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Abstract— In this paper a cone-copositive approach is pro-
posed for investigating the stability of piecewise linear differen-
tial inclusions. From a different perspective the same issue can
be viewed as the robust stability problem for uncertain piece-
wise linear systems. By using piecewise quadratic Lyapunov
function the stability problem is formulated as a set of linear
matrix inequalities each constrained into a specific cone, i.e. a
set of cone-copositive programming problems. A procedure for
solving the set of constrained inequalities is presented. The
absolute stability problem for Lur’e systems with unknown
feedback characteristic belonging to an asymmetric domain,
is shown to be tractable as a particular case. Two examples are
provided to show that the proposed approach might lead to
less conservative estimation of the robust stability region with
respect to the classical Circle criterion and to other approaches
based on piecewise quadratic Lyapunov function.

I. INTRODUCTION

Piecewise linear (PWL) systems represent a class of hybrid
systems characterized by a partition of the state-space into
regions where system dynamics can be described by linear
models [1]. Unfortunately, mathematical models of practical
systems are always affected by uncertainties of various kind.
We consider uncertain autonomous PWL systems where the
state partition consists of convex polyhedral cones and in
each cone the uncertain dynamic matrix can be expressed
as a convex hull of known matrices. Such class of systems
can be viewed as piecewise linear differential inclusions
(PWLDIs) [2]. Among others, examples of nonlinear systems
which can be embedded in the PWLDI framework are Lur’e
systems with possibly asymmetric domain of the feedback
characteristic [2] and power electronics converters [3]. A
further extension of the PWLDIs class is obtained by con-
sidering the piecewise affine slab differential inclusions [4],
[5].

Despite their apparent modeling simplicity, PWL systems
are very hard to investigate, also when neglecting the un-
certainties. Indeed, basic problems such as well-posedness,
stability and controllability are far to obtain definite answers,
see the good literature review proposed in [6] and [7]. Such
issues are highly complex also from a computational point
of view [8]. For what concerns stability of PWL systems,
several approaches have been proposed in the last years [6],
[9], [10]. The simplest way to tackle with the problem
consists in using a common quadratic Lyapunov function [2]
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erico II, Via Claudio 21, 80125 Napoli, Italy, email: rafierv@unina.it

(\) Dipartimento di Ingegneria, Università del Sannio, Piazza
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or a common polynomial Lyapunov function [11], but unfor-
tunately that choice usually implies too much conservative
results. To reduce conservativeness one could use the multi-
ple Lyapunov function approach, i.e. to combine Lyapunov
functions defined over different regions of the state space, see
among others [11], [12]. Within the multiple Lyapunov func-
tions approaches the piecewise quadratic Lyapunov function
allows to easily formulate the stability conditions in terms
of linear matrix inequalities [13].

In this paper we focus on the stability analysis for au-
tonomous continuous-time PWLDIs, whose results can be
alternatively used for solving the robust stability problem of
autonomous continuous-time uncertain PWL systems. The
stability of linear differential inclusions has been widely
analyzed in the literature, see among others [14]–[17]. On
the other hand, to the best of our knowledge a limited
attention has been dedicated to the case of piecewise lin-
ear differential inclusions. In [18] and [5] possible solu-
tions exploiting a common quadratic Lyapunov function
are proposed. In [2], [19], [20] it is shown that piecewise
quadratic Lyapunov functions might be less conservative.
Similar conclusions are obtained in [21] through the use of
homogeneous polynomial Lyapunov functions. In the above
papers the stability problem is formulated by means of a
set of constrained inequalities which are transformed into an
unconstrained problem by relaxing the linear constraints to
quadratic constraints and by applying the S-procedure [22].
In this paper we propose to explicitly consider the conic
constraints in order to get less conservative results. Obviously
the problem then moves to finding a solution for cone
constrained inequalities, which is usually called a cone-
copositive problem. Recently several papers have appeared
in the mathematical literature dealing with the copositive
programming problems, see [23], [24] and the bibliography
therein. However, in these specialized papers the focus is
on the search for conditions for which a given fixed matrix
is cone-copositive, while the stability problem formulated in
this paper is more challenging because consists in finding,
for each cone of the state partition, an unknown matrix that
results cone-copositive. The proposed method is obtained by
a combination of the piecewise quadratic approach in [2]
with the extension of a recently established cone-copositive
algorithm for the quadratic stability of certain PWL systems
in [25].

We will show that the proposed cone-copositive approach
used for the stability analysis of PWLDIs can be successfully
applied for the absolute stability analysis of Lur’e systems
with asymmetric domains of the feedback characteristic. Two
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numerical examples show that we are able to obtain less
conservative results with respect to the classical Circle cri-
terion and to other approaches based on piecewise quadratic
Lyapunov function.

II. PRELIMINARIES

In this section we recall some useful definitions for our
analysis. For most of them one could refer to [26] and [27].

Definition 1: Given a real vector x and a positive integer
p, the p-norm is given by

‖x‖p =

n∑
i=1

|xi|1/p. (1)

Definition 2: A set C ⊆ Rn is a cone if for every x ∈ C
and nonnegative real number θ we have θx ∈ C.

Definition 3: A set C ⊆ Rn is a convex cone if it is
convex and a cone, which means that for any nonnegative
real numbers θ1 and θ2, and for any x1 and x2 belonging to
C we have θ1x1 + θ2x2 ∈ C.

Definition 4 (H-representation, [28]): A set C ⊆ Rn is a
polyhedral convex cone if it is convex cone and there exists
a nonzero matrix C such that for each x ∈ C it is verified
Cx � 0, where the symbol ‘�’ used with vectors is intended
as componentwise inequalities.

Definition 5: Let X be any set in Rn and N > 1 an
integer. A family P = {X1, . . . , XN} of nonempty sets
satisfying

X = X1 ∪ · · · ∪XN (2a)
int Xi 6= ∅, ∀i (2b)

int Xi ∩ int Xj = ∅, for i 6= j (2c)

is called a partition of X .
If the sets Xi are cones, the family, say PC , is called a

conic partition.
Definition 6: We say that a matrix M is copositive with

respect to a cone C (or cone-copositive), which will be
denoted by M �C 0, if xTMx > 0 for any x ∈ C. If equality
only holds for x = 0, then M is strictly cone-copositive
(M �C 0).

Definition 7: Given p points x1, . . . , xp belonging to a set
X ⊆ Rn, a convex closure co {x1, . . . , xp} is defined by the
set of all x̄ ∈ X such that there exist p nonnegative scalars
θ1, . . . , θp, with

∑p
i=1 θi = 1, for which x̄ =

∑p
i=1 θixi.

Definition 8: Given p points x1, . . . , xp belonging to a
set X ⊆ Rn, which are affinely independent, i.e. the p − 1
points x2−x1, . . . , xp−x1 are linearly independent, then the
convex closure co {x1, . . . , xp} is called a (p− 1)-simplex.
Clearly in order to define a simplex we need p 6 n+ 1.

Definition 9: The convex closure of any nonempty subset
of m points of the p points that define a (p − 1)-simplex,
with m 6 p, is called an (m−1)-face of the (p−1)-simplex.
The 0-faces (m = 1) determine the set of so-called vertices,
say V , which is equal to the set of points that define the
simplex. The 1-faces determine the set of so-called edges,
say E , which is equal to the set of convex closures of any
m = 2 points among the simplex vertices.

If the sets Xi in Def. 5 are simplices, the family say PS is
called a simplicial partition or triangularization of X [25],
[26]. We denote by VP the set of all vertices of simplices in
PS , and by EP the set of all edges of simplices in PS .

For our analysis it is useful to consider the intersection
between a polyhedral convex cone C and the set

B1 = {x ∈ Rn : ‖x‖1 = 1}. (3)

It is always possible to find a simplicial partition of the set
defined by C ∩ B1.

Figure 1 shows an example in R2 of a polyhedral convex
cone (gray area), the set B1, and their intersection partitioned
into two simplices. The vertices of the two simplices are
V1 = {P1, P3} and V2 = {P3, P2} and the edges are
E1 = {P1P3} and E2 = {P2P3}, respectively. The suggested
simplicial partition of C ∩ B1 is characterized by the set of
vertices VP = {V1,V2} and edges EP = {E1, E2}. Note that
the segment P1P2 does not belong to EP ..

x1

x2

P2

P1

P3

+1−1

+1

−1

Fig. 1. A simplicial partition in R2.

The cone-copositivity evaluation of a generic matrix M ,
with C being a polyhedral convex cone, can be simplified by
the following lemmas [25].

Lemma 1: The following equivalence holds:

M �C 0⇐⇒ xTMx > 0, ∀x ∈ C ∩ B1. (4)

An analogous result holds for M �C 0.
Lemma 2: Let M be a symmetric matrix. Let PS be a

simplicial partition of C ∩ B1. If

vTMv > 0, ∀ v ∈ VP (5a)

uTMv > 0, ∀ {u, v} ∈ EP (5b)

then M is cone-copositive. An analogous result holds for
strict inequalities.

Remark 1: Clearly if for some of the vertices v ∈ VP it
results vTMv < 0, then M is not cone-copositive.

The opposite result is also of interest. By assuming that
M �C 0 the following lemma ensures that it is always
possible to find a finite simplicial partition of C ∩ B1 such
that (5) are satisfied.
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Lemma 3: Let M be a symmetric matrix and M �C 0.
Then there exists ε > 0 such that for all finite simplicial
partitions PS of C∩B1 with maximum diameter of a simplex
partition δ(PS) not larger than ε, i.e.

δ(PS) , max
(u,v)∈EP

‖u− v‖ 6 ε, (6)

we have

vTMv > 0, ∀ v ∈ VP (7a)

uTMv > 0, ∀ {u, v} ∈ EP . (7b)

The three lemmas above will be useful for the stability
analysis of the class of systems presented in next section.

III. PIECEWISE LINEAR DIFFERENTIAL INCLUSIONS

Let us consider a partition of X = Rn into a family of
polyhedral convex cones represented by

Ci , {x ∈ X : Cix � 0} (8)

for i = 1, . . . , N . From Def. 5, since X = Rn, two cones
of the partition with Ci ∩ Cj 6= {0} share their common
boundary. For such polyhedral cones there exist so-called
continuity matrices Fi and Fj such that Fix∗ = Fjx

∗ for
x∗ ∈ Ci ∩ Cj [2]. Note that the continuity matrices are not
unique. For a given partition a possible choice is Fi = Ci
for i = 1, . . . , N .

In each ith cone we assume that the system can be written
as

ẋ = Āi(t)x, x ∈ Ci (9)

The system matrix Āi(t) is uncertain and can be expressed
as a time-varying convex combination of known constant
matrices:

Āi(t) =
∑

k∈K(i)

αi,k(t)Ai,k (10)

where K(i) is an index set that specifies the matrices used
in the combination of the ith cone, Ai,k are constant known
matrices which will be also called in the sequel as the
extreme matrices in that cone. For each i and k ∈ K(i)
the function αi,k(t) : R→ [0, 1] is assumed to be uncertain,
continuous and constrained by∑

k∈K(i)

αi,k(t) = 1 (11)

for all i and t. The function αi,k(t) can be also interpreted
as an uncertain time-varying parameter.

We will also rewrite (10) as

Āi(t) ∈ co
k∈K(i)

{Ai,k} (12)

where cok∈K(i) determines the convex closure in each cone.
Thus the overall system (9) can be rewritten

ẋ ∈ co
k∈K(i)

{Ai,kx} , x ∈ Ci. (13)

These models are called piecewise linear differential in-
clusions [2].

Let us introduce the solution concept we deal with in this
paper:

Definition 10: An absolutely continuous function x(t) is
called a solution of (13) with initial condition x(t0) = x0 if
it satisfies (13) for almost all t > t0.

Note that Def. 10 rules out the so called sliding behavior
since it is not possible to define the vector field when the
state trajectory belongs, for a finite nonzero time interval, to
a common boundary between two (or more) cones.

IV. MAIN RESULT ON STABILITY

For system (13) we use the following (strong) stability
definitions [14].

Definition 11: We say that the zero solution of (13), i.e.
the origin x ≡ 0, is asymptotically stable if:
• for every ε > 0 there exists a δε > 0 such that for each

solution x(t) of (13) the inequality ‖x(t)‖ < ε holds
for all t > t0 if ‖x(t0)‖ < δε;

• there exists a ∆ > 0 such that for every solution x(t)
of (13) with ‖x(t0)‖ < ∆ the relation limt→+∞ x(t) =
0 holds.

If the inequality ‖x(t)‖ 6 c1‖x(t0)‖e−c2(t−t0) holds for
every solution of (13), where the constants c1 > 1 and c2 > 0
do not depend on the solution x(t) and the initial time t0,
we say that the origin is globally exponentially stable.

In order to prove the stability of the zero solution, we need
to prove the following

Lemma 4: The constrained linear matrix inequalities

P �C 0 (14a)

ATk P + PAk ≺C 0, k ∈ K, (14b)

with P symmetric matrix, Ak known real matrices, K a finite
index set, and C a polyhedral convex cone

a) have a solution P if and only if there exists a finite
simplicial partition PS of the set C ∩ B1 such that the
set of inequalities

vTPv > 0, ∀ v ∈ VP (15a)

uTPv > 0, ∀ {u, v} ∈ EP (15b)

vT (ATk P + PAk)v < 0, ∀ v ∈ VP , k ∈ K (15c)

uT (ATk P + PAk)v < 0, ∀ {u, v} ∈ EP , k ∈ K
(15d)

has a solution;
b) have no solution if there exists a finite simplicial

partition PS of the set C ∩ B1 such that the set of
inequalities

vTPv > 0, ∀ v ∈ VP (16a)

vT (ATk P + PAk)v < 0, ∀ v ∈ VP , k ∈ K (16b)

has no solution.
Proof: If (14) hold then from Lemma 1 and Lemma 3

the inequalities (15) are also satisfied. Vice-versa, if (15)
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hold than from Lemma 2 we get (14). The second part of
the proof is straightforward by considering Remark 1.

Lemma 4 will be exploited for the stability analysis of the
zero solution of (13) by interpreting C as one of the cones (8)
and Ak in (14b) as the corresponding extreme matrices.

We can now proceed with the following
Lemma 5: Consider system (13). If there exist Pi =

FTi TFi i = 1, . . . , N , with T symmetric matrix, such that
the following constrained linear matrix inequalities

Pi �Ci 0 (17a)

ATi,kPi + PiAi,k ≺Ci 0, k ∈ K(i) (17b)

are satisfied, then the zero solution of (13) is globally
exponentially stable.

Proof: Let us define the candidate piecewise quadratic
Lyapunov function

V (x(t)) = x(t)TPix(t), x(t) ∈ Ci, (18)

where x(t) is a solution of (13). The use of the continuity
matrices Fi in the definition of Pi allows to conclude
that (18) is continuous and piecewise differentiable. Since
in each cone the dynamic matrix is an uncertain convex
combination of the extreme (known) matrices, the decreasing
of (18) is implied by (17). Then by standard Lyapunov
stability arguments the proof follows.

Remark 2: In order to solve (17) one could transform the
constrained inequalities into an unconstrained problem, by
relaxing the conic constraints to quadratic constraints and by
applying the S-procedure [2]. Instead with our approach the
cone constrained inequalities are explicitly taken into account
in the problem solution, thus allowing less conservative
results.

It is now possible to prove the following main result.
Theorem 1: Given the system (13), if for each i =

1, . . . , N there exists a finite simplicial partition PSi of the
set Ci ∩ B1 such that the set of inequalities

vTi Pivi > 0, ∀ vi ∈ VPi
(19a)

uTi Pivi > 0, ∀ {ui, vi} ∈ EPi
(19b)

vTi (ATi,kPi + PiAi,k)vi < 0, ∀ vi ∈ VPi , k ∈ K(i)
(19c)

uTi (ATi,kPi + PiAi,k)vi < 0, ∀ {ui, vi} ∈ EPi , k ∈ K(i)
(19d)

has a solution with Pi = FTi TFi and T symmetric matrix
independent of i, then the zero solution of (13) is globally
exponentially stable.

Proof: The proof directly follows from the application
of Lemma 4 and Lemma 5.

Theorem 1 and Lemma 4.b allow to define a procedure
for checking the exponential stability of the zero solution of
piecewise linear differential inclusions.

In order to define the PWLDI (13), it is necessary to
introduce a conic partition of Rn, with cones given by (8),
and to choose the continuity matrices. The system structure

might suggest a first conic partition trial, so as shown in the
next section dedicate to Lur’e systems. The freedom in the
selection of the continuity matrices can be used to increase
the flexibility in the choice of candidate Lyapunov functions,
so as shown in [2].

For each cone Ci consider the set Ci ∩ B1 and choose a
corresponding simplicial partition PSi . If conditions (19) are
satisfied for some T , then the matrices Pi = FTi TFi with
i = 1, . . . , N can be used to define a piecewise quadratic
Lyapunov function for the system (13). If we are not able to
conclude feasibility of (19), then a more refined simplicial
partition of the sets Ci ∩ B1 with i = 1, . . . , N can be
used. To this aim a computationally convenient procedure
for the partition refinement is the so-called bisection along
the longest edge, which guarantees δ(PSi) → 0 when the
procedure is repeatedly applied [25]. If a solution exists,
Lemma 3 ensures the convergence in a finite number of steps.
Instead, if we can conclude that (19a) and (19c) have no
solution for one or some of the cones, then (see Lemma 4.b)
we need to go back to the system definition and use a refined
conic partition of the cones where no solution has been
found.

V. APPLICATION TO LUR’E SYSTEMS

Lur’e systems can be recast in the form (13) by employing
the global linearization approach [18]. Let us consider the
Lur’e feedback system in Fig. 2 where Σd is a linear system
with (A, b, cT ) being a minimal state space realization,
A ∈ Rn×n, b ∈ Rn, c ∈ Rn. The static characteristic
ϕ(λ) : R 7→ R is a single-input single-output uncertain
characteristic belonging to the domain (k1, k2, k3, k4) with
k1 < k2, k3 < k4, see Fig. 3. For this class of systems
a natural conic partition of the state space Rn consists of
the two half spaces C1 = {x ∈ Rn : cTx > 0} and
C2 = {x ∈ Rn : −cTx > 0}, see Fig. 4. In C1 we can
write

ϕ(λ) = ϕ(cTx) ∈ co{k1cTx, k2cTx} (20)

and in C2

ϕ(λ) = ϕ(cTx) ∈ co{k3cTx, k4cTx}. (21)

By looking at the closed loop system and by using (20)–
(21), the extreme matrices in C1 and C2 are, respectively

A1,1 = A− bk1cT , A1,2 = A− bk2cT (22a)

A2,1 = A− bk3cT , A2,2 = A− bk4cT . (22b)

The above matrices can be used to check conditions (19).
In order to illustrate the proposed approach we will

investigate first a simple second order example and then a
more complex third order example. For both examples we
obtain results not allowed by the Circle criterion and less
conservative with respect to the method in [2].

Example 1: Let us consider the Example at page 121
in [29]. The system matrices in our formulation become
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Σd :

{
ẋ = Ax+ b u

y = cT x

ϕ(λ)

u y

λ

−

ϕ

Fig. 2. Block diagram of the Lur’e system.

λ = cTx

ϕ

k2λ

k1λ

k3λ

k4λ

Fig. 3. Asymmetric domain of the feedback characteristic.

A =

(
−5.21 −4
−2.47 −2

)
, b =

(
−3
−21

)
(23a)

cT =
(

1 0
)
. (23b)

By using the Circle criterion, or by applying the if and
only if quadratic stability conditions for switched systems in
the case of two modes with Hurwitz matrices (see [30]),
it is possible to prove the absolute stability with respect
to the (symmetric) sector (0, 0.61, 0, 0.61). By applying
Theorem 4.2 of [2] we were able to prove the stability in the
asymmetric domain (1.9, 2.2, 0, 0.15) with a partition in the
four quadrants of the state space. However by maintaining
the same partition we were not able to enlarge the stability
region for lower values of k1.

For such system, with the same partition of the state space
in the four quadrants, by applying Theorem 1, we are able
to prove the absolute stability with respect to the asymmetric
domain (0, 2.2, 0, 0.15) with the matrices

P1 =

(
10.020 −0.400
−0.400 0.950

)
, P2 =

(
0.355 −0.140
−0.140 0.950

)
P3 =

(
0.355 2.450
2.450 26.510

)
, P4 =

(
10.020 −1.090
−1.090 26.510

)
The cones Ci are the quadrants taken in the classical coun-
terclockwise order.

Example 2: Let us consider the Example 5.3 in [2]. By
neglecting the uncertainty part on the dynamic system, the

x1

x2
cTx = 0

C1

C2

P1

P2

P3

P4

+1−1

+1

−1

Fig. 4. A state space conic partition (cT = (c1 c2) with c1 < 0 and
c2 > 0) and the set B1, with their intersections C1 ∩ B1 (continuous thick
line) and C2 ∩ B1 (dashed thick line). Note that the set C2 ∩ B1 (so as
C1 ∩B1) is not a simplex and it is partitioned into the three simplices with
vertices V1 = {P1, P2}, V2 = {P2, P3} and V3 = {P3, P4}.

model corresponds to

A =

 −3 0 −1
4 −1 0
0 2 −1

 , b =

 5
0
0

 (24a)

cT =
(

0 1 0
)
. (24b)

The feedback characteristic is assumed to belong to an
asymmetric domain as in Fig. 3 with k3 = 0, k2 > k1 > 0
and k4 > 0. By applying the Circle criterion, or following the
approach in [30], one gets the absolute stability for charac-
teristics belonging to the symmetric sector (0, 1.14, 0, 1.14).

Instead by applying Theorem 4.2 of [2] we were able to
prove the stability in the asymmetric domain (0.1, 1.4, 0, 0.2)
with a partition in the eight orthants of the state space.
However, with the arguments in [2] and maintaining the same
state space partition we were not able to prove the absolute
stability in the asymmetric sector (0, 1.4, 0, 0.2).

By applying Theorem 1 proposed in this paper, still with
the eight orthants state space partition, it is possible to prove
the absolute stability in the asymmetric domain defined by
(0, 1.4, 0, 0.2) with

P1 =

 8.000 4.810 −0.390
4.810 6.700 1.510
−0.390 1.510 3.870


P2 =

 6.100 1.470 −0.090
1.470 6.700 1.510
−0.090 1.510 3.870


P3 =

 6.100 3.870 −0.090
3.870 4.400 0.660
−0.090 0.660 3.870


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P4 =

 8.000 3.140 −0.390
3.140 4.400 0.660
−0.390 0.660 3.870


P5 =

 8.000 4.810 −1.060
4.810 6.700 0.920
−1.060 0.920 3.350


P6 =

6.100 1.470 0.230
1.470 6.700 0.920
0.230 0.920 3.350


P7 =

6.100 3.870 0.230
3.870 4.400 1.100
0.230 1.100 3.350


P8 =

 8.000 3.140 −1.060
3.140 4.400 1.100
−1.060 1.100 3.350


and Ci = diag(σi1, σi2, σi3) with σi1 = +1 for i = 1, 4, 7, 8
and −1 otherwise, σi2 = +1 for i = 1, 2, 5, 6 and −1
otherwise, σi3 = +1 for i = 1, 2, 3, 4 and −1 otherwise.

Remark 3: Note that by applying Theorem 4.2 of [2],
since it uses the S-procedure relaxation, it is possible to
conclude that the absolute stability result obtained in the
domain (k1, k2, k3, k4) implies the absolute stability result in
the domain (k3, k4, k1, k2), and it also implies the absolute
stability result in the two symmetric sectors (k1, k2, k1, k2)
and (k3, k4, k3, k4).

VI. CONCLUSION

A sufficient condition for the stability of piecewise linear
differential inclusions has been proposed. The condition is
based on a piecewise quadratic Lyapunov function and is
formulated as a suitable set of inequalities depending on
unknown matrices and constrained to hold on the different
cones of the state partition. This cone-copositive program-
ming problem is not easy to be solved, but some possible
algorithms have been recently proposed in the mathematical
literature. A distinctive contribution of our work is to bring
together ideas from several areas of research and presenting
them in a unified manner. In this way we were able to obtain
less conservative results with respect to existing approaches
within the piecewise quadratic stability scenario.
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