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Abstract—L2 and input-to-state stability (ISS) properties of
a class of linear quantized control systems are considered.
The quantized control system differs slightly from the ones
considered in the literature previously. A recently proposed
hybrid modeling framework and corresponding Lyapunov anal-
ysis tools are used to calculate the finite gains of the closed loop
system.

I. INTRODUCTION

Quantized control systems (QCS) have attracted a lot of

attention in the past two decades, see [1], [2], [3], [5], [7], [8],

[12], [13], [14] due to certain novel applications of control in

which control or measurement signals are transmitted via a

communication channel with a severely restricted bandwidth.

Such situations arise for instance in cases when the nature of

the process restricts the communication bandwidth between

the plant and the controller (e.g. automatic control of drilling

in oil rigs) or in cases when for security reasons we want

to control the process with a minimum amount of data

transmitted between the plant and controller.

A particularly interesting question in this context is ro-

bustness of QCS to exogenous inputs, see for instance [6],

[9], [10], [11]. The result in [10] is particularly interesting as

it shows a fundamental limitation to robust stabilization of

a class of QCS. Actually, results in [10] apply to a class of

linear plants with so called finite-set feedback; a causal feed-

back map that takes measurements and produces a sequence

of controls is termed finite-set if within each finite time

interval its range is finite. Hence, bit-rate constrained QCS

are a special case of systems with finite-set feedback. It was

shown in [10] that finite gain lp stabilization is impossible for

linear systems with finite-set feedback; in other words, linear

gains are impossible to achieve in this case. Moreover, it was

shown in the same paper that a relaxed version of lp stability

is possible if one allows nonlinear gains that have infinite

slope at the origin and infinity. Furthermore, it was shown

that linear lp gains necessitate logarithmic precision around

the origin. Results in [10] are not constructive and they

were proved by contradiction. Construction of such nonlinear

gains for certain classes of QCS is studied, for instance, in

more detail in [6], [9] but these constructions still rely on the
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existence of certain bounds on solutions of the system that

were not explicitly computed; hence, the computed gains are

still not explicit.

It is the purpose of this paper to explicitly construct L2

and input-to-state (ISS) finite gains for a class of QCS with

exogenous disturbances. The class of systems we consider

are not finite-set feedbacks as defined in [10] and we show

that finite gains are possible in this case (see Remark 4).

We consider a class of linear QCS with zooming protocols

similar to [1], [7], [9] with a subtle difference. Indeed, in our

case the zooming variable is restricted to be lower bounded

by a strictly positive number ε; consequently, only practical

stability of the closed loop systems can be proved but the

ultimate bound for trajectories of the closed loop system can

be reduced arbitrarily by reducing ε. Moreover, the model of

QCS is written as a hybrid system following the framework

presented in [4] and the switching strategy is subtly different

from the ones found in the literature, such as [1], [7], [9].

Our main results provide explicit formulas for estimates

of the finite ISS and L2 gains of a class of QCS systems.

More importantly, our proofs are novel and they are based on

the construction of appropriate Lyapunov functions for the

closed loop system. Furthermore, our analysis applies in a

unified manner to both zoom-in and zoom-out stages which

was previously missing in the literature. The analysis uses

the hybrid modeling framework and Lyapunov approach for

hybrid systems presented in [4].

The paper is organized as follows. Some preliminary

results are given in Section II. We introduce the model of the

system and basic assumptions on the quantizer in Section III,

which is followed by main results in Section IV. All proofs

are provided in Section V and conclusions are given in the

last section.

II. ANALYSIS PRELIMINARIES

Our approach is based on the recently proposed hybrid

modeling framework in [4] and the corresponding Lyapunov

techniques for hybrid systems. We summarize in this section

certain results from [4] and prove several new results that

are useful for our problem.

A. Lipschitz Lyapunov functions

Our analysis employs Lyapunov functions that are not

smooth but are locally Lipschitz. Given a locally Lipschitz

function V : D → R where D ⊂ R
n is an open set,

for each point (x,w) ∈ D × R
n, V ◦(x;w) denotes the

Clarke generalized derivative of V at x in the direction w.

The utility of the Clarke generalized directional derivative
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is that it has a convenient calculus and, most importantly,

the time derivative of t 7→ V (x(t)) is upper bounded by

V ◦(x(t); ẋ(t)). If the set-valued mapping x 7→ F (x,w) is

continuous, the function x 7→ α(x,w) is continuous, and for

almost all z in a neighborhood of x we have 〈∇V (z), f〉 ≤
α(z, w) for all f ∈ F (z, w), then V ◦(x; f) ≤ α(x,w)
for all f ∈ F (x,w). If V3(x) = V1(x) + V2(x), then

V ◦
3 (x;w) ≤ V ◦

1 (x;w) + V ◦
2 (x;w).

B. Hybrid signals

Given a measurable hybrid signal ψ : dom ψ → R≥0 and

(t, j) ∈ dom ψ, let 0 ≤ t0 ≤ · · · ≤ tj+1 satisfy

dom ψ ∩ ([0, t] × {0, . . . , j}) =

j⋃

i=0

([ti, ti+1] × {i})

and define

∥∥(ψ, t, j)
∥∥

c,1
:=

j∑

i=0

∫ ti+1

ti

ψ(s, i)ds

∥∥(ψ, t, j)
∥∥

d,1
:=

j−1∑

i=0

ψ(ti+1, i)

∥∥(ψ, t, j)
∥∥

1
:=

∥∥(ψ, t, j)
∥∥

c,1
+
∥∥(ψ, t, j)

∥∥
d,1

,

as well as

∥∥(ψ, t, j)
∥∥

c,∞
= max

i∈{0,...,j}
ess sup
s∈[ti,ti+1]

ψ(s, i)

∥∥(ψ, t, j)
∥∥

d,∞
= max

i∈{0,...,j−1}
ψ(ti+1, i)

∥∥(ψ, t, j)
∥∥
∞

= max
{∥∥(ψ, t, j)

∥∥
c,∞

,
∥∥(ψ, t, j)

∥∥
d,∞

}
.

In addition, when dom ψ is unbounded, define
∥∥ψ
∥∥

c,1
:= lim

t+j→∞
‖(ψ, t, j)‖c,1∥∥ψ

∥∥
∞

:= lim
t+j→∞

‖(ψ, t, j)‖∞ .

Moreover, again assuming dom ψ is unbounded, for each

(s, i) ∈ dom ψ define ψs,i : dom ψs,i → R≥0 as ψs,i(t, j) :=
ψ(s+ t, i+ j) for each (t, j) such that t+ j ≥ 0 and (s+
t, i+ j) ∈ dom ψ, and then define

‖ψ‖a := lim sup
s+i→∞

‖ψs,i‖∞ .

We suppose we have

v̇(t, j) ≤ −σv(t, j) + γw(t, j) , (1)

v(t, j + 1) ≤ v(t, j) , (2)

where v and w are non-negative valued functions, γ ≥ 0,

and σ > 0 and where (1) holds for almost all t such that

(t, j) is in the domain of the solution, and (2) holds for all

(t, j) in the domain such that (t, j+1) is also in the domain.

v(·, j) is assumed to be locally absolutely continuous in t for

each fixed j.

Lemma 1: For each (t, j) in the domain of the solution:

∥∥∥(v, t, j)
∥∥∥
∞

≤ max

{
v(0, 0),

γ

σ

∥∥∥(w, t, j)
∥∥∥

c,∞

}
(3a)

∥∥∥(v, t, j)
∥∥∥

c,1
≤

1

σ
v(0, 0) +

γ

σ

∥∥∥(w, t, j)
∥∥∥

c,1
(3b)

∥∥∥(v, t, j)
∥∥∥
∞

≤ v(0, 0) + γ
∥∥∥(w, t, j)

∥∥∥
c,1

. (3c)

Proof. First we establish (3a). For the sake of later use, we re-

place (2) with v(t, j+1) ≤ ρv(t, j) with ρ ∈ (0, 1]. Fix (t, j)
in the domain of the solution. Define ω :=

∥∥(w, t, j)
∥∥

c,∞
.

Then v̇(s, i) ≤ −σv(s, i) + γω and v(s, i + 1) ≤ ρv(s, i).
Define y(s, i) := v(s, i) − γ

σ
ω. Then

ẏ(s, i) = v̇(s, i) ≤ −σv(s, i) + γω
≤ −σv(s, i) + σ γ

σ
ω = −σy(s, i)

and

y(s, i+ 1) = v(s, i+ 1) − γ
σ
ω ≤ ρv(s, i) − γ

σ
ω

= ρy(s, i) + (ρ−1)γ
σ

ω ≤ ρy(s, i) .

It then follows that y(s, i) ≤ exp(−σs)ρiy(0, 0) and hence

v(s, i) ≤ exp(−σs)ρiv(0, 0) +
γ

σ
ω
(
1 − exp(−σs)ρi

)

≤ max
{
v(0, 0), γ

σ
ω
}
.

This establishes (3a). To establish (3b), we integrate and sum

(1) and (2) to get

σ
∥∥∥(v, t, j)

∥∥∥
c,1

≤ v(0, 0) + γ
∥∥∥(w, t, j)

∥∥∥
c,1

which is (3b). For (3c), we take σ = 0 in (3b) and then

integrate and sum (1) and (2). This gives (3c). �

The next lemma supposes that, in addition to (1) and (2),

there exist ρ ∈ (0, 1) and β > γ
σ
‖w‖c,∞ such that, if both

(t, j+1) and (t, j) belong to the domain of the solution and

v(t, j) ∈ [ γ
σ
‖w‖c,a , β] then

v(t, j + 1) ≤ ρv(t, j) . (4)

Lemma 2: If v(0, 0) ≤ β then

‖v‖a ≤
γ

σ
‖w‖c,a . (5)

Proof. The lemma follows a calculation similar to that for

the proof of (3a) in the Lemma 1. In this case, we take

ω := ||ws,i||∞ and let s+ i→ ∞. �

III. SYSTEM DESCRIPTION

We study a type of L2 stability and input-to-state stability

for the linear control system

ζ̇ = Aζ +Bu+ Ed (6)

where ζ ∈ R
n, u ∈ R

m, d ∈ R
k, and an ideal stabilizing

linear state feedback u = Kζ is implemented through a

dynamic quantizer

u = Kµq

(
ζ

µ

)
(7)
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where µ > 0 is adjusted discretely online and q : R
n →

R
n is a quantization function. We impose the following

assumption on the matrix K:

Assumption 1: The matrix A+BK is Hurwitz and P =
PT > 0, γ > 0, κ > 0 and ν > 0 satisfy

[
(A + BK)T P + P (A + BK) + γ−2P PBK PE

(PBK)T −ν2I 0
(PE)T 0 −κ2I

]
< 0 .

(8)

Remark 1: If (A+BK)TP +P (A+BK) < 0 then, for

sufficiently large γ > 0 and κ > 0, we have
[

(A + BK)T P + P (A + BK) + γ−2P PE

(PE)T −κ2I

]
< 0 . (9)

In turn, if (9) is satisfied then there exists ν > 0 sufficiently

large so that (8) is satisfied. If (9) is satisfied then, with

V0(ζ) = ζTPζ, we have

〈∇V0(ζ), (A +BK)ζ + Ed〉 ≤ −γ−2V0(ζ) + κ2|d|2 (10)

from which we can derive the following stability properties:

sup
t≥0

V0(ζ(t)) ≤ max

{
V0(ζ(0)), (γκ)2 sup

t≥0
|d(t)|2

}

(11a)

lim sup
t→∞

V0(ζ(t)) ≤ (γκ)2 lim sup
t→∞

|d(t)|2 (11b)

∫ ∞

0

V0(ζ(t))dt ≤ γ2V0(ζ(0)) + (γκ)2
∫ ∞

0

|d(t)|2dt .

(11c)

Our study of quantized control systems will investigate the

degree to which these bounds are preserved under quantized

feedback. �

We impose the following assumption on the quantizer

function q:

Assumption 2: There exist strictly positive real numbers

∆ and M satisfying

M

∆
> 2 +

(
2 +

γν√
λmin(P )

)√
λmax(P )

λmin(P )
(12)

and characterizing the quantization function q as follows

|z| ≤ M =⇒ |q(z) − z| ≤ ∆
|q(z)| ≤ M − ∆ =⇒ |z| ≤ M.

(13)

Remark 2: Quantizers that satisfy (13) have been used in

the literature before, see for instance [7], [1], [9]. Moreover,

conditions similar to (12) were used in the same papers, see

for instance equation (13) in [9]. The difference between

our condition (12) and similar conditions in the literature

comes mainly from the subtle differences between the classes

of systems considered and the proof techniques used; the

condition ensures that the precision of the quantizer that is

quantified with ∆ is sufficiently smaller than the saturation

of the quantizer that is captured by M .

Discrete updates for µ precipitate a closed-loop hybrid

dynamical system. We consider the situation where updates

of µ are triggered by the size of q(ζ/µ), using “zoom outs”

for µ when the size of q(ζ/µ) is large and using “zoom

ins” for µ when the size of q(ζ/µ) is small. Specifically, we

consider the hybrid system

ζ̇ = Aζ +BKµq

(
ζ

µ

)
+ Ed

:= f(ζ, µ, d) (ζ, µ) ∈ C
µ+ = max {λinµ, ε} (ζ, µ) ∈ Din

µ+ = λoutµ (ζ, µ) ∈ Dout

(14)

where

C =
{
(ζ, µ) ∈ R

n × [ε,∞) :
∣∣∣q
(

ζ
µ

)∣∣∣ ∈ [ℓin, ℓout]
}

Din =
{
(ζ, µ) ∈ R

n × [ε,∞) :
∣∣∣q
(

ζ
µ

)∣∣∣ < ℓin

}

Dout =
{
(ζ, µ) ∈ R

n × [ε,∞) :
∣∣∣q
(

ζ
µ

)∣∣∣ > ℓout

}
.

(15)

The parameter ε ∈ (0, 1) limits how small µ can become.

The parameter λout > 1 forces µ to grow when (ζ, µ) ∈
Dout. The other positive parameters λin < 1, which shrinks

µ when (ζ, µ) ∈ Din, and ℓin and ℓout, which characterize

the region C where µ remains constant, must satisfy the

following assumption:

Assumption 3: The positive real numbers ε, λout, λin, ℓin
and ℓout satisfy ε ∈ (0, 1) and

λout > 1 (16a)

λin < 1 (16b)

ℓin > ∆

(
1 +

γν√
λmin(P )

)
(16c)

ℓout > ∆ + (ℓin + ∆)λ−1
in

√
λmax(P )

λmin(P )
(16d)

ℓout ≤ M − ∆ . (16e)

The following claim can be verified by first picking λin, ℓin,

and ℓout to satisfy (16b)-(16d), but with equalities rather than

strict inequalities, and then noting that, by the condition (12)

in Assumption 2, the condition (16e) is satisfied with a strict

inequality. This means that λin can be decreased and ℓin and

ℓout can be increased by small amounts in order to satisfy

(16b)-(16d) without destroying (16e).

Lemma 3: Under condition (12) of Assumption 2, it is

possible to choose the positive real numbers λin, ℓin, and

ℓout so that the conditions (16b)-(16e) are satisfied.

Remark 3: Another way to view the constraints (16) is to

pick ℓin = cin∆ and ℓout = cout∆ so that the conditions
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(16) become

λout > 1 (17a)

λin < 1 (17b)

cin >

(
1 +

γν√
λmin(P )

)
(17c)

cout > 1 + (cin + 1)λ−1
in

√
λmax(P )

λmin(P )
(17d)

cout ≤
M

∆
− 1 (17e)

which clearly can be satisfied for M
∆ sufficiently large. The

condition (12) characterizes how large this ratio needs to be.

�

Remark 4: We note that (14) differs slightly from QCS in

the literature, such as [1], [7], [9], since the tuning variable µ
is lower bounded by ε. Hence, we will only be able to show

practical stability of the closed loop system. Note also that

an arbitrarily large number of instantaneous zoom outs are

possible for some initial states which requires an arbitrarily

large bandwidth of the communication channel. Hence, (14)

does not belong to the class of finite-set feedback systems

considered in [10]. We will show that (14) has linear ISS

and L2 gains.

Instead of analyzing the system (14)-(15), which involves

the discontinuous function q, we find it just as easy and

productive to analyze the system (14) with f , C, Din, and

Dout replaced, respectively, by certain F̂ , Ĉ, D̂in, and D̂out

that satisfy the containments

C ⊂ Ĉ, Din ⊂ D̂in, Dout ⊂ D̂out (18)

f(ζ, µ, d) ∈ F̂ (ζ, µ, d) ∀(ζ, µ) ∈ C. (19)

These containments imply that every solution of (14)-(15) is

a solution of

ζ̇ ∈ F̂ (ζ, µ, d) (ζ, µ) ∈ Ĉ

µ+ = max {λinµ, ε} (ζ, µ) ∈ D̂in

µ+ = λoutµ (ζ, µ) ∈ D̂out.

(20)

Therefore, if we establish useful properties for the solutions

of (20) then the solutions of (14)-(15) have those same

properties. We choose

Ĉ :=
{
(ζ, µ) ∈ R

n × [ε,∞) :
∣∣∣ ζ

µ

∣∣∣ ∈ [ℓin − ∆, ℓout + ∆]
}

D̂in :=
{
(ζ, µ) ∈ R

n × [ε,∞) :
∣∣∣ ζ

µ

∣∣∣ ≤ ℓin + ∆
}

D̂out :=
{
(ζ, µ) ∈ R

n × [ε,∞) :
∣∣∣ ζ

µ

∣∣∣ ≥ ℓout − ∆
}

(21)

and, for all (ζ, µ) ∈ Ĉ and all d ∈ R
n,

F̂ (ζ, µ, d) := {f : f = (A+BK)ζ +BKv + d, |v| ≤ µ∆} .
(22)

The next lemma establishes that these choices satisfy the

desired containments.

Lemma 4: Under the conditions (13) in Assumption 2, the

data Ĉ , D̂in, D̂out, and F̂ defined in (21)-(22) satisfy the

containments (18)-(19).

Proof. The keys to establishing the set containments in (18)

are the following bounds, which follow from the conditions

(13) in Assumption 2:

N ≤M − ∆,
|q(z)| ≤ N

=⇒
|z| ≤ M,
|z| ≤ |q(z)| + |z − q(z)|

≤ N + ∆
(23)

and

N − ∆ ≤M,
|z| < N − ∆

=⇒
|q(z) − z| ≤ ∆,

|q(z)| ≤ |z| + |q(z) − z|
< N − ∆ + ∆,

(24)

the latter which can be written equivalently as

N − ∆ ≤M, |q(z)| ≥ N =⇒ |z| ≥ N − ∆. (25)

With the set containments established, the containment (19)

follows from (16e) in Assumption 3 together with the first

implication of (13) in Assumption 2. �

IV. MAIN RESULTS

In this section we present our main results (Theorems 1

and 2) where we construct Lyapunov functions for the closed

loop system that can be used to show ISS and L2 stability.

Corollaries that follow our main results provide conclusions

that we can draw on the trajectories of the closed loop system

from the constructed Lyapunov functions. The first main

result establishes such conditions only for the state variable

x whereas the second main result provides conditions for the

state (x, µ).
Our main results are expressed in terms of the functions

V0(ζ) := ζTPζ (26a)

V2(µ) := µ2 − ε2 (26b)

V4(ζ) := max
{
0, V0(ζ) − ε2σ2

}
(26c)

where

σ :=
√
λmax(P )(ℓin + ∆)λ−1

in . (27)

We also use g(ζ, µ) for the mapping that satisfies µ+ =
g(ζ, µ), and we define

θ :=

√
λmin(P )(ℓin − ∆)2 − (γν∆)2

λmin(P )(ℓin − ∆)2
,

θ :=

√
λmin(P )(ℓout − ∆)2

λmin(P )(ℓout − ∆)2 − σ2
.

(28)

It follows from (16c) that θ is well defined and satisfies θ ∈
(0, 1). It follows from (16d) and (27) that θ is well defined

and satisfies θ ∈ (1,∞). Moreover, if we take ℓin = cin∆,

ℓout = cout∆, where cin and cout satisfy (17), then θ → 1−

as cin becomes arbitrarily large, and θ → 1+ if, in addition,

the ratio cout/cin becomes arbitrarily large. It is possible to
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pick cin and cout large with a large ratio cout/cin when the

ratio M/∆ is large.

Our first result is contained in the following theorem.

Theorem 1: Suppose Assumptions 1-3 hold. For each ε ∈
(0, 1), there exists a locally Lipschitz function Wε : R

n ×
[ε,∞) → R≥0 such that:

1) for all (ζ, µ) ∈ R
n × [ε,∞),

V4(ζ) ≤Wε(ζ, µ) ≤ (1+ θ
2
)V4(ζ)+σ2V2(µ) , (29)

2) for all (ζ, µ) ∈ Ĉ and f ∈ F̂ (ζ, µ, d),

W ◦
ε ((ζ, µ); f) ≤ −γ−2θ2Wε(ζ, µ) + θ

2
κ2|d|2 , (30)

3) and for all (ζ, µ) ∈ D̂ and

Wε(ζ, g(ζ, µ)) ≤Wε(ζ, µ) . (31)

The next result, which demonstrates finite L∞ and L2

gains and how they are degraded from the ideal (no quanti-

zation) case described in Remark 1, follows from Theorem

1 together with Lemma 1.

Corollary 1: Under Assumptions 1-3, for each ε ∈ (0, 1),
each complete solution (ζ, µ, d) of (20)-(22) satisfies
∥∥∥V4(ζ)

∥∥∥
∞

≤ max
{
σ2V2(µ(0, 0)) + (1 + θ

2
)V4(ζ(0, 0)),

(γκ)2
(
θ

θ

)2 ∥∥∥dTd
∥∥∥

c,∞

}
(32a)

∥∥∥V4(ζ)
∥∥∥

c,1
≤

(
γ

θ

)2 (
σ2V2(µ(0, 0)) + (1 + θ

2
)V4(ζ(0, 0))

)

+ (γκ)2
(
θ

θ

)2 ∥∥∥dT d
∥∥∥

c,1
. (32b)

The L2 stability bound is expressed in terms of ‖·‖c,1

since the quantities being integrated are quadratic in the

disturbance and in the state. Note that the L∞ and L2 gains

with respect to d approach the ideal situation described in

Remark 1 as θ/θ tends toward one. Of course, it is a type

of “practical” L∞ and L2 stability due to the fact that V4(ζ)
is identically zero on a ball around the origin, the radius of

which is proportional to ε ∈ (0, 1).
The results up to this point say nothing explicitly about the

behavior of the state variable µ. The next results are aimed

in this direction. Among other things, we establish that the

compact set

A :=
{
(ζ, µ) ∈ R

n × [ε,∞) : µ = ε, V0(ζ) ≤ ε2σ2
}

(33)

is globally asymptotically stable for the system (20)-(22).

The next theorem enables us to establish such a result.

For technical reasons, we impose one additional condition

on λout > 1. It is possible to establish global asymptotic

stability without this technical condition, but it requires

a more complicated Lyapunov function than the one we

propose. Due to (16d), it is possible to satisfy the following

assumption:

Assumption 4: The value of λout satisfies the condition

1 < λout < λin

ℓout − ∆

ℓin + ∆

√
λmin(P )

λmax(P )
.

Theorem 2: Suppose Assumptions 1-4 holds. There exist

δ∗ > 0 and β > 0 and, for each δ ∈ (0, δ∗] and each

ε ∈ (0, 1), there exists a locally Lipschitz function Wδ,ε :
R

n × [ε,∞) → R≥0 such that:

1) for all (ζ, µ) ∈ R
n × [ε,∞),

δV2(µ) + V4(ζ) ≤ Wδ,ε(ζ, µ)

Wδ,ε(ζ, µ) ≤ (1 + βδ)
(
(1 + θ

2
)V4(ζ) + σ2V2(µ)

)
,

(34)

2) for all (ζ, µ) ∈ Ĉ and f ∈ F̂ (ζ, µ, d),

W ◦
δ,ε((ζ, µ); f) ≤ −γ−2θ2(1 − βδ)Wδ,ε(ζ, µ)

+θ
2
(1 + βδ)κ2|d|2 ,

(35)

3) for all (ζ, µ) ∈ D̂,

Wδ,ε(ζ, g(ζ, µ)) ≤Wδ,ε(ζ, µ) , (36)

and for all (ζ, µ) ∈ D̂ \ A,

Wδ,ε(ζ, g(ζ, µ)) < Wδ,ε(ζ, µ) . (37)

The next corollary, which addresses the existence of

complete solutions, follows from Theorem 2 together with

Lemma 1. It establishes that maximal solutions are complete

if either the disturbance is bounded or has bounded energy.

Corollary 2: Under Assumptions 1-4, there exist δ > 0,

α > 0 such that, for each ̟ ∈ {1,∞}, each solution (ζ, µ, d)
of (20)-(22), and each (t, j) ∈ dom (ζ, µ, d),

‖((δV2(µ) + V4(ζ), t, j)‖∞ ≤ α
(
V2(µ(0, 0))

+V4(ζ(0, 0))

+
∥∥dT d, t, j)

∥∥
c,̟

)
.

In particular, with the definition T =
sup {t+ j : (t, j) ∈ dom (ζ, µ, d)}, if

limt+j→T

∥∥(dTd, t, j)
∥∥

c,̟
is well defined and finite

then (ζ, µ, d) is either complete or can be extended to a

complete solution.

The next two corollaries also follow from Theorem 2, this

time combined with Lemma 2. Implicitly, we also use the

fact that if (37) and (34) hold, then for each pair (r,R)
satisfying 0 < r < R <∞, there exists ρ ∈ (0, 1) such that,

for all (ζ, µ) ∈ D̂ such that Wδ,ε(ζ, µ) ∈ [r,R],

Wδ,ε(ζ, g(ζ, µ)) ≤ ρWδ,ε(ζ, µ) . (38)

The first of the two corollaries pertains to the case where

d ≡ 0.

Corollary 3: Under Assumptions 1-4, for each ε ∈ (0, 1),
the system (20)-(22) with d ≡ 0 has the compact set

A :=
{
(ζ, µ) ∈ R

n × [ε,∞) : µ = ε, ζTPζ ≤ ε2σ2
}

globally asymptotically stable.

The second corollary addresses asymptotic gains when d
is bounded. It is proved using Theorem 2 and Lemma 2 to

get a linear gain that depends on δ > 0 and then taking the

limit of this gain as δ → 0.
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Corollary 4: Under Assumptions 1-4, for each ε ∈ (0, 1),
each complete solution of (20)-(22) satisfies

∥∥∥V4(ζ)
∥∥∥

a
≤ (γκ)2

(
θ

θ

)2 ∥∥∥dTd
∥∥∥

c,a
. (39)

With a little extra work, it is possible to construct a

Lyapunov function that exhibits finite L∞ and L2 gain and

decreases exponentially at jumps. We omit these results for

space reasons.

V. SKETCH OF PROOF OF THEOREM 1

We only sketch the proof of Theorem 1 and omit other

proofs due to space reasons.

1) A manipulation involving Lyapunov functions: In the

proofs of all of the theorems, we exploit the following fact:

Suppose there exists ρ ∈ (0, 1) and positive constants ci,
i ∈ {1, 2, 3, 4} such that

V ◦
a (x; f) ≤ −c1Va(x) + c2|d|

2

V ◦
b (x; f) ≤ −c1Vb(x) + c3|d|

2 (40)

and
Va(g) ≤ Va(x) + c4Vb(x)
Vb(g) ≤ ρVb(x) .

(41)

Define Vc(x) := Va(x) + c5Vb(x). Then

V ◦
c (x; f) ≤ −c1Va(x) + c2|d|

2 − c1c5Vb(x) + c5c3|d|
2

= −c1Vc(x) + (c2 + c5c3)|d|
2

(42)

and

Vc(g) ≤ Va(x) + c4Vb(x) + c5ρVb(x)
= Vc(x) +

(
c4 + c5(ρ− 1)

)
Vb(x) .

(43)

In particular, if c5 ≥ c4/(1 − ρ) then Vc(g) ≤ Vc(x).

2) System in transformed coordinates: We analyze the

system (20)-(22) using the coordinates (z, µ) where z :=
ζ/µ. In these coordinates, the dynamics become

ż ∈ F̃ (z, d/µ) (z, µ) ∈ C̃ × [ε,∞)

z+ = g1(z, µ)

µ+ = g2(z, µ)

}
(z, µ) ∈ (D̃in ∪ D̃out) × [ε,∞)

(44)

where

C̃ = {z ∈ R
n : |z| ∈ [ℓin − ∆, ℓout + ∆]}

D̃in = {z ∈ R
n : |z| ≤ ℓin + ∆}

D̃out = {z ∈ R
n : |z| ≥ ℓout − ∆}

F̃ (z, d/µ) = {f : f = (A+BK)z +BKv + Ed/µ,

|v| ≤ ∆} ∀(z, µ, d) ∈ C̃ × [ε,∞) × R
k

g1(z, µ) =

{
z · 1

max{λin,ε/µ}
(z, µ) ∈ D̃in × [ε,∞)

λ−1

outz (z, µ) ∈ D̃out × [ε,∞)

g2(z, µ) =

{
max {λinµ, ε} (z, µ) ∈ D̃in × [ε,∞)

λoutµ (z, µ) ∈ D̃out × [ε,∞) .

3) Lyapunov function:

We use a Lyapunov function of the form

Wε(ζ, µ) := V3(ζ/µ, µ) + θ
2
ε2V1(ζ/µ) , (45)

where V1(z) := max
{
0, V0(z) − σ2

}
and V3(z, µ) :=

V2(µ)V0(z). Then, it can be shown (the proofs are omitted

due to space reasons) that for all (ζ, µ) ∈ Ĉ and f ∈
F̂ (ζ, µ, d) we have that

W ◦
ε ((ζ, µ); f)

≤ −γ−2θ2V3(ζ/µ, µ) +
µ2 − ε2

µ2
κ2|d|2

≤ −γ−2θ2Wε(ζ, µ) + θ
2
κ2|d|2 .

(46)

Similarly, for all (z, µ) ∈ D̂,

Wε(ζ, g(ζ, µ)) ≤ V3(ζ/µ, µ) + θ
2
(1 − λ−2

out)ε
2V1(ζ/µ)

+θ
2
ε2λ−2

outV1(ζ/µ)

= Wε(ζ, µ) .
(47)

This establishes Theorem 1. �

VI. CONCLUSIONS

We have presented a Lyapunov approach to analysis of L2

stability and ISS of a class of linear QCS. Estimates of linear

gains are provided by constructing appropriate Lyapunov

functions for the closed loop system. Our approach is novel

and we treat the system in zoom in and zoom out modes in

a unified manner using a hybrid model of the closed loop

system and the hybrid modeling framework in [4].
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