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Abstract— Cancer encompasses various diseases associated
with loss of cell-cycle control, leading to uncontrolled cell pro-
liferation and/or reduced apoptosis. Cancer is usually caused by
malfunction(s) in the cellular signaling pathways. Malfunctions
occur in different ways and at different locations in a pathway.
Consequently, therapy design should first identify the location
and type of malfunction and then arrive at a suitable drug
combination. We consider the growth factor (GF) signaling
pathways, widely studied in the context of cancer. Interactions
between different pathway components are modeled using
Boolean logic gates. All possible single malfunctions in the
resulting circuit are enumerated and responses of the different
malfunctioning circuits to a ‘test’ input are used to group the
malfunctions into classes. Effects of different drugs, targeting
different parts of the Boolean circuit, are taken into account in
deciding drug efficacy, thereby mapping each malfunction to
an appropriate set of drugs.

I. INTRODUCTION

In eukaryotic multi-cellular organisms, life is sustained by

a systematic coordination between different cells and all extra

cellular signals. Each cell has its own functionality and its

future is determined by various intrinsic and extrinsic biolog-

ical signals. For instance, a cell’s proliferation, differentiation

or induction of apoptosis are determined by a number of

different signals. From the time of a cell’s birth (by division

of its parent cell), the cell’s state is tightly controlled by

different biological regulations. Cell signaling is a form of

communication between different cells. These signals can be

chemical or electrical impulses. Communication via electri-

cal impulses is typically associated with nerve cells (neurons)

which are attached to each other and the action potential

transmits from neuron to neuron. For general somatic cells,

proteins are usually the signaling molecules used for com-

munication. The interactions between the different signaling

molecules are multivariate in nature and hence difficult

to study. As a result, historically biologists have focussed

on studying the marginal interaction between the signaling

molecules, leading to what is called pathway information.

Although pathway knowledge cannot provide the complete

multivariate picture of the overall cellular signal transduction,

it is clear that one has to have a mechanism for incorporating

this prior information into any signal transduction model that

one develops. A procedure to do precisely that was recently

developed in [1]. In that paper, tools from digital system

design were used to generate Boolean networks consistent

with given pathway information. Furthermore, it was shown
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using a specific biological example that a network designed

using that approach could replicate relevant experimentally

observed behavior from the published literature.

In this paper, our goal is to go a few steps further. Here,

we are not content with just producing a Boolean network

model from given pathway information. Instead our objective

is to utilize such a model to (i) enumerate all the possible

fault scenarios; (ii) use the response of the model to a

test input to determine which fault or class of faults has

occurred; and (iii) finally use this information to prescribe

an appropriate therapeutic action. To keep the discussion

biologically focussed, we will consider the specific case of

growth factor signaling pathways.

The paper is organized as follows. In section II, pathways

and networks are defined in a formal way. In section III, can-

cer is modeled as faults in the underlying signaling network.

In section IV, drug therapies are modeled as interventions

to alter aberrant network behavior emanating from a fault.

Section V gives a biological example showing the power

of our methodology. Specifically, fault classification and

intervention results for our example are presented. Finally

section VI contains some concluding remarks.

II. FROM PATHWAYS TO NETWORKS

From a systems viewpoint, the behavior of a living cell

is analogous to that of a multi-input multi-output (MIMO)

feedback system. Although the actual protein concentrations

in the cell are continuous variables, there are at least three

reasons why a discrete type of modeling would be preferred.

First, although the continuous model may dictate the exact

dynamics, using the current technology it is impossible to

reliably measure the concentration of each protein inside

the cell in real time. Second, many of the genes/proteins

inside the cell exhibit ON/OFF switch-like behavior which

is more readily accommodated using quantization within the

digital domain. Third, the discrete-time systems are easier

to analyze, model and control in real time in comparison to

continuous-time systems. In the next subsection, we intro-

duce Boolean Networks which constitute a popular frame-

work for discrete-time discrete-space modeling of biological

systems including genetic regulatory networks. In addition,

we formally define signaling pathways.

A. Boolean Networks and Pathways

A Boolean Network (BN)([2], [3], [4]), B = (V, F ), on n
genes/proteins is defined by a set of nodes (genes/proteins)

V = {x1, ..., xn}, xi ∈ {0, 1}, i = 1, ..., n, and a list

F = (f1, ..., fn), of Boolean functions, fi : {0, 1}n+m →
{0, 1}, i = 1, ..., n, m ≥ 0 is the number of external inputs
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e.g, growth factors, stresses, metabolites etc. Each node xi

represents the state/expression of the gene/protein i, where

xi = 0 means that gene/protein i is OFF (unexpressed

or inactive according to their biological significance) and

xi = 1 means that gene/protein i is ON (expressed or

active). The function fi is called the predictor function for

gene/protein i. Updating the states of all genes/proteins in B
is done synchronously at every time step according to their

predictor functions. If the predictor functions are known, the

dynamics of the boolean network will solely depend on the

set of input variables. The dynamic behavior of the boolean

network is quite different in the presence of different external

inputs. For m different external binary inputs we can model

the dynamical system as 2m different closed BNs, each

one of which we may define as a ‘context’. The switching

between contexts here occurs in response to changes in the

activity status of external input variables and is, therefore,

deterministic. A stochastic view of context switching has

been adopted in several earlier papers, for instance [5], [6].

In this paper, the starting point is the theoretical con-

struction of context sensitive BNs or input-output BNs from

the known biological knowledge of signal transduction path-

ways. Towards this end, define the term pathway segment

A
t:a,b
−→ B to mean that if gene/protein A assumes the value

a ∈ {0, 1} then gene/protein B transitions to b ∈ {0, 1}
in no more than t subsequent time steps. A pathway is

defined to be a sequence of pathway segments of the form

A
t1:a,b1
−→ B

t2:b2,c
−→ C. A systematic general procedure for

generating a family of boolean networks consistent with a

set of given signaling pathways, or minor variations thereof,

is presented in [1]. A network generated by such a procedure

will form the starting point for the exposition of the results

of this paper although, due to space limitations, the detailed

steps involved will not be discussed here.

While on the topic of Boolean Network modeling, it is

appropriate to point out that any Boolean Network can be of

one of two types, either with feedback or without feedback.

A non-feedback type boolean network can be considered to

be a digital relay where the input signals are processed via

digital circuitry to generate the relevant outputs. Although

biological networks as a whole are of the feedback type,

for the sake of simplicity of modeling we can decompose

a large biological network (which is mostly unknown) into

smaller modules (with and without feedback). This modular

approach has yielded enormous benefits in designing very

large digital networks for digital Integrated Circuit (IC)

chips. It is possible that the adoption of a similar approach

in systems biology could yield similar benefits. Although we

believe that this modular approach to modeling in systems

biology merits further study, we will not pursue it here

since, as we will see, the biological example of this paper

involving the Growth-Factor mediated signal transduction

pathways can be adequately modeled using a non-feedback

input-output digital circuit.

III. MODELING CANCER AS FAULTS IN THE SIGNALING

NETWORK

In molecular biology, the marginal behavior of the normal

cell is described using signaling pathways. Boolean networks

represent a paradigm that can be used to incorporate this

information to model the overall dynamic behavior of the

cell, consistent with the pathway knowledge. However, the

translational motivation behind this type of dynamical mod-

eling is to facilitate corrective intervention when the cell

behaves abnormally. Cancer is actually a disease of several

faults in the network. A ‘fault’ is defined by any structural

error of the physical system, such that the dynamics become

aberrant. For example, the accumulation of point mutations

in the genomic DNA may cause the signaling pathways to

behave erratically leading to proliferation. On the other hand,

sometimes the fault may not be in the genetic code of a

particular protein, rather in the protein synthesis factory ribo-

some, or in some control mechanism of alternative splicing.

The fault could also be in the chromosomal spindle resulting

in unequal splitting of the chromosomal DNA between the

two daughter cells during cell division. Any of these different

kinds of errors could cause structural changes in the regu-

latory network, thereby changing its dynamics and steady-

state behavior. In this section, we try to model different

types of biological errors within the Boolean network (digital

electronics) framework. In a Boolean Network, the faults can

be broadly divided into two types.

• Stuck-at Fault: A stuck-at fault means that a point

in the network circuitry is stuck to a particular value.

As a result, the incoming information is no longer

communicated beyond the faulty point; instead, only

the stuck-at value is passed on to the outgoing port.

Clearly stuck-at faults can commonly be of two types:

‘stuck-at-1’ faults and ‘stuck-at-0’ faults with obvious

interpretations. We next present an example to show that

modeling via stuck-at faults makes biological sense.

In the Mitogen Activated Protein Kinase (MAPK) path-

ways, an important signaling protein kinase (molecule

that adds a phosphate group) is the Ras protein. The

Ras protein is activated when it forms a complex

with guanosine triphosphate (GTP). The removal of

one phosphate group from GTP produces guanosine

diphosphate( GDP) and this renders the complex inac-

tive. Ras is phosphorylated (given an additional phos-

phate group) by many upstream proteins (by Growth

factor mediated pathways). Once activated, Ras acti-

vates downstream proteins which have transcriptional

control on cyclin D1 and hence cell cycle progres-

sion. The inherent enzymatic GTPase (GTP degrad-

ing) activity of Ras hydrolyzes (breaks up with the

addition of water) the active Ras-GTP complex into

the inactive Ras-GDP complex, so that Ras activity

ceases after some time delay. However, if due to some

mutations in the Ras gene, the GTPase activity of

the Ras protein is lost, the once activated Ras protein

will be constitutively (always) active and will signal
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the downstream transcription causing proliferation and

cancer [7]. This constitutive activation of Ras can be

modeled as a ‘stuck-at-1’ fault in the Ras node of the

Boolean network model of the cell signal transduction.

• Bridging Fault: As the name suggests, a bridging fault

refers to the disruption of old interconnections and

incorporation of new interconnections in the network.

Bridging faults also make biological sense. The molec-

ular signal transduction relies on the sequences and 3

dimensional conformations of the molecules involved.

So, any variation in the sequence and 3 dimensional

conformation of a molecule (mainly protein) will alter

its functionality. As a result, many pathways involving

that molecule will become inactive while the altered

molecule may open up new ones. Without any loss

of generality, this kind of aberrant behavior could be

modeled as a bridging fault in the boolean network.

Stuck-at faults and Bridging faults are illustrated in Fig.

1(a)& Fig. 1(b), where a fault free Boolean network is shown

in Fig. 1a while the corresponding faulty network is shown

in Fig. 1b.

Fig. 1. Different Fault Modeling and Drug Modeling in a Boolean Circuit

Based on the preceding discussion, it is clear that cancer

can be broadly modeled as multiple stuck-at and bridging

faults in the boolean networks corresponding to the normal

signaling pathways. In [8], extensive theoretical work on

digital system testing and fault modeling is presented which

engineers have been successfully using for digital circuit

testing for quite some time now. One of the goals of this

paper is to use a similar approach for the prediction of

fault locations in cancerous networks and the design of

intervention policies to compensate for the effect of these

faults. For the sake of simplicity, we will focus only on single

stuck-at faults. The more general case of cancer modeling

involving multiple stuck-at and bridging faults will be taken

up in future publications.

A. Test Inputs and Fault Detectability

In this paper we will primarily focus on the non-feedback

input-output modules of biological systems. Consider the BN

of Fig. 1a which has 4 inputs and 2 outputs as shown.

Now suppose that the only possible fault in this network

is the stuck-at-1 fault shown in Fig. 1b. Following [8], for

a combinatorial circuit (i.e, non-feedback BN) N , let Z(x)

denote the output vector for the input vector x. The presence

of a fault f transformsN into Nf with output function Zf (x)
for the same input vector x. We say that a test vector t detects

the fault f iff Zf (t) 6= Z(t). Clearly, for the stuck-at-1 fault

in Fig. 1b, the test input vector ABCD = 0000 can detect

the fault because, Z(0000) = 00 while Zf(0000) = 10.

However, the test input vector 1111 cannot detect the fault

since Z(1111) = Zf (1111) = 11. These ideas about fault

detectability will be applied to a biological example in

section V-B.

IV. MODELING DRUG INTERVENTION

In a cancerous network, identification of the fault locations

is only a part of the task. The major challenge lies in finding

the best possible drug or drug combinations with which to

intervene. From a theoretical perspective, we can consider

the non-cancerous and cancerous (faulty) networks as two

different boolean networks. In general, it will be impossible

to make a cancerous network revert to the original non-

cancerous one using any sort of drug intervention, because

the mutations leading to cancer are usually irreversible.

Instead, what the best drug combination could do is to nullify

some of the lethal effects (like constitutive cell division)

of the cancerous faulty system and try to kill the cell by

inducing apoptosis (programmed cell suicide).

The following modeling of drug intervention is inspired

by the biological effect of the drug on the pathways. A drug

goes into the cell to bind a particular kinase to deactivate

its phosphorylating capability. This means that the drug can

cut the effect of that particular kinase on molecules further

downstream. Hence, the drug can be modeled as an inverted

input to an ‘AND’ gate at the target point of the boolean

network. This schematic modeling of drug intervention is

shown in Fig. 1(c).

In this paper, our goal is not to derive the mathematical

expression for the optimal drug intervention policy, since

most mathematically derived policies may be difficult, or im-

possible, to biochemically implement. Instead, our objective

is to model known and well tested cancer drugs separately

and then to find the best sub-optimal combination of drugs

for a particular cancerous network. The method is described

in detail in section V, where it is applied to a biological

example.

V. BIOLOGICAL EXAMPLE: GROWTH FACTORS AND

CELLULAR SIGNAL TRANSDUCTION

Some of the most important cancer related signal trans-

duction pathways are the growth factor activated pathways

shown in Fig. 2. Here the inputs EGF , HBEGF , IGF
& NRG1 denote the mitogens or growth factors, and the

outputs are SP1, ELK1-SRF , ELK4-SRF , FOS-JUN ,

CCND1, BCL2 and BCL2L1. Of these, SP1, ELK1-

SRF , ELK4-SRF , FOS-JUN are transcription factors of

interest and CCND1, BCL2 and BCL2L1 are proteins that

are indicative of ‘proliferation’ and ‘apoptosis’ respectively.

In normal cells, growth and division are initiated only by

proper signaling from different growth factors including
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EGF, HBEGF, IGF, NRG1 etc. These pathways collectively

work as a conduit of communication between the cell

membrane and the genome to regulate the transcription of

some genes important in cell cycle control. Mutations and

alterations (faults) in these pathways actually lead to different

types of cancer. In [9], a detailed description of the GF-

activated pathways along with their role in cell cycle regu-

lation and cancer development is presented. These important

pathways can be modeled as a combinatorial boolean circuit

which is shown in Fig. 3(a).

Fig. 2. A Schematic Diagram of the Growth Factor Signaling Pathways

A. Modeling Faults and Therapeutic Interventions Using the

Boolean Circuit

Any mutation of any gene or post transcriptional modi-

fication of the corresponding protein can constitutively turn

‘ON’ or ‘OFF’ that particular protein. This fits in precisely

within the stuck-at fault paradigm considered in section III.

For the sake of simplicity, in our growth factor pathways case

study, we will consider only single faults of the stuck-at type.

In addition, we will only consider the stuck-at faults which

can lead to cancer. For the Boolean circuit shown in Fig.

3(a) the possible locations for the different stuck-at faults,

which can induce proliferation and stop apoptosis, are shown

in Fig. 3(b). The numbers are color coded to distinguish

between the ‘stuck at 1’ and ‘stuck at 0’ faults. Specifically,

the black numerals refer to the stuck-at-one faults while the

red numerals refer to the stuck-at-zero faults.

As discussed in section IV, a drug targets particular

enzymes along the pathways and cuts off the connectivity

of that enzyme to the downstream proteins. This connection

cleavage can be achieved via various mechanisms. For in-

stance, the drug may have the capability to bind a target

protein and inhibit it from undergoing phosphorylation. For

our case study, we consider six potent cancer drugs. Our

objective here is not to study their detailed mechanisms of

Fig. 3. The Boolean model,fault locations and the drug intervention points
in the GF Pathways

action. Instead, we are interested in using the knowledge

from biologists to mark in their intervention locations and

corresponding activities on the Boolean circuit of Fig. 3(a).

This leads to the effects shown in Fig. 3(c). Such pictorial

representation of the drug activity information is useful.

For instance, let us consider the drug ‘lapatinib’ which

is known to work on EGFR,ERBB2,EFGR or ERBB3 by

inhibiting the signaling capabilities of these receptor tyrosine

kinases. From Fig. 3(c), one can conclude that the drug ‘lap-

atinib’ will likely be responsive for the treatment of cancers

caused by mutations in the receptor tyrosine kinases although

it will probably be ineffective against cancers caused by

mutations in the Ras protein, which lies further downstream.

Two central objectives of this paper are: (i) to use the

information contained in Fig. 3(b) to group the numbered

faults into different classes; and (ii) to use the information

in Fig. 3(c) to predict which set of drugs/drug combinations

would be most effective against a particular fault. These

objectives are pursued in the next two subsections.

B. Fault Analysis and Classification

From Fig. 3(b), we see that there are 24 possible fault

locations. Alternatively, we could have arrived at the fault

locations based on our biological understanding. As already

indicated, in this paper we will be confining ourselves to

the analysis of single faults only. So, for our purposes,

the fault can be any one of the 24 faults in the figure.

Carrying forward the discussion from section III, we use

f1
i to denote the fault at the ith location. Then the sample

space for the single fault modeling can be defined as
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F 1 = {f1
1 , f

1
2 , f

1
3 , · · · , f

1
24}. Here the superscript 1 refers

to the fact that we are considering only single faults. Now

if f1
i ∈ F 1 occurs, an input vector t detects the fault iff

the output vector Z in the faultless system differs from

the output vector Zf1
in the faulty system. Mathematically

Z(t) 6= Zf1
(t). If we cannot find such an input t, we say

the fault is undetectable. In the circuit shown in Fig. 3(b),

the only input vector which can detect any f1
i ∈ F 1 for

this particular network is V = 00001 which is achieved

with EGF = 0, HBEGF = 0, IGF = 0, NRG1 = 0
and PTEN = 1. This result is not at all surprising.

Indeed, when there is no growth factor outside the cellular

membrane and also the tumor suppressor protein PTEN
is active, we expect to see all the proliferative transcription

factors and anti-apoptotic factors deactivated or turned

‘OFF’. However, if there are faults (mutations) in the signal

transduction pathways, we could see proliferation even in

the absence of active input signals (mitogens).

1) Single Fault Simulation: In this subsection, com-

puter analysis for the single fault model of the circuit

in Fig. 3(a) is presented. The single fault model of the

boolean circuit is shown in Fig. 3(b). The input vec-

tor is V =[EGF ,HBEGF ,IGF ,NRG1,PTEN ]. Each in-

put can take binary values. For this simulation we take

V =00001. The output vector is Z=[FOS-JUN ,SP1,SRF -

ELK1,SRF -ELK4,BCL2,BCL2L1,CCND1]. For the

fault free circuit we get the output Z(00001) = 0000000.

Now for the 24 different faults which may induce cancer in

the given circuit, the outputs are tabulated in Fig. 4(a).

16,17,18

Fig. 4. Single Fault Simulation and the equivalent fault groups for input
= 00001

2) Fault Classification: From the outputs shown in Fig.

4(a), we can classify the faults into different groups of

equivalent faults. Faults which generate the same output

vectors for a particular test input vector are called ‘equivalent

faults’ with respect to that input test vector. The information

in Fig. 4(a) leads us to sets of equivalent faults for the test

input vector V = 00001. The equivalent fault groups along

with their corresponding outputs are shown in Fig. 4(b).

From Fig. 4(b), it is clear that any fault in the locations

13, 14, 15 cannot be detected from the output since the

corresponding output is the same as that for the fault-free

case. Hence, this class of faults is said to be ‘undetectable’.

It is true that ‘undetectable faults’ cannot be compensated

for based on observations of the output. However, this is not

a major concern especially if we are only interested in the

behavior of the outputs.

C. Simulation Results for Drug Intervention

Since we have only the 6 available drugs, we define a drug

vector of length 6 as follows. If a particular drug is applied it

is assigned the value 1, otherwise it is assigned the value 0.

Consequently, the drug vector space has cardinality 26 = 64.

The simulation is carried out for all of the possible faults,

taken one at a time, and for each of the 64 different drug vec-

tors, and the corresponding outputs are computed. The drug

vector is defined by [lapatinib, AG825, AG1024, U0126,
LY 294002, T emsirolimus].

1) Continuous real mapping of the output vector: We

take the same input vector (00001) that we have previously

used for the fault analysis. In the no fault case, with the drug

vector 000000 we get the output 0000000 which is certainly

non-proliferative. However, in the presence of faults, the

outputs will be different. The objective of this simulation

is to determine the best possible drug sequence which can

nullify the effect of the fault, i.e, produce an output close

to 0000000 or away from the proliferative output 1111111.

We note that although all the output vectors are represented

as binary numbers, assigning the usual binary weights to

the digits here does not make any biological sense. In

other words, 1111111 here does not really mean 127 or

0000111 does not really mean 7. Consequently, we need

to determine some transformation which will map these

128 = 27 output vectors to a continuous real number scale

in a biologically meaningful way. One way to do this is to

proceed as follows.

If we examine the components of the output vector, we

see that out of the 7 components, 4 are transcription factors

which express (turn ON) the important genes leading to

proliferation. The remaining 3 components capture the

activation status of some key proteins in the cytoplasm.

So, these two groups of outputs have different biological

significance and should be encoded separately. A possible

mathematical transformation on the output vectors is

described next. The output vector is

OUTPUT=[FOS-JUN ,SP1,SRF -ELK1,SRF -

ELK4,BCL2,BCL2L1,CCND1].
Now suppose we take the number of active transcription

factors as the first variable and the number of active

remaining outputs as the second variable. The mathematical

transformation makes use of these two variables as described

in Eqn. 1 & Eqn. 2 below:

Output = [a, b, c, d, e, f, g]

First = a+ b+ c+ d

Second = e+ f + g (1)
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P = First× Second

S = First+ Second

ψ(Output) = αP + (1 − α)S, (2)

where α ∈ (0, 1) is a design parameter. With α chosen as

0.5, the function ψ’s values over the full sweep on the drug

vectors and faults are shown in Fig. 5. Here the fault numbers

and drug vectors are listed along the horizontal and vertical

directions respectively. The results are color coded for easier

visualization, and the color codes used are tabulated on the

right side in Fig 5 .

Fig. 5. Drug vector Response in the presence of a single fault with the
color code

2) Interpretation of the Result: From the output tables

and the color codes we see that the color green corresponds

to non-proliferation while the color red corresponds to

a high chance of proliferation even in the absence of

mitogenic signals. So, the best drug vector will be the

one which can drive the largest number of faulty circuits

towards non-proliferative (green) outputs. For example, the

drug vector 000110 drives all of the faults 1 − 6 to green

and most of the remaining boxes along that row away from

red. So, the drug combination of U0126 and LY294002

will likely be effective in producing a non-proliferative

output. From Fig. 5, also note that neither of these drugs

by themselves would have been able to achieve the same

effect. Another point to note is that there can be faults (like

fault 18 in Fig. 5) whose output cannot be altered using any

drug sequence. This is not at all surprising and is consistent

with the pathway information that we have. Indeed, the

fault location 18 is at the ERK1/ERK2 protein and there

is no available drug in our list downstream of that protein.

Consequently, no drug in this particular case study would be

able to block the effect of a mutated ERK1/ERK2 protein.

VI. CONCLUDING REMARKS

In this paper, we have presented a new approach for

designing cancer therapies based on available pathway in-

formation and the manner in which drugs target specific

pathway connections. Relevant pathway information is first

used to produce Boolean networks whose state transitions

are consistent with the given pathway information, or minor

variations of it. The Boolean network is then realized as a

digital circuit which is used to (i) enumerate all the possible

fault scenarios; (ii) classify the faults into different classes

based on their responses to a particular test input; and

(iii) prescribe an appropriate course of therapeutic action,

tailored to the fault or set of faults that has occurred. To

keep the discussion focused on practical translational science,

the entire presentation has been carried out specific to the

growth factor signaling pathways. These pathways are widely

studied in the context of cancer and also have a number of

associated drugs known to target them at different points.

Because the entire procedure is embedded in classical circuit

theory, it can be implemented using slight variations of

existing electrical engineering software.
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