
Model Reference Adaptive Control For

Nonminimum-Phase Systems Using A Surrogate Tracking Error

Jesse B. Hoagg

Department of Mechanical Engineering, The University of Kentucky, Lexington, KY, 40506-0503

Abstract— This paper presents a direct model reference adap-
tive controller for single-input, single-output, linear, continuous-
time systems that are possibly nonminimum phase, provided
that the nonminimum-phase zeros are known. The adaptive
controller uses a surrogate tracking error, which approximates
the true tracking error. The recursive-least-squares-based adap-
tive law is developed by minimizing an integral quadratic cost
of the surrogate tracking error.

I. INTRODUCTION

The model reference adaptive control (MRAC) architec-

ture has been widely studied and is a common architecture

employed in adaptive control [1]–[5]. The goal of MRAC

is to force an unknown or uncertain system to behave like

a known reference model. However, MRAC is generally

restricted to minimum-phase systems.

For nonminimum-phase systems, indirect adaptive control

techniques, such as adaptive pole placement [3]–[6], can be

used. Adaptive pole placement differs from MRAC in that

it does not employ a reference model. However, adaptive

pole placement can be used in conjunction with the internal

model principle to address the adaptive tracking problem

(see for example [4, Chap. 7.2] or [5, Chap. 6.3]). Nev-

ertheless, there are drawbacks to indirect adaptive control.

In particular, indirect techniques typically assume that the

estimates of the numerator and denominator polynomials of

the plant are coprime for all time, and if this assumption is

not satisfied, then singularities can occur when computing

the controller parameters from the estimates of the plant

parameters [5], [6]. There are approaches that address this

drawback, including techniques where the parameter esti-

mates are projected into a known convex set [1], [7] as well

as techniques where the parameter estimates are perturbed

[8], [9]. The modifications proposed in [1], [7]–[9] typically

require additional assumptions, particularly, that the plant

parameters exist within a known set. For a summary of these

approaches, see [5, Chap. 6.6.2].

In contrast to the indirect adaptive pole placement ap-

proach, this paper presents a direct MRAC algorithm that

is effective for systems that are either minimum phase or

nonminimum phase, provided that the nonminimum-phase

zeros are known. The direct continuous-time MRAC algo-

rithm presented in this paper shares certain features with

retrospective cost adaptive control (RCAC), which is a direct

discrete-time adaptive control technique for systems that are

possibly nonminimum-phase [10]–[13].

A key feature of RCAC is the use of a retrospective

performance measure, in which the performance measure-

ment is modified based on the difference between the actual

past control inputs and the recomputed past control inputs,

assuming that the current controller had been used in the past.

The present paper adopts a related technique for continuous-

time systems. In particular, we define a surrogate tracking

error, which approximates the true tracking error. Next,

a recursive-least-squares-based adaptive law is developed

by minimizing an integral quadratic cost of the surrogate

tracking error. Finally, this paper analyzes aspects of the

surrogate tracking error MRAC algorithm.

II. PROBLEM FORMULATION

Let p = d
dt denotes the differential operator, and consider

the continuous-time linear system

α(p)y(t) = βdβ(p)u(t) + γ(p)w(t), (1)

where t ≥ 0; y(t) ∈ R is the output; u(t) ∈ R is the control;

w(t) ∈ Rlw is the exogenous disturbance; βd ∈ R; α(p) is a

monic polynomial with degree n > 0; γ(p) is a polynomial

with degree at most n; β(p) is a monic polynomial with

degree n − d, where d > 0 is the relative degree; and the

initial condition is y0 = [ y(n−1)(0) · · · y(0) ].
Next, consider the reference model

αm(p)ym(t) = βm(p)r(t), (2)

where t ≥ 0; ym(t) ∈ R is the reference model output;

r(t) ∈ R is the reference model command; αm(p) is a monic

polynomial with degree nm > 0; βm(p) is a polynomial with

degree nm − dm, where dm > 0 is the relative degree of

(2); αm(p) and βm(p) are coprime; αm(p) is asymptotically

stable; and r(t) is bounded and piecewise continuous.

Next, define the tracking error z(t)
△
= y(t) − ym(t). The

goal is to drive z(t) to zero in the presence of w(t). We

make the following assumptions regarding the system (1):

(A1) α(p) and β(p) are coprime.

(A2) d is known.

(A3) βd is known.

(A4) If λ ∈ C, Re λ ≥ 0, and β(λ) = 0, then λ and its

multiplicity are known.

(A5) There exists a known integer n̄ such that n ≤ n̄.

We make the following assumptions regarding w(t):

(A6) For all t ≥ 0, the exogenous disturbance w(t) is

bounded and satisfies αw(p)w(t) = 0, where αw(p)
is a nonzero monic polynomial that has distinct roots,

all of which lie on the imaginary axis, and none of

which coincide with the roots of β(p).
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(A7) There exists a known integer n̄w such that nw
△
=

deg αw(p) ≤ n̄w.

We make the following assumptions regarding (2):

(A8) If λ ∈ C, Re λ ≥ 0, and β(λ) = 0, then βm(λ) = 0
and the multiplicity of λ with respect to βm(p) equals

the multiplicity of λ with respect to β(p).
(A9) dm ≥ d.

The disturbance w(t) is not assumed to be measured, and

its spectrum αw(p) is not assumed to be known. It follows

from assumption (A6) that w(t) is sinusoidal.

Next, consider the factorization of β(p) given by

β(p) = βdβu(p)βs(p), (3)

where βu(p) and βs(p) are monic polynomials; and if λ ∈ C,

Re λ ≥ 0, and β(λ) = 0, then βu(λ) = 0 and βs(λ) 6= 0.

Let nu ≥ 0 be the degree of βu(p), and thus ns
△
= n −

nu−d is the degree of βs(p). Assumption (A4) implies that

the nonminimum-phase zeros of (1) from the control to the

output (i.e., the roots of β(p) that lie in the closed-right-half

plane) are known, which is equivalent to the assumption that

βu(p) and nu are known.

Assumption (A8) implies that the nonminimum-phase ze-

ros of (1) from the control to the output are zeros of the refer-

ence model. Assumption (A8) is a model matching condition,

which arises from the fact that nonminimum-phase zeros

cannot be moved through feedback or pole-zero cancellation.

However, the reference model may have additional zeros.

Thus, βm(p) has the factorization βm(p) = βu(p)βc(p),
where βc(p) is a polynomial with degree nm − dm − nu.

III. SURROGATE TRACKING ERROR MRAC

This section introduces the surrogate tracking error and

presents an adaptive controller, which uses the surrogate

tracking error. Let

nc ≥ max(2n̄+ 2n̄w − nu − d, nm − nu − d), (4)

where assumptions (A2), (A4), (A5), and (A7) imply that the

lower bound on nc given by (4) is known. Next, let af(s) be

an asymptotically stable monic polynomial with degree nc,

and let cf(s) be an asymptotically stable monic polynomial

with degree nc+nu+d−nm. For all i = 1, 2, . . . , nc, define

the filters

Gaf ,i(s)
△
=

snc−i

af(s)
, (5)

and let ȳi(t) and ūi(t) be the signals obtained by passing

y(t) and u(t), respectively, through the filter Gaf ,i(s). Next,

define the filter

Gcf (s)
△
=

βc(s)cf(s)

af(s)
, (6)

and let r̄(t) be the signal obtained by passing r(t) through

the filter Gcf (s).
Now, consider the controller

u(t) =

nc
∑

i=1

Li(t)ȳi(t) +

nc
∑

i=1

Mi(t)ūi(t) +N(t)r̄(t), (7)

where, for all i = 1, . . . , nc, Li : [0,∞) → R and Mi :
[0,∞) → R, and N : [0,∞) → R are given by the adaptive

law (14) and (15) presented below. The controller (7) can be

expressed as

u(t) = φT(t)θ(t), (8)

where

θ(t)
△
=

[

L1(t) · · · Lnc
(t) M1(t) · · · Mnc

(t) N(t)
]T

,

φ(t)
△
=

[

ȳ1(t) · · · ȳnc
(t) ū1(t) · · · ūnc

(t) r̄(t)
]T

.

Next, let bf(s) be an asymptotically stable monic polyno-

mial with degree nc + nu + d, and define the filters

Gbf ,1(s)
△
=

αm(s)cf(s)

bf(s)
, Gbf ,2(s)

△
=

βdβu(s)af(s)

bf(s)
. (9)

Let zf(t) be the filtered tracking error, which is obtained

by passing z(t) through the filter Gbf ,1(s); let uf(t) be the

filtered control, which is obtained by passing u(t) through

the filter Gbf ,2(s); and let Φ(t) ∈ R
2nc+1 be the filtered

regressor, which is obtained by passing each element of φ(t)
through the filter Gbf ,2(s).

Now, let θ̂ ∈ R2nc+1 be an optimization variable used to

develop the adaptive controller update equations, and define

the surrogate tracking error

ẑ(θ̂, t)
△
= zf(t) + ΦT(t)θ̂ − uf(t). (10)

Furthermore, for all t ≥ 0, define the surrogate tracking error

measure

zs(t)
△
= ẑ(θ(t), t) = zf(t) + ΦT(t)θ(t) − uf(t). (11)

Note that if, for all t ≥ 0, θ(t) = C, where C ∈ R
2nc+1,

then ΦT(t)θ(t) = uf(t) and zs(t) = zf(t). Thus, the

surrogate tracking error measure zs(t) can be interrupted

as a modification to filter tracking error zf(t) based on the

difference between the actual filtered control uf(t) and the

recomputed filtered control ΦT(t)θ(t).
To develop the adaptive control law, define the cost

function

J(θ̂, t)
△
=

∫ t

0

η(τ)ẑ2(θ̂, τ)dτ +
[

θ̂ − θ(0)
]T

R
[

θ̂ − θ(0)
]

,

(12)

where R ∈ R(2nc+1)×(2nc+1) is positive definite, θ(0) ∈

R
2nc+1, and η(t)

△
= 1

1+η1ΦT(t)Φ(t) , where η1 ∈ [0,∞). If

η1 > 0, then η(t) normalizes the first term of the cost

function (12). However, if η1 = 0, then η(t) = 1 and the

cost function (12) is unnormalized. A normalized cost results

in a normalized adaptive law whereas an unnormalized cost

results in an unnormalized adaptive law.

Theorem 1. For all t ≥ 0, the unique global minimizer

of the cost function (12) is given by

θ(t) =

[

R+

∫ t

0

η(τ)Φ(τ)ΦT(τ)dτ

]−1

×

[

Rθ(0)−

∫ t

0

η(τ) (zf(τ) − uf(τ)) Φ(τ)dτ

]

. (13)
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Furthermore, (13) satisfies

θ̇(t) = −η(t)zs(t)P (t)Φ(t), (14)

where

Ṗ (t) = −η(t)P (t)Φ(t)ΦT(t)P (t), (15)

and P (0) = R−1.

The batch solution for θ(t), given by (13), is not desirable

for implementation because it requires the online calculation

of a matrix inverse of rank 2nc+1. Thus, we implement the

recursive solution (14) and (15). In particular, the surrogate

tracking error model reference adaptive controller is given

by (8), (14), and (15), where zs is given by (11).

Proof of Theorem 1. It follows from (10) and

(12) that J(θ̂, t) = θ̂TΓ1(t)θ̂ + Γ2(t)θ̂ + Γ3(t),

where Γ1(t)
△
= R +

∫ t

0 η(τ)Φ(τ)Φ
T(τ)dτ , Γ2(t)

△
=

−2θT(0)R + 2
∫ t

0 η(τ) (zf(τ) − uf(τ)) Φ
T(τ)dτ , and

Γ3(t)
△
= θT(0)Rθ(0) +

∫ t

0 η(τ) (zf(τ) − uf(τ))
2
dτ .

Since, for all t ≥ 0, Γ1(t) is nonsingular, it follows that

the cost function (12) has the unique global minimizer

θ(t)
△
= − 1

2Γ
−1
1 (t)ΓT

2 (t) = P̄ (t)X(t), where

P̄ (t)
△
= Γ−1

1 (t) =

[

R+

∫ t

0

η(τ)Φ(τ)ΦT(τ)dτ

]−1

, (16)

X(t)
△
= Rθ(0)−

∫ t

0

η(τ) (zf(τ) − uf(τ)) Φ(τ)dτ, (17)

thus verifying (13).

Next, note that d
dt

[

P̄ (t)P̄−1(t)
]

= ˙̄P (t)P̄−1(t) +
P̄ (t) d

dt

[

P̄−1(t)
]

= 0, and thus it follows from (16) that

˙̄P (t) = −P̄ (t)
d

dt

[

P̄−1(t)
]

P̄ (t)

= −η(t)P̄ (t)Φ(t)ΦT(t)P̄ (t).

Since P (t) and P̄ (t) satisfy the same differential equation

and have the same initial condition, it follows that P (t) =
P̄ (t), which verifies (15).

Next, differentiating (13) with respect to t, and using (11),

(15), and (17) yields

θ̇(t) = Ṗ (t)X(t) + P (t)Ẋ(t)

= − η(t)P (t)Φ(t)ΦT(t)P (t)X(t) + P (t)Ẋ(t)

= − η(t)P (t)Φ(t)
(

ΦT(t)θ(t) + zf(t)− uf(t)
)

= − η(t)zs(t)P (t)Φ(t),

which verifies (14).

The surrogate tracking error MRAC architecture is shown

in Figure 1. Designing the surrogate tracking error MRAC

includes choosing three asymptotically stable polynomials,

namely, af(s), bf(s), and cf(s), which are used to construct

the filters (5), (6), and (9). While the polynomials af(s),
bf(s), and cf(s) can be selected by the user to meet design

criteria, we now present one option, which simplifies the

filters Gbf ,1(s), Gbf ,2(s), and Gcf (s). Specifically, let āf(s)
be an asymptotically stable monic polynomial with degree

nm−nu−d, and let cf(s) be an asymptotically stable monic

polynomial with degree nc+nu+d−nm. Next, let af(s) =
āf(s)cf and bf(s) = αm(s)cf(s). In this case, it follows from

(6) and (9) that

Gbf ,1(s) = 1, Gbf ,2(s) =
βdβu(s)āf(s)

αm(s)
, Gcf (s)

△
=

βc(s)

āf(s)
,

and zf(t) = z(t), that is, the filtered tracking error equals

the tracking error.
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Ṗ = −ηPΦΦTP

zs = zf − uf +ΦTθ

�
�
�
�
�
�
�
�

�
���

θ

Gbf ,2(s)
� uf

Gbf ,1(s)
� zf

Gbf ,2(s)� Φ

�

� rReference Model

αm(p)ym = βm(p)r
� ymi

z

�

Fig. 1. Schematic diagram of the surrogate tracking error MRAC.

IV. NUMERICAL EXAMPLES

For all numerical examples presented in this section, the

adaptive controller is normalized with η1 = 0.01, and

the adaptive controller is initialized to zero (i.e., θ(0) =
0). For all examples af(s) = (s + 3)nc , cf(s) = (s +
3)nc+nu+d−nm , and bf(s) = αm(s)cf(s). Therefore, it fol-

lows that the filters (9) and (6) are Gbf ,1(s) = 1, Gbf ,2(s) =
βdβu(s)(s+3)nm−d−nu

αm(s) , and Gcf (s) =
βc(s)

(s+3)nm−d−nu
.

A. Asymptotically stable, nonminimum-phase system

Consider the asymptotically stable, nonminimum-phase

system

(p+ 5)(p2 + 10p+ 50)y = 3(p2 − 4)u+ (p2 − 9)w,

where y0 = [1 − 3 1]. For this problem, it follows that

n = 3, nu = 1, d = 1, βd = 3, and βu(p) = p − 2.

Next, consider the reference model (2), where αm(p) = (p+
10)3, βm(p) = (p + 8)βu(p)[αm(0)/8/βu(0)], and r(t) =
sin(7πt) + 2 sin(2πt).

First, we let w(t) = 0, and consider the tracking problem

without disturbance. The surrogate tracking error MRAC (8),

(14), and (15) is implemented in feedback with nc = 8,

which satisfies (4), and P (0) = 1012I17. Figure 2 shows

the time history of y, ym, and z. The system is simulated
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in open-loop for 2 seconds to demonstrate the open-loop

response, then the adaptive controller is turned on and the

tracking error z tends to zero.
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Fig. 2. Command following for an asymptotically stable, nonminimum-

phase system: The surrogate tracking error MRAC (8), (14), and (15) is
implemented in feedback with nc = 8, θ(0) = 0, and P (0) = 1012I17.
The controller drives z to zero. Thus, the controller forces y to follow ym
asymptotically.

Next, we consider the same example but with a dis-

turbance; specifically, let w(t) = 10 sin(3πt). Note that

the disturbance spectrum is unknown and the disturbance

is unmeasured. The controller parameters are the same as

above. The system is simulated in open-loop for 2 seconds,

then the adaptive controller is turned on and the tracking

error z tends to zero. Figure 3 shows that y follows ym
asymptotically, while rejecting the disturbance w.
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Fig. 3. Command following and disturbance rejection for an asymptotically

stable, nonminimum-phase system: The surrogate tracking error MRAC (8),
(14), and (15) is implemented in feedback with nc = 8, θ(0) = 0, and
P (0) = 1012I17. The controller drives z to zero. Thus, the controller forces
y to follow ym asymptotically, while rejecting the disturbance w.

B. Unstable, nonminimum-phase system

Consider the unstable, nonminimum-phase system

(p− 1)(p2 + 4p+ 29)y = −2(p− 0.5)u, (18)

where y0 = [−1 − 0.1 0]. The system (18) has an

unstable pole at 1 and a nonminimum-phase zero at 0.5.

The system (18) is not strongly stabilizable (i.e., an unstable

linear controller is required to stabilize the system) [14]. For

this problem, n = 3, nu = 1, d = 2, βd = −2, and βu(p) =
p − 0.5. Next, consider the reference model (2), where

αm(p) = (p+7)4, βm(p) = (p+5)βu(p)[αm(0)/5/βu(0)],
and r(t) = 2 sin(6πt) + sin(2πt). The surrogate tracking

error MRAC (8), (14), and (15) is implemented in feedback

with nc = 4 and P (0) = 1014I9. Figure 4 shows that the

tracking error z tends to zero. Furthermore, the controller

parameters θ converges numerically. In fact, θ converges to

a value, where the fixed-time controller has an unstable pole

(at approximately 5.6), which is required to stabilize (18).
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Fig. 4. Command following for an unstable, nonminimum-phase system:

The surrogate tracking error MRAC (8), (14), and (15) is implemented in
feedback with nc = 4, θ(0) = 0, and P (0) = 1014I9. The controller
drives z to zero.

V. IDEAL FIXED-GAIN CONTROLLER

The remainder of this paper is dedicated to analyzing the

stability properties of the surrogate tracking error MRAC

algorithm. In this section, we prove the existence of an ideal

fixed-gain controller, which is used in the next section to

analyze the closed-loop adaptive system. An ideal fixed-gain

controller, whose structure is illustrated in Figure 5, includes

four parts, specifically, a precompensator, which cancels the

stable zeros βs(p); an internal model of the disturbance

dynamics αw(p); feedback controller whose input is y; and

a feedforward controller whose input is r.

For all t ≥ 0, consider the system (1) with u(t) = u∗(t),
where u∗(t) is the signal generated by the ideal fixed-gain

controller. More precisely, for all t ≥ 0, consider the system

α(p)y∗(t) = β(p)u∗(t) + γ(p)w(t), (19)

where y∗,0
△
= [y

(n−1)
∗ (0) · · · y∗(0)] is the initial condi-

tion, and u∗(t) is given by the ideal fixed-gain controller

u∗(t) =

nc
∑

i=1

L∗,i(t)ȳ∗,i(t) +

nc
∑

i=1

M∗,i(t)ū∗,i(t)

+N∗r̄(t) + ε(t), (20)
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Fig. 5. Schematic diagram of the closed-loop system with the ideal fixed-
gain controller.

where L∗,1, . . . , L∗,nc
∈ R; M∗,1, . . . ,M∗,nc

∈ R; N∗ ∈ R;

for all t ≥ 0, ε(t) is an arbitrary signal; and for i = 1, . . . , nc,

ȳ∗,i(t) and ū∗,i(t) are the signals obtained by passing y∗(t)
and u∗(t), respectively, through the filter Gaf ,i(s). The ideal

controller (20) can be written as

u∗(t) = φT
∗ (t)θ∗ + ε(t), (21)

where

θ∗
△
=

[

L∗,1 · · · L∗,nc
M∗,1 · · · M∗,nc

N∗

]

,

φ∗(t)
△
=

[

ȳ∗,1(t) · · · ȳ∗,nc
(t) ū∗,1(t) · · · ū∗,nc

(t) r̄(t)
]

.

Theorem 2. Let nc ≥ max(2n − nu − d, nm − nu − d).
Then there exists an ideal fixed-gain controller (20), such

that, for all initial conditions y∗,0 and all t ≥ 0,

αm(p)cf(p)y∗(t) = βm(p)cf(p)r(t)

+ βdβu(p)af(q)ε(t). (22)

Proof. We construct the ideal fixed-gain controller (20),

which is depicted in Figure 5, and show that it satisfies (22).

First, it follows from (5), (6), and (20) that the ideal control

(20) satisfies

M∗(p)u∗(t) = L∗(p)y∗(t) +N∗βc(p)cf(p)r(t)

+ af(p)ε(t), (23)

where L∗(p)
△
= L∗,1p

nc−1 + · · · + L∗,nc−1p + L∗,nc
, and

M∗(p)
△
= af(p)− (M∗,1p

nc−1 + · · ·+M∗,nc−1p+M∗,nc
).

Since af(q) is a monic polynomial with degree nc, it follows

that that choice of M∗,1, . . . ,M∗,nc
∈ R uniquely determines

M∗(p) and admits all possible monic polynomials with

degree nc. Therefore, it suffices to show that there exists

L∗(p), M∗(p), and N∗, such that (22) is satisfied.

Next, let
M∗(p) = M̄∗(p)αw(p)βs(p), (24)

where M̄∗(p) is a monic polynomial with degree n1
△
= nc−

nw−ns. Now, it suffices to show that there exists N∗, L∗(p),
and M̄∗(p), such that (22) is satisfied.

Next, it follows from (3) and (19) that

α(p)y∗(t) = βdβu(p)βs(p)u∗(t) + γ(p)w(t). (25)

Multiplying (25) by M̄∗(p)αw(p) and using (24) yields

M̄∗(p)αw(p)α(p)y∗(t) = M̄∗(p)γ(p)αw(p)w(t)

+ βdβu(p)M∗(p)u∗(t). (26)

Since (A6) implies that M̄∗(p)γ(p)αw(p)w(t) = 0, it

follows from (23) and (26) that

[M̄∗(p)αw(p)α(p) − βdβu(p)L∗(p)]y∗(t)

= βdN∗βu(p)βc(p)cf(p)r(t) + βdβu(p)af(p)ε(t).

Since βm(p) = βu(p)βc(p), letting N∗ = 1/βd implies

[M̄∗(p)αw(p)α(p)− βdβu(p)L∗(p)]y∗(t)

= βm(p)cf(p)r(t) + βdβu(p)af(p)ε(t). (27)

Next, we show that there exist polynomials L∗(p) and

M̄∗(p) such that M̄∗(p)αw(p)α(p) − βdβu(p)L∗(p) =
αm(p)cf(p). First, note that deg M̄∗(p)αw(p)α(p) = n1 +
nw + n = nc + nu + d = deg αm(p) + deg cf(p). Next, if

nw+ns > 0, then let L∗,1, . . . , L∗,nw+ns
= 0, which implies

that L∗(p) is a polynomial with degree nc −nw −ns − 1 =
n1 − 1. Thus, deg M̄∗(p) = n1, deg L∗(p) = n1 − 1, and

deg αw(p)α(p) = nw + n ≤ nc − n− nw + nu + d = n1.

Since, in addition, assumptions (A1) and (A6) imply that

αw(p)α(p) and βu(p) are coprime, it follows from the

Diophantine equation that the roots of M̄∗(p)αw(p)α(p)−
βu(p)L∗(p) can be assigned arbitrarily by choice of L∗(p)
and M̄∗(p). Therefore, there exist polynomials L∗(p) and

M̄∗(p) such that M̄∗(p)αw(p)α(p) − βdβu(p)L∗(p) =
αm(p)cf(p). Thus, for all t ≥ 0, (27) becomes (22).

VI. PRELIMINARY STABILITY ANALYSIS

In this section, we analyze the surrogate tracking error

MRAC (8), (14), and (15). First, let θ∗ ∈ R2nc+1 be the

ideal fixed-gain controller given by Theorem 2, and define

the estimation error θ̃(t)
△
= θ(t) − θ∗. The following result

relates zf(t) to uf(t), Φ(t), and θ∗.

Lemma 1. Consider the open-loop system (1) with the

feedback (8). Then, for all initial conditions y0, all sequences

θ(t), and, all t ≥ 0,

zf(t) = uf(t)− ΦT(t)θ∗. (28)

Proof. Adding and subtracting φT(t)θ∗ to u(t) yields

u(t) =
∑nc

i=1 L∗,i(t)ȳi(t)+
∑nc

i=1 M∗,i(t)ūi(t)+N∗(t)r̄(t)+
u(t)− φT(t)θ∗, which has the same form as (20) with with

ε(t) = u(t)−φT(t)θ∗. Thus, it follows from Theorem 2 (with

ε(t) = u(t)−φT(t)θ∗) that, for all t ≥ 0, αm(p)cf(p)y(t) =
βm(p)cf(p)r(t) + βdβu(p)af(p)

[

u(t)− φT(t)θ∗
]

. Sub-

tracting αm(p)cf(p)ym(t) from both sides and using

(2) yields αm(p)cf(p)z(t) = βdβu(p)af(p)u(t) −

βdβu(p)af(p)φ
T(t)θ∗, and applying the filter 1

bf (s)
to each

term yields (28).

Lemma 1 relates zf(t) to θ∗ but does not relate zf(t) to

θ̃(t). However, the next result follows from (11) and (28),

and shows that zs(t) is a linear regression in θ̃(t).

Lemma 2. Consider the open-loop system (1) with the

feedback (8). Then, for all initial conditions y0, all sequences

θ(t), and, all t ≥ 0,

zs(t) = ΦT(t)θ̃(t). (29)
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The following theorem is the main result of the paper and

provides properties of the surrogate tracking error MRAC

algorithm (8), (14), and (15).

Theorem 3. Consider the open-loop system (1) satisfying

assumptions (A1)-(A9), and the surrogate tracking error

model reference adaptive controller (8), (14), and (15), where

nc satisfies (4). Then, for all initial conditions y0, θ(0), and

P (0) the following properties hold:

(i) θ(t) and P (t) are bounded.

(ii) limt→∞ P (t) exists.

(iii) limt→∞ θ(t) exists.

(iv)
∫∞

0
η(t)z2s (t)dt exists.

Proof. Since d
dt

[

P (t)P−1(t)
]

= Ṗ (t)P−1(t) +
P (t) d

dt

[

P−1(t)
]

= 0, it follows from (15) that

d

dt

[

P−1(t)
]

= −P−1(t)Ṗ (t)P−1(t) = η(t)Φ(t)ΦT(t).

(30)

Next, define the positive-definite Lyapunov-like function

V (θ̃(t), P (t))
△
= θ̃T(t)P−1(t)θ̃(t). Evaluating the derivative

of V (θ̃(t), P (t)) along the trajectories of (14) and (30) yields

V̇ (θ̃(t), P (t)) = 2θ̃T(t)P−1(t)θ̇(t) + θ̃T(t)
d

dt

[

P−1(t)
]

θ̃(t)

= − η(t)θ̃T(t)Φ(t)
[

2zs(t)− ΦT(t)θ̃(t)
]

.

Next, it follows from Lemma 2 that

V̇ (θ̃(t), P (t)) = −η(t)z2s (t). (31)

Since V is a positive-definite radially unbounded function of

θ̃(t) and V̇ is non-positive, it follows that θ̃(t) is bounded

and thus θ(t) is bounded.

To show that P (t) is bounded, it follows from (30) that

P−1(t) = P−1(0) +
∫ t

0 η(τ)Φ(τ)Φ
T(τ)dτ . Since P (0) is

positive definite, it follows that, for all t ≥ 0 and all δ ≥ 0,

0 < P−1(t) ≤ P−1(t+δ). Consequently, for all t ≥ 0 and all

δ ≥ 0, 0 < P (t+ δ) ≤ P (t). Therefore, 0 < P (t) ≤ P (0),
which implies that P (t) is bounded and verifies (i).

Next, we show (iv). Since V is positive definite and V̇ is

non-positive, it follows from (31) that

0 ≤

∫ ∞

0

η(t)z2s (t)dt = −

∫ ∞

0

V̇ (θ̃(t), P (t))dt

= V (θ̃(0), P (0))− lim
t→∞

V (θ̃(t), P (t))

≤ V (θ̃(0), P (0)),

which verifies (iv).

To show (ii), let q ∈ R2nc+1 and define fq(t)
△
= qTP (t)q.

Since P (t) is nonincreasing and positive definite, it follows

that fq(t) is nonincreasing and bounded from below. Thus,

limt→∞ fq(t) exists. Next, for i = 1, . . . , 2nc+1, let q = ei,
where ei is the ith column of the (2nc + 1) × (2nc + 1)
identity matrix. Thus, each entry along the diagonal of P (t)
converges. Next, for i = 2, . . . , 2nc+1, let q = e1+ei, and it

follows that each entry in the first column (and row) of P (t)
converges. Next, for i = 3, . . . , 2nc+1, let q = e1+e2+ei,

and it follows that each entry in the second column (and

row) of P (t) converges. Continuing this process yields that

each entry of P (t) converges. Thus, P (∞)
△
= limt→∞ P (t)

exists, which confirms (ii).

To show (iii), it follows from (14), (29), and (30) that

θ̇(t) = −η(t)P (t)Φ(t)ΦT(t)θ̃(t) = −P (t) d
dt
[P−1(t)]θ̃(t),

which implies that d
dt
[P−1(t)θ̃(t)] = P−1(t)θ̇(t) +

d
dt
[P−1(t)]θ̃(t) = 0. Integrating from 0 to t

yields P−1(t)θ̃(t) = P−1(0)θ̃(0), which implies

θ̃(t) = P (t)P−1(0)θ̃(0). Therefore, limt→∞ θ̃(t) =
limt→∞ P (t)P−1(0)θ̃(0) = P (∞)P−1(0)θ̃(0). Finally,

since limt→∞ θ̃(t) exists and θ(t) = θ̃(t) + θ∗, it follows

that limt→∞ θ(t) exists, which confirms (iii)

Theorem 3 provides preliminary stability properties for

the surrogate tracking error MRAC algorithm (8), (14), and

(15). Although, numerical simulations demonstrate that the

tracking error z(t) tends to zero, a proof of this results

remains open. However, techniques related to those used in

[12], [13] may provide the tools required to prove that the

tracking error tends to zero.

VII. CONCLUSIONS

This paper presented a direct MRAC algorithm for

continuous-time systems that are possibly nonminimum

phase. The adaptive controller requires knowledge of the

first nonzero Markov parameter and the nonminimum-phase

zeros of the transfer function from the control to the output.

The present paper provided the construction and preliminary

stability analysis of the surrogate tracking error MRAC

algorithm.
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