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Abstract— The problem of moment matching with preser-
vation of port Hamiltonian structure is tackled. Based on
the time-domain approach to linear moment matching, we
characterize the (subset of) port Hamiltonian models from the
set of parameterized models that match the moments of a given
port Hamiltonian system, at a set of finite points. We also discuss
the problem of finding port Hamiltonian reduced order models
that match the Markov parameters of a given port Hamiltonian
system.

I. INTRODUCTION

Port Hamiltonian systems represent an important class of

systems used in modeling, analysis and control of physical

systems, see e.g. [1], [2]. Physical modeling often leads to

systems of high dimension, usually difficult to analyze and

simulate and unsuitable for control design.

In the problem of model reduction, moment matching

techniques represent an efficient tool, see e.g. [3], [4], [5],

[6], [7] for a complete overview for linear systems. With

such techniques, the (reduced order) model is obtained by

constructing a lower degree rational function that approxi-

mates a given transfer function (assumed rational). The low

degree rational function matches the given transfer function

at various points in the complex plane. Recently in [8], [9],

[10], [11], Krylov methods have been applied to linear port

Hamiltonian systems, resulting in reduced order models that

match the Markov parameters of the given port Hamiltonian

system. The procedure therein involves finding a change of

coordinates such that the Hamiltonian becomes the square

of the norm of the state vector, followed by the application

of projection methods. The resulting model, that matches the

moments of the given system, has coordinates such that the

Hamiltonian is again the square of the norm of the state

vector.

In this paper, we use the time-domain approach to moment

matching from the recent works [12], [13], [14] and [15].

This approach yields a simple and direct parametrization

of a complete family of reduced order models achieving

moment matching at a set of finite interpolation points.

These models depend on a set of free parameters, useful

for enforcing properties such as, e.g., passivity, stability [16],

relative degree, etc. We characterize the reduced order model

that preserves the port Hamiltonian structure and matches
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Vergata, 00133 Roma, Italy. E-mail: a.astolfi@imperial.ac.uk.

This work is supported by the EPSRC grant ”Control For Energy and
Sustainability”, grant reference EP/G066477/1.

the moments of the given port Hamiltonian system. In other

words, from the family of models that achieve moment

matching, we select the reduced order model that inherits

the port Hamiltonian form, by picking a particular mem-

ber. Furthermore, we obtain a family of parameterized port

Hamiltonian systems that match the moments and inherit the

structure of the given system. We also discuss the problem of

Markov parameters matching, first for general linear systems

and then for linear port Hamiltonian systems. Similar to the

aforementioned linear moment matching problem, we obtain

the family of linear port Hamiltonian models that achieve

Markov parameters matching. Computationally, there is no

need to calculate moments and any numerically efficient

reduction algorithm can be used to determine the class of

models that achieve moment matching, e.g., Krylov subspace

methods (see also [13, Section II-C]). From this class, we

compute the parameter that yields the reduced order model

which preserves the port Hamiltonian structure.

The paper is organized as follows. In Section II, we give

a brief overview of the definition of moments and moment

matching for linear port Hamiltonian systems, as well as of

presenting the family of parameterized reduced order models

that achieve moment matching at a set of finite interpolation

points. In Section III, we discuss the problem of moment

matching with preservation of the port Hamiltonian structure,

and characterize the port Hamiltonian reduced order models.

Furthermore, we give a necessary and sufficient condition

for a reduced order model that achieves moment matching

to be a port Hamiltonian model. In Section IV, we tackle the

problem of finding the reduced order models that match a set

of Markov parameters of the given system, first for general

linear systems and then for port Hamiltonian systems. The

paper is completed by Conclusions.

II. PRELIMINARIES

Let J ∈ Rn×n be a skew symmetric matrix and R ∈
Rn×n, Q ∈ Rn×n be two symmetric matrices. Consider the

single-input, single-output, port Hamiltonian system

Σ :

{
ẋ = (J −R)Qx+Bu,

y = B∗Qx,
(1)

where x(t) ∈ Rn and B ∈ Rn. The Hamiltonian is H(x) =
1
2x

∗Qx.

Assumption 1. Q is invertible and R ≥ 0.

The transfer function of system (1) is given by K(s) =
B∗Q(sI − (J −R)Q)−1B. Let si ∈ C− σ((J −R)Q). The

moments of (1) at si are η0(si), η1(si), . . . , with ηk(si) =
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(−1)k

k!
dkK(s)

dsk

∣∣∣
s=si

. Let L ∈ R1×ν and S ∈ Rν×ν be such

that the pair (L, S) is observable.

Assumption 2. σ(S) ∩ σ((J −R)Q) = ∅.

Let Π ∈ R
n×ν be the (unique) solution of the Sylvester

equation

(J −R)QΠ +BL = ΠS. (2)

The moments ηk(si), k = 0, 1, 2, ... of (1) at {s1, ..., sν} =
σ(S), are in one-to-one relation with B∗QΠ (see also [13,

Lemma 3]). Let G ∈ Rν .

Assumption 3. G is such that σ(S) ∩ σ(S −GL) = ∅.

According to [13], a family of reduced order models of

dimension ν, parameterized in G, that match the moments

of (1) at σ(S) is given by

ΣG :

{
ξ̇ = (S −GL)ξ +Gu,

ψ = B∗QΠξ,
(3)

with ξ(t) ∈ Rν .

A reduced order model which preserves the port Hamiltonian

structure and matches the moments of (1) at {s1, ..., sν} is

obtained by means of Krylov projections as in [17].

Theorem 1. [17] Consider system (1) and let x = V ξ, where

V ∈ Rn×ν spans a Krylov subspace. Then, the reduced order

port Hamiltonian system that matches the moments of (1) is

ΣV :

{
ξ̇ = (Jr −Rr)Qrξ +Bru,

ψ = B∗

rQrξ,
(4)

with

Jr = V ∗QJQV, Rr = V ∗QRQV,

Qr = (V ∗QV )−1, Br = V ∗QB.
(5)

�

Let Q ∈ R
ν×ν and R ∈ R

ν be such that the pair (Q,R) is

controllable.

Assumption 4. σ(Q) ∩ σ((J −R)Q) = ∅.

Let Υ ∈ Rν×n be the (unique) solution of the Sylvester

equation

QΥ = Υ(J −R)Q+ RB∗Q. (6)

The moments of (1) at {sν+1, ..., s2ν} = σ(Q) are in one-

to-one relation with ΥB (see [18], [19]). Let H ∈ R1×ν .

Assumption 5. H is such that σ(Q) ∩ σ(Q−RH) = ∅.

According to [18] a family of reduced models of order ν,

parameterized in H , that match the moments of (1) at σ(Q)
is given by

ΣH :

{
ξ̇ = (Q−RH)ξ + ΥBu,

ψ = Hξ,
(7)

with ξ(t) ∈ Rν .

III. MATCHING WITH PRESERVATION OF THE PORT

HAMILTONIAN STRUCTURE

In this section, given a port Hamiltonian system, we

discuss the problem of finding a reduced order port Hamil-

tonian model that achieves moment matching at a set of

finite interpolation points, i.e., we perform port Hamiltonian

structure preservation moment matching. Throughout the rest

of this section, we consider that Assumptions 1 to 5 hold.

Proposition 1. Consider system (1). Let (L, S) be an

observable pair and Π be the unique solution of (2). A

port Hamiltonian reduced order model achieving moment

matching at σ(S) is given by

ΣΠ :

{
ξ̇ = (J̃ − R̃)Q̃ξ + B̃u,

ψ = B̃∗Q̃ξ,
(8)

with ξ(t) ∈ Rν and

J̃ = Π∗QJQΠ, R̃ = Π∗QRQΠ,

Q̃ = (Π∗QΠ)−1, B̃ = Π∗QB.
(9)

�

Remark 1. Let (8) be a reduced order model of (1). Then,

according to [13], [19], model (8) matches the moments of

(1) at σ(S) if there exists an invertible matrix P ∈ Rν×ν

such that

(J̃ − R̃)Q̃P + B̃L = PS,

B∗QΠ = B̃∗Q̃P.
(10)

Conditions (10) hold for P = Q̃−1 = Π∗QΠ. Furthermore,

plugging P into (10) yields equation (2). �

u = I
R1 R2L1, φ1 L2, φ2

C1, q1 C2, q2 R3
y = VC1

Fig. 1. Ladder network

Example 1. Consider the ladder network in Fig. 1, with

C1, C2, L1, L2, R1, R2 the capacitances, inductances,

and resistances of the corresponding capacitors, inductors,

and resistors. The port Hamiltonian representation of this

system is given by (1) with x = [q1 φ1 q2 φ2]
∗ and

J =




0 −1 0 0
1 0 −1 0
0 1 0 −1
0 0 1 0


 , R = diag{0, R1, 0, R2 +R3},

Q = diag

{
1

C1
,

1

L1
,

1

C2
,

1

L2

}
, B = [1 0 0 0]∗.

(11)

Assume C1 = C2, L1 = L2, R1 = R2 = R3
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and C1 6= 0, L1 6= 0, R1 6= 0. The transfer func-

tion of the port Hamiltonian system (11) is K(s) =
L2

1C1s3+3L1R1C1s2+(2L1+2R2
1C1)s+3R1

C2
1
L2

1
s4+3C2

1
L1R1s3+(3C1L1+2C2

1
R2

1)s2+5R1C1s+1
. The first

two moments of (11) at 0 are η0 = 3R1 and η1 = 2L1 −

13R2
1C1. Let L = [1 0] and S =

[
0 1
0 0

]
. Solving equation

(2) yields

Π =




3R1C1 C1(L1 − 13C1R
2
1)

L1 −3R1L1C1

2R1C1 C1(L1 − 10R2
1C1)

L1 −5R1L1C1


 .

A reduced order port Hamiltonian model that matches these

two moments is given by (8) with

J̃ =

[
0 2L1

−2L1 0

]
, R̃ = R1

[
3 −13R1C1

−13R1C1 59R2
1C

2
1

]
,

Q̃ =
1

10L3
1 −R2

1C1(11L2
1 − 44R2

1L1 − 16R4
1)

·

[
5L2

1 −R2
1C1(38L1 − 269R2

1) 59R3
1C1

59R3
1C1 13R2

1 + 2L1

C1

]
,

B̃ = [3R1 2L1 − 13R2
1C1]

∗.
(12)

The transfer function of the reduced order model is KΠ(s) =
a

b

s+ d
a

s2 + c
b
s+ e

b

, with a, b, c given by

a = R2
1C1(16C2

1 + 28R2
1L1C1 − 7L2

1) + 8L3
1,

b = C1(10L3
1 −R2

1C1(11L2
1 − 44R2

1L1 − 16R4
1)),

c = R1C1(40R4
1C

2
1 + 15L2

1 + 4R2
1L1C1),

d = 12R1(L
2
1 + 2R4

1C
2
1 ),

e = 4(L2
1 + 2R4

1C
2
1 ).

�

Remark 2. Let systems (8) and (4) be two reduced order

port Hamiltonian models that match the moments of (1).

Then there exists an invertible matrix T such that ΠT = V
and Jr = T ∗J̃T , Rr = T ∗R̃T , Qr = T−∗Q̃T−1 and Br =
T ∗B̃. �

Remark 3. Let L = [l1 l2 . . . lν ] be such that (L, S) is

observable. Then the solution of the Sylvester equation (2)

is given by a matrix Π(L), yielding a family of reduced

order port Hamiltonian models ΣΠ(L) defined by (8) with

J̃(L), R̃(L), Q̃(L), B̃(L), as in (9). Note that the input

output behaviour is not affected by the choice of l1, ..., lν ,

i.e., all models parameterized in L have the same transfer

function. However, since the port Hamiltonian structure is

a state-space property, the parameters li, i = 1, ..., ν can

be used to enforce state-space/physical properties, e.g. the

reduced order Hamiltonian defined by Q̃, or the reduced

order dissipation matrix R̃, have a desired form. �

Example 2. Consider the ladder network described in Ex-

ample 1 and let C1 = 1, C2 = 2, L1 = L2 = 1 and

R1 = R2 = R3 = 1. Furthermore, let L = [l1 l2],

l1 ∈ R, l2 ∈ R and S =

[
0 1
0 0

]
. (L, S) is ob-

servable if and only if l1 6= 0. Note that Π(l1, l2) =[
3l1 l1 l1 l1

3l2 − l1 l2 − 3l1 l2 −
7
2 l1 l2 − 4l1

]∗

. The family of

port Hamiltonian models, parameterized in l1 and l2 is given

by

J̃(l1, l2) =

[
0 2l21

−2l21 0

]
,

R̃(l1, l2) =

[
3l21 3l2l1 − 11l21

3l2l1 − 11l21 3l22 − 22l1l2 + 41l21

]
,

Q̃(l1, l2) =
1

31l41

[
26l22 − 164l1l2 + 261l21 2l1(41l1 − 13l2)

2l1(41l1 − 13l2) 26l21

]
,

B̃(l1, l2) = [3l1 3l2 − 9l1]
∗.

(13)

For l2 = 41
13 l1, we obtain the subfamily of reduced order

models with the following properties: they match the first

two moments of (11) at 0, preserve the port Hamiltonian

structure of the model and have diagonalized Hamiltonian.

For l2 = 11
3 l1, we obtain a subfamily of port Hamiltonian

reduced order models with diagonal dissipation matrix. All

the parameterized models have the same input-output be-

haviour described by the transfer function KΠ(l1,l2)(s) =
9(3s+4)

31s2+45s+12 . �

We now show that (8) is a subset of the family of reduced

order models (3), obtained employing a particular choice of

the parameter G.

Theorem 2. Let (3) be a reduced order model of (1). Then

(3) is equivalent1 to a port Hamiltonian system (8), i.e. (3)

preserves the port Hamiltonian structure of (1), if and only

if G = (Π∗QΠ)−1Π∗QB. �

Remark 4. Theorem 2 offers a way to find a reduced order

port Hamiltonian model, from a reduced order model that

achieves matching of moments of the given (port Hamilto-

nian) system, by selecting the parameter G. Let (3) be a

reduced order model and let P be such that S∗P + PS ≤
Π∗QBL + L∗B∗QΠ. Then, according to [13, Theorem 4],

there exists G such that the model is passive, i.e., PG =
Π∗QB. If (3) is minimal then 0 < Pa ≤ P ≤ Pr. From this

set of matrices, P = Π∗QΠ is the choice that gives the G
which identifies the port Hamiltonian reduced order model

that achieves moment matching and preserves the structure

of the given system. �

Remark 5. The result in Theorem 2 is consistent with

the result showing the equivalence between the family of

reduced order models obtained by projection and the family

of reduced order models obtained by time-domain moment

matching, see [20]. In detail, let ΣG and ΣV be two reduced

order models of (1). Then selecting T = Π∗QΠ, yields

Π∗QΠ(S−GL) = W̃ ∗(J−R)QṼΠ∗QΠ, Π∗QΠG = W̃ ∗B
and B∗QΠ = B∗QṼΠ∗QΠ, which shows that one port

1Two systems described by state-space equations are called equivalent if
they have the same transfer functions, i.e., the same input-output behaviour.
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Hamiltonian model can be obtained from the other via a

coordinate transformation. �

Proposition 2. Consider system (1). Let (Q, R) be an

observable pair and Υ be the unique solution of equation (6).

A port Hamiltonian reduced order model achieving moment

matching at σ(Q) is given by

ΣΥ :

{
ξ̇ = (J̃ − R̃)Q̃ξ + B̃u,

ψ = B̃∗Q̃ξ,
(14)

with ξ(t) ∈ Rν and

J̃ = ΥJΥ∗, R̃ = ΥRΥ∗,

Q̃ = (ΥQ−1Υ∗)−1, B̃ = ΥB.
(15)

�

Remark 6. Let R = [r1 r2 . . . rν ]∗ be such that (Q,R)
is controllable. Then the solution of the Sylvester equation

(6) is given by a matrix Υ(R), yielding a family of reduced

order port Hamiltonian models ΣΥ(R) defined by equation

(14) with J̃(R), R̃(R), Q̃(R), B̃(R) as in (15). All models

parameterized in R have the same transfer function. Since

the port Hamiltonian structure is a state-space property, the

parameters ri, i = 1, ..., ν can be used to enforce state-

space/physical properties. �

Example 3. Consider the ladder network described in Ex-

ample 2 and let R = [r1 r2]
∗, r1 ∈ R, r2 ∈ R. (Q,R) is

controllable if and only if r1 6= 0. Solving (6), we obtain

Υ(r1, r2) =

[
3r1 −r1 2r1 −r1

3r2 − r1 3r1 − r2 2r2 − 7r1 4r1 − r2

]
.

The family of port Hamiltonian models, all with the transfer

function KΥ(s) = 9(3s+2)
32s2+27s+6 , parameterized in r1 and r2

is given by

J̃(r1, r2) =

[
0 −2r21

2r21 0

]
,

R̃(r1, r2) =

[
3r21 3r2r1 − 11r21

3r2r1 − 11r21 3r22 − 22r1r2 + 41r21

]
,

Q̃(r1, r2) = 1
32r4

1

[
204r2

1 − 124r1r2 + 19r2

2 r1(62r1 − 19r2)
r1(62r1 − 19r2) 19r2

1

]
,

B̃(r1, r2) = [3r1 3r2 − 9r1]
∗.

(16)

For r2 = 62
19r1 we obtain a subfamily of port Hamiltonian

reduced order models with diagonalized Hamiltonian. For

r2 = 11
3 r1 we obtain a subfamily of port Hamiltonian

reduced order models with diagonal dissipation matrix. �

We now show that (14) is a member of the family of reduced

order models (7), for a particular choice of the parameter H .

Lemma 1. A family of models (7) contains a passive model

if and only if there exists P = P ∗ > 0 ∈ Rν×ν such that

PQ∗ + QP ≤ RB∗Υ∗ − ΥBR∗. �

The next result shows how to obtain a port Hamiltonian

system from a model (7). It is the dual version of [8, Theorem

3].

Lemma 2. Let (7) be a passive reduced order model

of system (1) and let P be as in Lemma 1. Then there

exist matrices J̃ = 1
2 [P (Q − RH) − (Q − RH)∗P ],

R̃ = − 1
2 [P (Q − RH) + (Q − RH)∗P ], Q̃ = P−1 and

H = (P−1ΥB)∗ such that (7) is a port Hamiltonian model

described by equations of the form (14). �

Theorem 3. Let (3) be a reduced order model of system (1).

Then (7) is equivalent to the port Hamiltonian system (14)

if and only if H = B∗Υ∗(ΥQ−1Υ∗)−1. �

IV. MARKOV PARAMETERS MATCHING WITH

PRESERVATION OF THE PORT HAMILTONIAN STRUCTURE

A. Matching at s = ∞ - The general case

Consider a linear system described by the equations

ẋ = Ax+Bu,

y = Cx,
(17)

with x(t) ∈ Rn, y(t) ∈ R, u(t) ∈ R. Let K(s) = C(sI −
A)−1B be the transfer function. The first ν + 1 Markov

parameters are the coefficients of the series expansion of

K(s) around s = ∞, i.e. they are the first ν + 1 moments

of K(s) at ∞, namely

η0(∞) = 0, ηk(∞) = CAk−1B, k = 1, ..., ν. (18)

Let τ ∈ C and define the function K̃(τ) = K
(

1
τ

)
. Note that

K̃(τ) = C(I − Aτ)−1Bτ and
dk+1K̃(τ)

dτk+1 = (k + 1)!C[(I −
Aτ)−k−1AkB + (I −Aτ)−k−2Ak+1Bτ ], yielding

1

(k + 1)!

dk+1K̃(τ)

dτk+1
= C(I −Aτ)−k−2AkB.

The moments of K̃(τ) at τ = τ∗ ∈ C are given by

η̃k(τ∗) =
1

(k + 1)!

dk+1K̃(τ)

dτk+1

∣∣∣∣∣
τ=τ∗

(19)

and the moments η0(∞), ..., ην (∞) are given by

ηk(∞) =
1

(k + 1)!

dk+1K̃(τ)

dτk+1

∣∣∣∣∣
τ=0

= η̃k(0).

We now consider the following matching problem. Given the

function K̃(τ) and the point τ∗ ∈ C find K̂(τ) such that the

first ν + 1 moments at τ∗ match, i.e. η̃k(τ) = dk+1K̃
dτk+1 (τ∗) =

dk+1K̄
dτk+1 (τ∗) = η̄k

(
1
τ∗

)
, for all k = 0, ..., ν. In particular, we

are interested in the case τ∗ = 0, which recovers the Markov

parameter matching problem.

Proposition 3. Consider the system (17) and τ∗ ∈ C. Let

L = [1 0 0 . . . 0] ∈ R
1×(ν+1),

S =




τ∗ 1 0 . . . 0
0 τ∗ 1 . . . 0
...

...
. . .

. . .
...

0 . . . 0 τ∗ 1
0 . . . . . . 0 τ∗



∈ R

(ν+1)×(ν+1).
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1) Let Π ∈ Rn×(ν+1) be the solution of the generalized

Sylvester equation

AΠS +BL = Π. (20)

Then the moments of K̃(τ) = K(1/τ) at σ(S) are in

one-to-one relation with

[η̃0(τ
∗) η̃1(τ

∗) . . . η̃ν(τ∗)] = CΠS. (21)

2) Let Π̄ be the solution of the generalized Sylvester

equation

AΠ̄S +BLS = Π̄. (22)

Then the moments of K̃(τ) = K(1/τ) at σ(S) are in

one-to-one relation with

[η̄0(τ
∗) η̄1(τ

∗) . . . η̄ν(τ∗)] = CΠ̄. (23)
�

Aẋ = x − Bu̇
y = Cx

ω̇ = Sω

θ = Lω

θ = u y

Fig. 2. Interconnection of the signal generator and the system (25), with

transfer function K̃(s).

Remark 7. Consider the signal generator

ω̇ = Sω, θ = Lω, (24)

with (L, S) observable, interconnected to the system

Aẋ = x−Bu̇

y = Cx,
(25)

through u = θ. Note that the transfer function of (25) is

K̃(τ). The moments of K̃(τ) at σ(S) are in a one-to-one

relation with the steady-state response of the interconnection

between the signal generator and (25). Similarly, consider the

interconnection, through u = θ, of the signal generator with

the system

Aẋ = x−Bu,

y = Cẋ,
(26)

having the transfer function K̃(τ). The moments of K̃(τ)
at σ(S) are in a one to one relation with the steady-state

response of the interconnection between the signal generator

and (25). �

Assumption 6. λµ 6= 1, for any λ ∈ σ(A) and µ ∈ σ(S).

By Assumption 6, Π is the unique solution of (20) and Π̄ is

the unique solution of (22). Consider a pair (L, S) and the

system

ΣΠ :

{
ξ̇ = Fξ +Gu,

ψ = Hξ,
(27)

with ξ(t) ∈ Rν and Π = Π, or Π = Π̄. Let K̃Π(τ) be

the transfer function of system (27). Then, if Π = Π and

λµ 6= 1, for any λ ∈ σ(F ) and µ ∈ σ(S), (27) is a reduced

order model that matches the first ν moments of K̃(τ) at τ∗

if there exists an invertible matrix P ∈ Rν×ν such that

CΠS = HPS, FPS +GL = P. (28)

If τ∗ = 0, then the Markov parameters of K̃Π(τ) match the

first ν Markov parameters of K(s). Furthermore, for Π = Π̄,

the system (27) is a reduced order model that matches the

first ν moments of K̃(τ) at τ∗ if there exists an invertible

matrix P̄ ∈ Rν×ν such that

CΠ̄ = HP̄ , F P̄S +GLS = P̄ . (29)

Remark 8. Assume S is invertible, i.e. τ∗ 6= 0. Let P = I .

A reduced order model that matches the moments of K̃(τ)
at τ∗ is given by equations (27) with F = (I − GL)S−1

and H = CΠ. Furthermore, if P̄ = I , according to (29)

another reduced order model that matches the moments of

K̃(τ) at τ∗ is given by equations (27) with F = S−1 −GL
and H = CΠ̄. �

B. Matching at s = ∞ - The port Hamiltonian case

Consider the port Hamiltonian system (1) with the transfer

function K(s) = B∗Q(sI − (J − R)Q)−1B. Suppose

Assumption 6 holds. The moments of K̃(τ) = K(1/τ) at

τ = τ∗ are in a one-to-one relation with B∗QΠS, where Π
is the solution of the generalized Sylvester equation

(J −R)QΠS +BL = Π. (30)

In addition, let Π̄ be the unique solution of the generalized

Sylvester equation

(J −R)QΠ̄S +BLS = Π̄. (31)

The moments of K̃(τ) = K(1/τ) at τ = τ∗ are in a one-

to-one relation with B∗QΠ̄. The first ν Markov parameters

of (1) are the moments of K̃(τ) for τ∗ = 0. Assume there

exists an invertible matrix P such that a reduced order model

described by equations (27) exists and the relations (28)

are satisfied. Furthermore, assume there exists an invertible

matrix P̄ such that conditions (29) are satisfied.

Proposition 4. Consider system(1). Let (L, S) be an observ-

able pair. Assume λµ 6= 1, for any λ ∈ σ((J̃ − R̃)Q̃) and

µ ∈ σ(S). Consider the port Hamiltonian system

ΣpH
Π

:

{
ξ̇ = (J̃ − R̃)Q̃ξ + B̃u,

ψ = B̃∗Q̃ξ,
(32)

with ξ(t) ∈ Rν and

J̃ = Π
∗QJQΠ, R̃ = Π

∗QRQΠ,

Q̃ = (Π∗QΠ)−1, B̃ = Π
∗QB,

(33)

and Π = Π, or Π = Π̄, where Π is the unique solution of

equation (30) and Π̄ is the unique solution of equation (31).

Then (32) is a reduced order model matching the moments

of K̃(τ) = K(1/s) at σ(S), where K(s) is the transfer

function of (1). �

Theorem 4. Let system (27) be a reduced order model of

system (1). Then equations (27) are equivalent to a port
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Hamiltonian system (32) if and only if G = Π∗QB and

H = G∗(Π∗QΠ)−1. �

Remark 9. Theorem 4 holds also for Π = Π̄, where Π̄ is

the (unique) solution of (31). �

Remark 10. If τ∗ = 0, the model ΣΠ matches the first ν
Markov parameters of (1) and preserves the port Hamiltonian

structure of the given system. This result is along the lines of

[9], with the difference that we do not need to compute any

additional coordinates transformation such that in the new

coordinates the Hamiltonian is the square of the norm of the

state vector. �

Example 4. Consider the ladder network in Example 1, with

C1 = 1, C2 = 2, L1 = L2 = 1 and R1 = R2 = R3 = 1.

Let L = [l1 l2 l3]
∗, l1 ∈ R, l2 ∈ R, l3 ∈ R and S =


0 1 0
0 0 1
0 0 0


. Solving equation (30) yields

Π(l1, l2, l3) =




l1 0 0 0
l2 l1 0 0

l3 − l1 l2 − l1 l1 0



∗

.

The family of port Hamiltonian models, parameterized in

l1, l2, l3 is given by

J̃(l1, l2, l3) =[
0 −l21 l1(l1 − l2)
l21 0 −3l21 + l1l3 − l22 + l1l3

l1(l1 − l2) −3l21 + l1l3 − l22 + l1l3 0

]
,

(34)

R̃(l1, l2, l3) =




0 0 0
0 l21 l1(l1 − l2)
0 l1(l1 − l2) (l1 − l2)

2


 ,

Q̃(l1, l2, l3) =

1

2l61



q11(l1, l2, l3) q12(l1, l2, l3) q13(l1, l2, l3)
q12(l1, l2, l3) q22(l1, l2, l3) q23(l1, l2, l3)
q13(l1, l2, l3) q23(l1, l2, l3) q33(l1, l2, l3)


 ,

B̃(l1, l2, l3) = [l1 l2 l3 − l1]
∗,

(35)

with

q11(l1, l2, l3) = 5l21l
2
2 − 2l1l3l

2
2 + l42 − 2l32l1 + 3l41 − 2l31l3

+ l23l
2
1 − 2l31l2 + 2l2l3l

2
1,

q12(l1, l2, l3) = l41 − 4l31l2 + l21l2l3 − l32l1 + 2l21l
2
2 − l31l2,

q13(l1, l2, l3) = l21(l
2
2 − l1l2 + l21 − l1l3),

q22(l1, l2, l3) = l21(l
2
2 − 2l1l2 + 3l21),

q23(l1, l2, l3) = l31(l1 − l1l2),

q33(l1, l2, l3) = l41. (36)

The input-output behaviour of the family of models (34) is

given by the transfer function K̃(s) = s2+s+2
s(s2+s+3) . �

V. CONCLUSIONS

In this paper, within the family of reduced order models

that achieve moment matching, we have characterized the

port Hamiltonian models. First, we have characterized the

equations of the port Hamiltonian reduced order models,

based on the definition of the set of the moments to be

matched. Then, we have shown how to find a port Hamilto-

nian reduced order model from a parameterized family of re-

duced order models that achieve moment matching. We have

also discussed the problem of Markov parameters matching

and given a characterization of the port Hamiltonian models,

within the family of models that achieve Markov parameters

matching.
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