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Abstract— In optimal control, the input trajectories are
often solved numerically or analytically. This requires that
all variables which enter the optimality conditions are known
or measured. We use techniques from polynomial elimination
theory to eliminate variables which are not known from
the optimality conditions. The result is an expression of the
optimality conditions in known variables only, which can easily
be evaluated and controlled by feedback.

I. INTRODUCTION

Dynamic optimization problems are ubiquitous in science

and engineering. In process control, they are found in the

optimization of batch reactors or grade transitions in con-

tinuous processes. Most approaches in literature deal with

optimization based on a model.

One of the oldest approaches is to find the optimal inputs

using the Pontryagin minimum principle [3]. This is basically

an open-loop approach and requires a simple model, where

all parameters and variables are known (measured).

A second approach, which is very popular today, is nonlin-

ear model predictive control. Here, the dynamic optimization

problem is converted to a nonlinear optimization problem,

and solved repeatedly at given sample times [1], [8], [14],

[17]. Measurements are used to update the process model

states and parameters by e.g. moving horizon estimation

[15]. Although this is conceptually an open-loop approach,

feedback is introduced by repeated optimization.

A third approach is to use the model off-line and exploit

the solution structure to find variables, which give optimal

or near-optimal operation, when kept at constant setpoints

using a feedback policy. This approach is followed in NCO

tracking [20] and self-optimizing control [18].

Whenever a model is used, handling uncertainty is a major

challenge. Uncertainty may arise from different sources, such

as incomplete information (unmeasured states), parametric

disturbances, and model structure error. There are several

approaches to handle the uncertainty:

1) Estimate the unknown variables using a filter or mov-

ing horizon estimation [15], as done in model predic-

tive control. This approach is used frequently; however,

it can be difficult to obtain converging estimates within

reasonable time.

2) Use a robust control approach [23] or stochastic op-

timization approach [2]. Here we attempt to find an
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open-loop control policy, which gives the best perfor-

mance over a range of disturbances. Generally it has

to compromise performance to gain robustness.

3) Neighboring extremal control [3], where the optimiza-

tion problem does not have to be re-solved completely

when a disturbance occurs. Instead, corrections to the

nominal input trajectory are found by solving a linear

approximation to the nonlinear problem.

4) The approach presented in this paper, where we use

model equations to eliminate the unknown or uncertain

variables from the optimality conditions.

Our work contributes to handling parametric uncertainty

for dynamic optimization problems. The main contribution is

the extension of concepts from steady state self-optimizing

control [18] to a class of polynomial dynamic optimization

problems.

The idea is to formulate the optimality conditions (Hu = 0)

which include unknown parameters, and then use tools from

elimination theory [10], [7] for eliminating the unknown

parameters to obtain optimal invariants in known (mea-

sured) variables which can be controlled using feedback.

Controlling these invariants and the optimality conditions is

equivalent.

In Section II we present the optimal control problem

and state the optimality conditions. Section III describes

how to eliminate the adjoint variables from the optimality

conditions. In Section IV we introduce concepts from toric

elimination theory, and apply them in Section V to eliminate

unknown parameters from the optimality conditions. Section

VI gives a case study of a fed batch reactor, and Section VII

closes the paper with a short discussion and conclusion.

II. OPTIMAL CONTROL

A. Problem Formulation

We consider a class of dynamic optimization problems,

which can be written in following form:

min
u(t)

Φ(t f ) = J(x(t f )) (1a)

s.t. ẋ = F(x(t))+G(x(t))u(t); x(0) = x0 (1b)

uL ≤ u(t)≤ uU . (1c)

The scalar function J denotes the terminal cost, and the

functions u : [0, t f ] → R
nu and x : [0, t f ] → R

nx denote the

input and state functions, respectively. F(x) is a vector valued

function of dimension nx, and G(x) is a matrix of dimension

nx ×nu. The elements of F(x) and G(x) are polynomials in

the ring R[x], that is, every row in F(x) and G(x) contains

polynomials in the variables x and coefficients in R. The
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variables uL and uU denote the time invariant lower and

upper bounds for the inputs u. Note that the system is input

affine and we consider only input constraints. All functions

are assumed to be sufficiently smooth and differentiable.

B. First order optimality conditions

Assumption 1: The optimal control problem (1) is feasible

and has a unique solution u∗(t).
We define the Hamiltonian

H(x,u,λ ,µL,µU ) = λ T(F(x)+G(x)u)

+µLT
(uL −u)+µU T

(u−uU ),
(2)

where λ , µL and µU are adjoint variables corresponding to

the model, lower and upper input constraints, respectively.

Theorem 1 (Pontryagin Minimum Principle [3], [11]): If

the control u is optimal, then there exist nontrivial vectors

of adjoint variables λ and µ , such that the following

conditions are satisfied:

1)

ẋ =
∂H

∂λ
, x(0) = x0 (3a)

λ̇ T =−
∂H

∂x
, λ T(t f ) =

∂J

x(t f )
(3b)

µLT
(uL −u) = 0, µU T

(u−uU ) = 0 (3c)

2) For all t ∈ [t0, t f ], the Hamiltonian has a global mini-

mum with respect to u, i.e.

H(x∗,u∗,λ ∗,µL∗,µU ∗
)≤ H(x∗,u,λ ∗,µ∗,µL∗,µU ∗

)
(4)

for all uL ≤ u ≤ uU and t ∈ [t0, t f ].
3) If the final time is free, we have the transversality

condition

H(x(t f ),u(t f )
∗,λ (t f ),µ

L(t f ),µ
U (t f )) = 0. (5)

III. ELIMINATING ADJOINT VARIABLES

The optimal solution of problem (1) consists of a sequence

of arcs (regions) which are defined in certain intervals. The

arcs are defined by the set of active constraints, and are

continuous and differentiable within each interval [3]. We

distinguish two types:

1) Constrained arcs (boundary arcs): One or more inputs

are at a constraint.

2) Unconstrained arcs: The inputs are all unconstrained.

In the constrained arcs we simply keep the inputs at

the active constraint. If there are unconstrained degrees of

freedom left, the remaining problem can be reformulated

as an unconstrained problem by redefining the input set.

Therefore, in the following, we consider only the case where

no constraint is active.

At the minimum of the Hamiltonian (4), we must have

Hu =
∂H
∂u

= 0. Considering one input at a time, the condition

reads:

Hui
=

∂H

∂ui

= 0, i = 1 . . .nu (6)

Unfortunately, we cannot control Hui
to zero, because it

generally contains unknown variables, including the adjoint

variables λ . To eliminate the adjoint variables, we perform

successive time differentiations.

Definition 1 (Lie bracket, [16]): Given two vector fields

f ,g : R
n → R

n. The Lie bracket [ f ,g] is the vector field

defined by

[ f ,g] =
∂g

∂x
f −

∂ f

∂x
g. (7)

Recursive bracketing is defined as adk
f g = [ f ,adk−1

f g] , with

ad0
f g = g.

It can be shown [20], [13], that the k-th time derivative of

Hui
can be written as

H
(k)
ui

=
d(k)Hui

dt(k)
= λ T

(

adk
F(x)Gi(x)

)

= λ TAi
k, (8)

where Gi(x) denotes the i-th column in G(x). Since for the

optimal solution Hui
= 0 holds at all times, its optimal time

derivatives must be zero at all times, too. We write the time

derivatives up to the nx −1-th derivative as

λ T
[

Ai
0,A

i
1,A

i
2, . . .A

i
nx−1

]

= λ TAi = 0, (9)

where all terms Ai
0, Ai

1, Ai
2,. . . , Ai

nx−1 are collected in the

matrix Ai. Eq. (9) has a nontrivial solution for λ only if

det(Ai) = 0. Therefore, controlling

ci = det(Ai) (10)

to zero gives optimal operation. If we have several inputs,

we may collect all ci into a vector c = [c1, . . . ,ci, . . . ,cnu ]
T.

The vector c generally contains unknown variables, such as

unmeasured states or unmeasured disturbances d. Therefore

it cannot be used for control directly.

Since the optimal control system (1) is defined in polyno-

mial equations, and all calculations above preserve the poly-

nomial structure, we use results from elimination theory to

eliminate unknowns in each ci = det(Ai), to obtain variables

suitable for control.

IV. TORIC ELIMINATION THEORY

We give a very short introduction to toric elimination

theory, for more detailed information we refer to [6], [7],

[9], [12], [22]. More specifically, we present the sparse

resultant from algebraic geometry [7], [10] to eliminate the

unknowns. Casually speaking, the resultant is a condition for

an overdetermined system of polynomials to have a common

root.

We consider a system of n+1 polynomials,

f0 = · · ·= fn = 0, (11)

in n variables x = [x1, . . .xn]
T, and let C∗ denote the complex

numbers without zero, C∗ = C\0. Toric elimination theory

considers solutions of the polynomials (11) in (C∗)n. Since

none of the variables is allowed to be zero, the theory is

valid for Laurent polynomials in R[x,x−1,u,u−1], that is,

polynomials with positive and negative integer exponents.

Definition 2 (Monomial): We define a monomial xa as the

power product xa = x
a1
1 x

a2
2 . . .xan

n , where (a1,a2, . . . ,an)∈Z
n.
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Definition 3 (Support): Let the support Ei =
{ai,1, . . . ,ai,mi

} denote the set of exponent vectors

corresponding to monomials in

fi =
mi

∑
j=1

ci, jx
ai, j , ci, j 6= 0. (12)

We denote as Qi = conv(Ei) the convex hull of the support

of the polynomial fi.

Definition 4 (Affine variety): Consider f1, . . . , fm polyno-

mials in C[x1, . . .xn]. The affine variety V ( f1, .., fm) is defined

by the set

V ( f1, . . . , fm)= {(x1, ..,xn) ∈ C
s : fi(x1, ..,xn) = 0, i = 1 . . .m} .

(13)

Definition 5 (Zariski closure): Given a subset S⊂C
m, the

smallest affine variety containing S is called the Zariski

closure of S and is denoted as S̄.

Let L(Ei) be the set of all polynomials that have exponents

in the support Ei

L(Ei) =
{

ci,1xai,1 + · · ·+ ci,mi
xai,mi : ci, j ∈ C

∗
}

, (14)

Then the coefficients of a polynomial define a point in C
mi .

Now let

Z(E0, . . . ,En)⊂ L(E0)×·· ·×L(En) (15)

be the Zariski closure of the set of all ( f0, . . . fn), for which

(12) has a solution in (C∗)n. For an overdetermined system

of polynomials we then have this result.

Theorem 2 (Sparse resultant [12], [7]): Assume that

Qi = conv(Ei) is a n dimensional polytope for i = 0, . . . ,n.

Then there is an irreducible polynomial R in the coefficients

of the fi such that

( f0, .., fn) ∈ Z(E0, . . . ,En)⇔ R( f0, .. fn) = 0. (16)

In particular, if the system

f0 = f1 = · · ·= fn (17)

has a solution (x1, . . . ,xn) ∈ (C∗)n, then

R( f1, . . . , fn) = 0. (18)

We call R the sparse resultant.

Remark 1: There exist more general versions of Theorem

2, which do not require the convex hull of the supports to

be n-dimensional. [21]. However, for simplicity we chose to

present this simplified version here.

Example 1 (One variable): Consider the system

f0 = a11 +a12x

f1 = a21 +a22x+a2,3x2.
(19)

The supports of this system are E0 = {(0),(1)}, and E1 =
{(0),(1),(2)}. Clearly, the convex hulls of the supports are

the line segments [0,1] and [0,2], which have dimension

n = 1. For arbitrary ai j (19) does not have a solution in

C
∗. The sparse resultant for this system is calculated as the

determinant of the Sylvester matrix

R( f0, f1) = det









a12 a11 0

0 a12 a11

a23 a22 a21









= a2
12a21 −a12a11a22 +a23a2

11.

(20)

Note that we have eliminated x from (19), and the statement

R( f0, f1) = 0 is identical to stating that there exist some x

such that f0 = f1 = 0.

The calculation of the sparse resultant for multivariate

polynomials is more involved. An algorithm is given in [5].

In this work, we use the software multires [4].

V. USING RESULTANTS IN OPTIMAL CONTROL

After introducing the sparse resultant, we can apply it

to our optimal control problem. We collect all unknown

(unmeasured) variables in a vector d, so we have ci = ci(d),
and we write the model equations in the form

m(d) = 0, (21)

where we have omitted to explicitly state the dependency on

the known variables.

Assumption 2: The model equations are polynomials in

the polynomial ring R[d].
Assumption 3: The variety V (m(d)) is zero-dimensional,

that is, m(d) = 0 has a finite number of solutions.

Theorem 3 (Invariants for Control): If the number of un-

known variables nd is equal to the number of model equa-

tions nm, and Assumptions 2 and 3 hold, controlling

R(ci(d),m(d)) = 0 (22)

is equivalent to controlling (10).

Proof: By assumption, the model equations m(d) = 0

have a finite number of solutions. ci(d) = det(Ai) is a poly-

nomial in the variables d whose coefficients are functions of

u, and thus can be manipulated. Arbitrary input values u will

cause that ci(d) = 0 does not have any solution. The sparse

resultant R(ci(d),m(d)) gives the necessary and sufficient

condition for the combined system

m(d) = 0

ci(d) = 0
(23)

to have a solution in (C∗)nd . By Theorem 2, we have

ci(d) = det(Ai) = 0 ⇔ R(ci(d),m) = 0. (24)

Controlling R(ci(d),mi) = 0 is equivalent to controlling the

optimality conditions ci(d) = 0, as long as the model is

satisfied. However, whereas the ci(d) contains unmeasured

variables, they have all been eliminated from R(ci(d),mi).
Remark 2: Note that it is not necessary to be able to solve

the model equations m(d) = 0 uniquely for d. The only

condition is that the model equations have a finite number

of solutions.

Remark 3: Since the unknown variables d assume real

values in the process, the existence of complex solutions for
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TABLE I

PARAMETERS AND INITIAL CONDITIONS

Symbol Value Unit Description

k1 0.053 l/mol/min parameter
k2 0.128 l/mol/min ”

cin
B 5 mol/l ”

t f 250 min ”
umin 0 l/min input constraint
umax 0.001 l/min ”
cA0 0.72 mol/l initial condition
cB0 0.0614 mol/l ”
cC0 0.0 mol/l ”
cD0 0.0 mol/l ”
V0 1 l ”

m(d) = 0 does not matter, because the Theorem 2 states that

ci becomes zero whenever the resultant is zero.

VI. CASE STUDY: FED BATCH REACTOR

A. Model

The case study is taken from [13]. We consider a fed batch

reactor with two reactions,

A+B −→C and 2B −→ D, (25)

where C is the desired product and D is the undesired side

product. The objective is to maximize difference between the

amount of C and the amount of D at the final batch time t f .

We use a simple dynamic model,

ċA =−k1cAcB − cAu/V

ċB =−k1cAcB −2k2c2
B − (cB − cin

B )u/V

V̇ = u,

(26)

with the initial conditions: cA(0) = cA0, cB(0) = cB0, and

V (0) =V0. Initially the concentration of the products is zero,

cC0 = cD0 = 0. All parameters and initial conditions are given

in Table I. From the mass balance, we have (cC0 = cD0 = 0)

cC(t) =
1

V
(cA0V0 − cA(t)V ) (27)

and

cD(t) =
1

2V

[(

cA + cin
B − cB

)

V −
(

cA0 + cin
B − cB0

)

V0

]

. (28)

B. Optimal control problem

The optimization problem is then formulated as

min
u

J(t f ) s.t. ẋ = F(x)+G(x)u, (29)

where the objective is

J(t f ) = (cD(t f )− cC(t f ))V (t f ). (30)

Further, we have the state and input vectors x = [cA, cB,V ]T

and u = u, and

F(x) =





−k1cAcB

−k1cAcB −2k2c2
B

0



 , G(x) =
1

V





−cA

cin
B − cB

V



 .

(31)

The constraints for the system are umin ≤ u ≤ umax.

TABLE II

SIMULATION CASES

Case 1 Case 2

Unmeasured state: cA cB

Unmeasured disturbance: none k1

C. Nominal optimal solution

For the given initial conditions the system is uncon-

strained, and the optimal trajectory consists of one interior

arc. The Hamiltonian is

H = λ1 (−k1cAcB − cAu/V )

+λ2

(

−k1cAcB −2k2c2
B +(cin

B − cB)u/V
)

+λ3u.

(32)

Proceeding as in Section II we get Hu = λ TA0 = 0 with

A0 =
[

−cA/V (cin
B − cB)/V 1

]T
. (33)

We continue with the first and second time derivatives

λ TA1 = 0 and λ TA2 = 0. Here, A1 = [a11 a12, a13]
T with

a11 = [−k1cA(cB − cin
B )]/V

a12 = [−k1cA(cB − cin
B )−2k2cB(cB −2cin

B )]/V

a13 = 0,

(34)

and A2 = [a21, a22, a23]
T, with

a21 = [cin
B k1cAV (k1cA +4k2cB)+2k1cA

(

cB − cin
B

)

u]/V 2

a22 =
[

cin
B V

(

4k1cAk2cB +8k2
2c2

B + k2
1c2

A

)

+2
(

cB − cin
B

)(

k1cA +2k2(cB − cin
B )u

)]

/V 2

a23 = 0.
(35)

ci = det(A) becomes zero when c = 0, with

c= 4k2c2
Bcin

B V +2cBcin
B u−k1cAc2

BV +2k1cAcin
B V cB−2u(cin

B )
2.

(36)

In optimal control literature, e.g. [3], this expression is

commonly solved for u, and implemented in the process.

However, this is not always possible, because c generally

contains unmeasured states and disturbances.

D. Eliminating unknown variables

We consider two different scenarios as summarized in

Table II.

1) Case 1: Unknown variables in algebraic equations:

Assume that the concentration cA is difficult or expensive to

measure. Then we have one unmeasured state, cA. All other

variables in c from (36) are known. However, the unmeasured

state is present in the algebraic relationship (27). This gives

the measurement polynomial

m1 =V cC(t)− (cA0V0 − cA(t)V ) = 0, (37)

and we calculate the resultant

R(c,m1) =−V c2
Bk1cC +2V cBk1cin

B cC −4V c2
Bk2cin

B −2cin
B ucB

+2cin
B

2
u−2cBk1cin

B cA0V0 + c2
Bk1cA0V0.

(38)
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R(c,m1) does not contain the unmeasured state, and control-

ling it to zero will by Theorem 3 result in optimal operation.

2) Case 2: Unknown variables in the differential equa-

tions: Now assume that we have an unknown disturbance

k1, and that the concentration cB is unmeasured. Since the

reaction rate enters through a differential equation, we need

to eliminate k1 from c (36) using a differential equation, and

we need to use a change rate as a measured variable, too.

We assume that we can measure the concentration cA

together with an estimate of its time derivative, ċA. If the

measurement of cA is good (little or no noise), then we may

use its past values to estimate its time derivative by filtering

or using finite differences,

ċA = (cA(t)− cA(t −1min))/(1min). (39)

This does not give the exact derivative, but the approximation

is considered good enough for our purposes.

To eliminate the unknowns cB and k1 we use an additional

mass balance for component B,

m2 =−cBV + cB0V0 + cin
B (V −V0)− cCV −2cDV = 0, (40)

together with the implicit component balance for cA from

(26),

m3 = ċAV + k1cAcBV + cAu = 0 (41)

and we eliminate the unknowns by calculating the resultant

with respect to the unknown variables k1 and cB:

R(c,m2,m3) =

−16V 2cAk2cin
B cD +V 2cAċA +4V 2k2cin

B cA
2 +8V 2cAk2cin

B

2

+VucA
2 −16V cDk2cin

B V0cB0 +16V cDk2cin
B

2
V0

+8VV0cB0k2cin
B

2
−8V cAk2cin

B

2
V0 +16V cA0V0k2cin

B cD

+8V cAk2cin
B V0cB0 −8V cAcA0V0k2cin

B −8V cA0V0k2cin
B

2

−8V 2
0 cB0k2cin

B

2
+4V 2

0 c2
B0k2cin

B +2V0cB0cin
B u− cAV0cin

B u

+ cAV0cB0u+16V 2c2
Dk2cin

B −16V 2cDk2cin
B

2
−2V cAcDu

+V cAcin
B u−4V cDcin

B u−8V cin
B

3
k2V0 −VV0cin

B ċA +VV0cB0ċA

−V cA0V0ċA − cAcA0V0u−2cA0V0cin
B u+8cA0V 2

0 k2cin
B

2

+4c2
A0V 2

0 k2cin
B +4V 2

0 cin
B

3
k2 −2V0cin

B

2
u+4V 2cin

B

3
k2

−V 2cin
B ċA −2V 2cDċA −8cA0V 2

0 k2cin
B cB0.

(42)

This expression does not contain any of the unknown vari-

ables, so it can be evaluated online and controlled to zero

using a P or PI controller.

E. Simulation Results

1) Nominal operation: The state and input trajectories

for nominal optimal operation are given in Figure 1. These

trajectories are generated by applying the optimal input. The

final optimal cost is value is J = 0.2717.

2) Controlling the invariant:

0 50 100 150 200 250
4

5

6

7

8
x 10

−4

time[min]

l/
m

in

 

 

Input u

0 50 100 150 200 250
1

1.05

1.1

1.15

time[min]

l

 

 

Volume V

0 50 100 150 200 250
0.2

0.4

0.6

0.8

1

time[min]

m
o
l/
l

 

 

Concentration c
A

0 50 100 150 200 250
0.059

0.06

0.061

0.062

0.063

time[min]

m
o
l/
l

 

 

Concentration c
B

0 50 100 150 200 250
0

0.1

0.2

0.3

0.4

time[min]

m
o
l/
l

 

 

Concentration c
C

0 50 100 150 200 250
0

0.05

0.1

0.15

0.2

time[min]

m
o
l/
l

 

 

Concentration c
D

Fig. 1. Nominal optimal input, volume, and concentration trajectories
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Fig. 2. Disturbance k1

a) Case 1.: Variable cA unmeasured - all other vari-

ables known: Here we cannot control c = det(A) to zero,

because we cannot evaluate it since cA is not known. Instead

we control the resultant R(c,m1) (38) to zero using a

P-controller. The trajectories are identical to the optimal

ones from the previous section, and the objective value is

J = 0.2717. This is as expected, because by Theorem 3,

controlling c and R(c,m1) are equivalent. The suboptimality,

which is introduced by the added P controller, does not

become visible when considering the first seven digits of the

objective function. However, whereas we need to know the

value of cA to control c, this is not necessary for controlling

R(c,m1) to zero.

b) Case 2.: Variables k1, cB unmeasured – ċA estimated

and cA measured: In this case, the state cB and the pa-

rameter k1 are not known (measured). Therefore we cannot

control c directly. Instead we use a P-controller to control

R(c,m2,m3), which contains neither k1 nor cB. This expres-

sion can be evaluated using the available measurements and

controlled to zero. In the nominal case the trajectories look

exactly the same as in Fig. 1.

Next, we consider a change in the reaction kinetics, where

k1 rises 20%, Figure 2. The input and the states are given in

Figure 3. The final profit when controlling R(c,m2,m3) to

zero is J = 0.2970, while the profit using the optimal input is

Jopt = 0.2971. This difference comes from the approximation

of ċA in (39). Using the exact derivative, we obtain J =
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Fig. 3. Inputs and concentrations for unmeasured change of k1 at time 100

0.2971, which is the same value as the optimal input gives.

If we had not eliminated k1 in R(c,m2,m3), and just used

the nominal value, the objective value would be J = 0.2873.

VII. DISCUSSION AND CONCLUSION

We have shown that the concepts of finding invariant

variable combinations can be extended to dynamic systems,

which are described by polynomial or rational equations. In

addition, by not explicitly solving for the input u, we do

not have to be concerned whether the input appears in c,

because we use a P or PI controller to generate the optimal

inputs. This is a simple alternative to analytically finding the

optimal input by further differentiations.

Adding a controller to control c will often come at a

negligible loss. This is confirmed in our example, where

controlling the invariants using only a P controller gives

virtually the same performance as when analytically solving

for the optimal input.

In this work, we considered only parametric uncertainties

and unmeasured states. The equally important issues of

model error and measurement noise are beyond the scope

of this work and have to be studied in future work.

We assumed that the uncertainty does not change the active

constraints. This is valid for small disturbances. However, for

larger disturbances, the new set of active constraints has to

be determined.

Controlling the invariant can be used together with other

NCO tracking methods to handle model mismatch or termi-

nal constraints on a run-to-run basis, similar to [19]. Thus,

we consider our method as a part of a larger procedure for

implementing optimal batch performance.

Beside “normal measurements” we have also allowed mea-

surements of their time derivatives. They may be estimated

by finite differences as above, or by using some filtering. If a

measurement is assumed to be reliable, then its change over

time should also be possible to estimate reasonably well.

Introducing measurements of the time derivatives, makes it

possible to eliminate variables, for which we do not have

a purely algebraic expression, and which enter through the

differential equations only.

In the procedure for eliminating the adjoint variables, we

have presented the common case of input affine systems.

If the model is not input affine, elimination of the adjoint

variables comes at the cost of introducing time derivatives

of the input, which have to be measured.

We used the resultant to eliminate the unknown variables.

Other techniques, such as Gröbner bases [6], could also have

been applied. However, it is not easy to find appropriate

monomial orderings which eliminate the unknown variables,

while avoiding the trivial solution (the invariant is always

zero when the model equations are satisfied).
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