [21] have studied the extraction of residual signals
from the access points in a feedback control loop instead
of a separate design and construction of an observer-based
residual generator. Zhou and Ren [24] proposed a fault
tolerant control (FTC) architecture, the so-called generalized
internal model control (GIMC) structure, whose core is the
reconstruction of the standard control loop. Alternatively,
Ding et al. [6] proposed a so-called EIMC structure that is
established from the viewpoint of the relationship between
feedback control loop and embedded residual generation (for
the purpose of FDI). It has been proven that all stabiliza-
tion controllers (the so-called Youla parametrization) can be
equivalently realized in an observer-based residual generator
form.

Strongly motivated by the above-mentioned results, our
study in this paper focuses on the data-driven design of con-
trol systems with embedded residual generation. Following
the idea presented in [5] and [6], we shall first propose an
EIMC structure and, based on it, a data-driven approach to
the design of the EIMC controller. The basic idea consists
in constructing the controller using its residual generation
form and identifying the residual generator directly from
the process data without a special design step. In this
context, our approach is called data-driven. It is of practical
interest and allows an engineer to constrcut a controller
with embedded residual signals without a special design
procedure.

The paper is organized as follows. After the needed
preliminaries are reviewed, the problems addressed in this
paper will be briefly formulated in Section II. In Section
III, the data-driven design approach will be presented and
some associated issues discussed. To illustrate the results, an
academic example is given in Section IV.

II. PRELIMINARIES AND PROBLEM
FORMULATION

A. Plant model, system factorization and Youla parameteri-
zation

In this paper, we consider a standard feedback control
loop sketched in Fig.1. It is supposed that the plant model
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Fig. 1. Feedback control loop

is described by

y(z) = Gu(z)u(z) +Ga(z)wa(z) + ws(z) (1)

with the minimal state space realization given by

x(k + 1) = Ax(k) +Bu(k) + wa(k) (2)
y(k) = Cx(k) +Du(k) + ws(k) (3)

where u(k) ∈ Rl, y(k) ∈ Rm, and x(k) ∈ Rn represent
process input, output and state variable vectors respectively.
wa(k) ∈ Rn and ws(k) ∈ Rm denote noise sequences that
are statistically independent of u(k) and x(0), and

Gu(z) = C(zI −A)−1B +D,Ga(z) = C(zI −A)−1

It is further assumed that the controller is described by

u(z) = K(z) (w(z)− y(z))

with w ∈ Rm denoting the vector of the reference signals
and K(z) the control law. Let

Gu(z) = M̂−1(z)N̂(z) (4)

M̂(z) = I − C(zI −AL)−1L (5)

N̂(z) = D + C(zI −AL)−1BL (6)

be a left coprime factorization of transfer matrix Gu(z) with
AL = A− LC,BL = B − LD and L ensuring a stable AL
(i.e. all of its eigenvalues are located in the unit circle). The
well-known Youla parameterization [4], [23] of all stabilizing
controllers can be described by

K(z) =
(
X̂(z)−Q(z)N̂(z)

)−1(
Ŷ (z)−Q(z)M̂(z)

)
with Q(z) ∈ RH∞ as a parameter matrix and

X̂(z) = I − F (zI −AL)−1BL (7)

Ŷ (z) = F (zI −AL)−1L (8)

where F is a matrix of appropriate dimensions and ensures
that A+BF is stable.

B. Data structure, parity vectors and identification of parity
subspace

In practice, the system matrices, A,B,C and D, as well
as the process order n in plant model (2)-(3) are unknown
a prior. We assume that a data set including process input
and output records is available. The block Hankel matrices
for the output are defined as

Yf =


y(k) y(k + 1) · · · y(k +N − 1)

y(k + 1) y(k + 2) · · · y(k +N)
...

...
. . .

...
y(k + s) y(k + s+N − 1)



Yp =


y(k − s) y(k − s+ 1) · · · y(k − s+N − 1)

y(k − s+ 1) y(k − s+ 2) · · · y(k − s+N)
...

...
. . .

...
y(k) y(k + 1) · · · y(k +N − 1)


where Yf ∈ R(s+1)m×N , Yp ∈ R(s+1)m×N , s and N are
user defined parameters. Similar to Yf and Yp, Hankel
structures for Uf , Up,Wa,f and Ws,f are defined. Using the
above data structure, an extended state space model for the
system in (2)-(3) can be written as

Yf = ΓsXk +Hu,sUf +Ha,sWa,f +Ws,f (9)

where

Γs =


C
CA

...
CAs

 , Hu,s =


D O · · · O

CB D
...

...
. . .

CAs−1B · · · D


Similar is Ha,s and the state sequence

Xk = [x(k) x(k + 1) · · · x(k +N − 1)] ∈ Rn×N

A parity vector vs solves the following equation

vsΓs = 0, vs ∈ R(s+1)m (10)

and thus belongs to Γ⊥s , the so-called parity subspace, i.e.

vs ∈ Γ⊥s ,Γ
⊥
s Γs = 0

Using parity vector vs, we are able to generate a residual
sequence, for instance in the form

r = vsYf − vsHu,sUf (11)

In general, the problem of identifying the parity space, aim-
ing at residual generation, can be formulated as finding Γ⊥s
and Γ⊥s Hu,s. Define Zf =

[
Y T
f UT

f

]T
and Zp =

[
Y T
p UT

p

]T .
For our identification purpose, the following algorithm is
proposed [19].

Algorithm D2PS (from data to parity space)
• Step 1: Generate datasets Zf and Zp and construct
ZfZ

T
p

• Step 2: Do SVD on 1
NZfZ

T
p

1

N
ZfZ

T
p = Uz

[
Σz,1 O
O Σz,2

]
VTz

with Uz =

[
Uz,11 Uz,12

Uz,21 Uz,22

]
, Uz,12 ∈ Rsfm×η , Uz,11 ∈

Rsfm×(sf l+n), Uz,22 ∈ Rsf l×η , and Σz,2 = 0 ∈
Rη×η , sf = s+ 1, η = sfm− n

• Step 3: Set Γ⊥s = UTz,12, Γ⊥s Hu,s = −UTz,22.
Remark 1: In [19] and [20], the existence conditions both

for the open- and closed-loop systems have been extensively
studied. In our study, we assume that the input excitation
condition as given [5] is satisfied so that Γ⊥s , Γ⊥s Hu,s given
in D2PS Algorithm can be well identified.
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C. Data-driven design of DO-based FDI systems

Observer-based technique is well-established in the frame-
work of model-based FDI [1], [2], [4], [11], [13]. Sup-
pose that A,B,C,D in (2)-(3) are known. The design of
an observer-based residual generator, also called diagnostic
observer (DO), is achieved by solving the Luenberger equa-
tions,

TA−AzT = LzC, czT = gC,

Bz = TB − LzD, dz = gD (12)

where Az ∈ Rs×s, Bz ∈ Rs×l, cz ∈ R1×s, dz ∈ R1×l, g ∈
R1×m, Lz ∈ Rs×m together with the transformation matrix
T ∈ Rs×n. It follows then the construction of the DO

z(k + 1) = Azz(k) +Bzu(k) + Lzy(k) ∈ Rs (13)
r(k) = gy(k)− czz(k)− dzu(k) ∈ R (14)

In the above equations, r(k) is called residual signal and s
the order of the observer.

In [4], [22], a relationship between a parity vector and the
above DO has been established. For a given parity vector
αs = [αs,0 αs,1 · · · αs,s] ∈ R(s+1)m, αs,i ∈ Rm, i =
0, 1, · · · , s, matrices

Az =


0 0 · · · 0
1 0 · · · 0
...

. . . . . .
...

0 · · · 1 0

 , Lz = −


αs,0
αs,1

...
αs,s−1

 (15)

cz =
[

0 · · · 0 1
]
∈ Rs, g = αs,s ∈ Rm (16)

T =


t1
t2
...
ts

 =


αs,1 αs,2 · · · αs,s
αs,2 · · · · · · 0
· · · · · · · · · · · ·
αs,s 0 · · · 0

Γs−1 (17)

solve Luenberger equations (12). Moreover, Bz, dz can be
expressed in terms of αsHs,u :

Bz =


Bz,1
Bz,2

...
Bz,s

 =


t1B − αs,0D
t2B − αs,1D

...
tsB − αs,s−1D

 =


αsHs,0

αsHs,1

...
αsHs,s−1


dz = αsHs,s with Hu,s =

[
Hs,0 · · · Hs,s

]
(18)

By a combined use of (15)-(18) and D2PS Algorithm, [5]
have proposed a data-driven scheme for the design of a
DO (13)-(14) (based on an identified parity vector), which
delivers a scalar residual signal. We summarize it into the
following algorithm.

Algorithm PS2DO (from parity vector to diagnostic ob-
server)
• Step 1: Select αs ∈ Γ⊥s and the corresponding βs ∈

Γ⊥s Hu,s, and form them as

αs =
[
αs,0 αs,1 · · · αs,s

]
, αs,i ∈ Rm

βs =
[
βs,0 βs,1 · · · βs,s

]
, βs,i ∈ Rl

• Step 2: Set Az, cz, Lz, g according to (15)-(16) and

Bz =
[
βTs,0 · · · βTs,s−1

]T
, dz = βs,s

• Step 3: Construct the DO according to (13)-(14)

D. Problem formulation

It is well-known that for a stable plant the Youla param-
eterization control loop can be equivalently realized in the
form of the IMC structure [23], [24]. Recently, Ding et al. [6]
have demonstrated the residual generator based realization of
the Youla parameterized controllers. Inspired by this work,
a relationship between the Youla parameterization and the
generalized form of residual generators will be studied and
an EIMC structure with an integrated access to residual
signals will be proposed. In this way, issues of designing
a feedback controller can be addressed by constructing a
residual generator.

A further motivation of our study comes from the success-
ful application of the data-driven technique in FDI [5]. Using
D2PS Algorithm, parity subspace can be directly identified
from process data. Based on PS2DO Algorithm, the observer-
based residual generator can then be established.

The major task of our study is to integrate the above results
and, based on which, to develop an approach to the data-
driven design of feedback controllers with embedded residual
generation.

III. DATA-DRIVEN DESIGN OF THE EIMC

A. Extended IMC structure

Assume that Gu(z) is stable. Setting F = 0 leads to a
Youla parameterization of the form

K(z) =
(
I −Q(z)N̂(z)

)−1
Q(z)M̂(z)

The feedback control loop with Youla parameterization can
then be sketched in Fig.2. Recall that

r(z) = M̂(z)y(z)− N̂(z)u(z) (19)

delivers a residual vector [4] which can be, e.g. used for the
FDI purpose. Motivated by this structure and noticing that

u(z) =
(
I −Q(z)N̂(z)

)−1

Q(z)M̂(z) (w(z)− y(z)) =⇒

u(z) = Q(z)
(
M̂(z)w(z)−

(
M̂(z)y(z)− N̂(z)u(z)

))
we re-structure the control loop as shown by Fig.3, and
denote it by EIMC. Fig.3 reveals that the residual signals
r(z) is embedded in the control loop which can be directly
extracted and used, e.g. for the FDI purpose. From the
viewpoint of controller design, it is interesting to notice that
designing a controller can be now equivalently dealt by

• constructing the residual generator (19) and
• selecting the parameter matrix Q(z) ∈ RH∞
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Fig. 2. An equivalent realization of the Youla parameterization
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B. Data-driven design of the residual generator to be em-
bedded in the EIMC

In this subsection, we are going to address the data-driven
design of residual generator (19), which builds the core of
the EIMC and thus of our approach.

It is well-known that the residual generator (19) delivers
a residual vector

r(k) = y(k)− ŷ(k) ∈ Rm

where ŷ(k) denotes an estimate for the plant output vector
delivered by a full-order observer [4]. Thus, for our purpose,
we are going to extend Algorithm PS2DO to the vector-
valued case.

Suppose that Γ⊥s and Γ⊥s Hu,s are identified using Algo-
rithm D2PS. Select m (linearly independent) parity vectors
αsi ∈ Γ⊥s , i = 1, · · · ,m,

αsi =
[
αsi,0 αsi,1 · · · αsi,si

]
∈ R(s+1)m

satisfying

rank
[
αTs1,s1 · · · αTsm,sm

]T
= m (20)

and the associated vectors

βsi = αsiHu,s ∈ Γ⊥s Hu,s, i = 1, · · · ,m

Using αsi , βsi , i = 1, · · · ,m, we now construct the follow-
ing residual generator

z(k + 1) = Azz(k) +Bzu(k) + Lzy(k) ∈ Rs (21)

r(k) = y(k)−G−1 (Czz(k) +Dzu(k)) ∈ Rm (22)
Az = diag(Az1 , · · · , Azm), Cz = diag(cz1 , · · · , czm) (23)

G =
[
αTs1,s1 , · · · , α

T
sm,sm

]T
, Bz =

[
BTz1 , · · · , B

T
zm

]T
(24)

Lz =
[
LTz1 , · · · , L

T
zm

]T
, Dz =

[
dTz1 , · · · , d

T
zm

]T
(25)

where s =
∑m
i=1 si is the order of the above system,

Azi , Bzi , czi , dzi , Lzi , i = 1, · · · ,m, are those matrices as
defined by (15), (16) and (18). Let

T =
[
TT1 · · · TTm

]T ∈ Rs×n

with Ti, i = 1, · · · ,m, as defined in (17). Notice that,
following (12), the system matrices in (21)-(22) solve the
Luenberger equations

TA−AzT = LzC ∈ Rs×n, CzT = GC ∈ Rm×n (26)

Bz = TB − LzD ∈ Rs×l, Dz = GD ∈ Rm×l (27)

and the system (21) delivers an estimate for Tx(k),

ŷ(k) = G−1 (Czz(k) +Dzu(k))

is an estimate for y(k). For our purpose, we now study
residual generator (21)-(22).

Recall that under the observability assumption and consid-
ering the features of those (independent) parity vectors [4]
we have s ≥ n. Moreover, it has been proven in [7] that

rank (T ) = n (28)

if (20) holds. Below, we consider two cases, s = n and
s > n, separately.

For s = n, system (21) is a full-order observer and the
residual generator (21)-(22) can be equivalently written into,
according to Luenberger equations (26)-(27),

r(z) = M̂(z)y(z)− N̂(z)u(z)

M̂(z) = I −G−1Cz(zI −Az)−1Lz (29)

= I − C (zI −AL)
−1
L,L = T−1Lz

N̂(z) = G−1
(
Dz + Cz(zI −Az)−1Bz

)
= D + C (zI −AL)

−1
BL

As a result, residual generator (21)-(22) and M̂(z) satisfying
(29) can be directly embedded into the EIMC shown in
Fig.3. Note that for m = 1, the order-reduction algorithm
introduced in [7] delivers a parity vector with s = n. We
would like to mention that there do exist m parity vectors in
the identified parity subspace such that s = n. To find those
m parity vectors, an algorithm is needed.

For s > n, we first introduce the following result.
Theorem: Given residual generator (21)-(22) with ma-

trices Az, Bz, Cz, Dz, Lz, G and the associated matrix
T solving Luenberger equations (26)-(27) and s > n, then

r(z) = M̂d(z)y(z)− N̂d(z)u(z) (30)

= R(z)
(
M̂(z)y(z)− N̂(z)u(z)

)
(31)

M̂d(z) = I −G−1Cz(zI −Az)−1Lz (32)
N̂d(z) = G−1

(
Dz + Cz(zI −Az)−1Bz

)
(33)

where

M̂(z) = I − C (zI −AL)
−1
L,L = T−Lz (34)

N̂(z) = D + C (zI −AL)
−1
BL (35)

R(z) = I −G−1CzTo (zI −Ar)−1
T−o Lz (36)[

T−

T−o

] [
T To

]
=

[
In×n 0

0 I(s−n)×(s−n)

]
(37)

ToAr −AzTo = 0, Ar ∈ R(s−n)×(s−n) (38)
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The proof of this theorem can be found in [4] (see Theorem
5.15) and thus omitted here.

It follows from the above theorem that for s > n the
residual generator (21)-(22) can be written into two parts: a
full-order observer-based residual generator described by

M̂(z)y(z)− N̂(z)u(z)

and a dynamic system R(z). In the FDI study [4], R(z) in
(31) is called post-filter. It can be seen from (38) that the
poles of R(z) are some of the eigenvalues of Az, which
ensures R(z) ∈ RH∞. Note also that M̂d(z) = R(z)M̂(z).
With the residual generator (21)-(22) and M̂d(z) given in
(32), the control loop can now be constructed as shown in
Fig.4 with Q̄(z) ∈ RH∞ being the parameter matrix. Note
that Q(z) given in Fig.3 equals to

Q(z) = Q̄(z)R(z) ∈ RH∞

In summary, we conclude that once the parity subspace is
identified, we are able to construct residual generator (21)-
(22), and associated with it, M̂d(z) = R(z)M̂(z) using the
following algorithm.

Algorithm D2EIMC (from data to extended IMC)
• Step 1: Identify Γ⊥s ,Γ

⊥
s Hu,s using Algorithm D2PS

• Step 2: Compute Az, Bz, Cz, Dz, Lz, G as defined in
(23)-(25) based on Algorithm D2DO

• Step 3: Construct residual generator (21)-(22)
• Step 4: Compute M̂d(z)(= M̂(z) for s = n) given in

(32)
Note that the control structure given in Fig.4 can be

equivalently replaced by Fig.5 with R(z) = I for s = n.
The control structure given in Fig.5 is useful for the system
analysis.

Gu(z)
M̂d(z) Q̄(z)e- --

−
w(z) u(z)

y(z)

z(k + 1) = Azz(k) + Bzu(k) + Lzy(k)

r(k) = y(k)−G−1(Czz(k) +Dzu(k))

Residual generator
? ?

6

-
- e- -?

Fig. 4. A data-driven realization of the EIMC structure

To complete the controller design, the remaining task is to
analyze the system dynamics and, based on it, to determine
the parameter matrix Q̄(z) ∈ RH∞ (or Q(z) ∈ RH∞ for
s = n).

C. System analysis and determination of Q̄(z)(Q(z))

It is straightforward that the dynamics of the control loop
shown in Fig.5 is governed by

M̂d(z)y(z) =[
N̂d(z)Q̄(z)M̂d(z)

(
I − N̂d(z)Q̄(z)

)
Gw̄(z)

] [
w(z)
w̄(z)

]
Gv̄(z)w̄(z) =

[
I 0

]
+ C (zI −A)−1 [ 0 I

] [ ws(z)
wa(z)

]

Gu(z)
M̂(z) Q̄(z)R(z)

N̂(z) M̂(z)

e e-
e

?-
- - -

-

- �- �

6

-

−

−

w(z) u(z)
y(z)

wa(z)
ws(z)

Fig. 5. An equivalent form of the data-driven realization of the EIMC
structure

In order to minimize the control error, e(z) = w(z)− y(z),
we can theoretically , for instance, solve the following norm
optimization problem

J = min
Q̄(z)∈RH∞

‖I − N̂d(z)Q̄(z)‖

for determining Q̄(z), where ‖ · ‖ stands for some system
norm, e.g. the H∞- or the H2-norm of a transfer function
matrix. For a practical solution, it is often required that
• Q̄(z) should be as much simple as possible, and
• only the steady state behavior (corresponding to con-

stant w) has to be taken into account.
In this case, Q̄(z) can be set to be a constant matrix

Q̄ =
((
Dz + Cz(I −Az)−1Bz

))−1
G (39)

if Dz + Cz(I −Az)−1Bz is invertible, otherwise

Q̄ =
((
Dz + Cz(I −Az)−1Bz

))−
G (40)

where (·)− denotes the pseudo inverse of a matrix.
Remark 2: The context of data-driven design, the op-

timization of the controller and FDI subsystem e.g. as
mentioned above, should be done based on a further data
processing. This builds the major future work in this domain.

IV. AN ACADEMIC EXAMPLE

In this section, an academic example is considered to
illustrate the application of the data-driven EIMC controller
scheme presented in the last section. The system matrices in
the plant model (2)-(3) are assumed to be as follows:

A =


0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0

 , B =


0.00098
0.01299
0.01859
0.0033
−0.00002


C =

[
1 0 0 0 0

]
, D = 0

wa(k) ∼ N (0, 0.012), ws(k) ∼ N (0, 0.012)

N (µ, σ2) denotes normal distribution with mean µ and
variance σ2. We would like to emphasize that this plant
model is only used for producing the necessary input and
output data. For the controller design, the system matrices
A,B,C,D and noises wa(k), ws(k) are unknown a prior.
The design procedure of the EIMC controller is as follow.

Phase I: Collect the plant data with the reference ex-
citation consisting of 1000 samples by simulating (2)-(3).
Identify a parity vector with the minimum order s = 5. Set
Az, Cz from (15)-(16) and perform Algorithm D2DO,
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Bz =
[

0.0043 0.0155 0.0225 0.0109 0.0008
]T

,

Lz =
[

0.0010 −0.0061 0.0297 −0.1417 −0.5910
]T

,

Dz = 0, G = 0.7919.

Phase II: Construct residual generator (21)-(22), M̂d(z) by
(32) and the matrix Q̄ = 14.6754 by (39). Note that m = 1,
thus, s = n, R(z) = 1, M̂(z) = M̂d(z), Q = Q̄.

Phase III: The following simulation is done:

w =

{
1, 0 ≤ k < 100

2, k ≥ 100
, y = y∗ + f, f =

{
0, 0 ≤ k < 500
0.1, k ≥ 500

where y∗ is the fault-free output and f represents an additive
sensor fault. Fig.6 shows the output signal obtained from
experiment and fault detection can be successfully achieved
by the embeded residual signal shown in Fig.7.
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Fig. 6. The performance of EIMC controller
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Fig. 7. Embedded residual generation

V. CONCLUSIONS

In this paper, we have proposed an EIMC structure and its
data-driven design scheme. The main results are summarized
in the form of some algorithms. The core of the proposed
approach is a data-driven design and construction of an
observer-based residual generator which builds the basis of
the EIMC. In this way, a class of feedback controllers with
an embedded residual generation can be directly designed
and constructed in a data-driven manner.

The results achieved in this study build the basis for the
future work on the data-driven development of advanced con-
trol schemes and for the realization of process monitoring,

fault diagnosis and for FTC in the plug-and-play manner. Our
recent work is also dedicated to the tests on a real industrial
benchmark.
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