
Genetic negative feedback circuits for filtering stochasticity in gene
expression

Abhyudai Singh

Abstract— The inherent stochastic nature of biochemical
reactions coupled with low copy numbers of many mRNA
species can create large stochastic fluctuations in protein levels
over time. These fluctuations in protein molecular counts are re-
ferred to as gene-expression noise and are known to profoundly
effect biological function and phenotype. Cells often encode
negative feedback circuits to suppress or filter gene-expression
noise and reduce intercellular variability in protein levels.
We here compare and contrast the noise suppression ability
of different negative feedback architectures. Using stochastic
models of gene-expression we derive analytical formulas that
quantify the extent of stochastic fluctuations in protein levels
corresponding to different negative feedback circuits. These
formulas reveal that some feedback architectures are inherently
better at noise suppression, while the performance of others is
dependent on the parameters of gene-expression. More specifi-
cally, our results show that among different negative feedback
architectures, negative feedback through the mRNA provides
the best filtering of gene-expression noise in a mathematically
controlled comparison. Finally, we discuss potential ways these
negative feedback circuits can be implemented within the
process of gene-expression.

I. INTRODUCTION

Gene-expression is the process by which protein molecules
are synthesized from individual genes through transcription
and translation (Figure 1). Random timing of individual
biochemical reactions associated with the different steps of
gene-expression can create considerable stochastic fluctu-
ations in protein levels inside living cells over time [1],
[2]. Cell-to-cell variation in protein levels generated by
these stochastic fluctuations are often referred to as gene-
expression noise. Increasing evidence suggests that gene-
expression noise can be detrimental for the functioning of
essential proteins whose levels have to be tightly maintained
within certain bounds for optimal performance [3], [4].
Moreover, many diseased states have been attributed to an
increase in expression noise in particular genes [5], [6], [7].
Given that stochasticity in protein levels can have significant
effects on biological function and phenotype, cells actively
use different regulatory mechanisms to minimize expression
noise.

Negative feedback loops are key regulatory motifs within
cells that help reduce stochasticity in protein levels. A com-
mon and well characterized negative feedback mechanism is
protein mediated transcriptional regulation where the protein
expressed from a gene inhibits its own transcription [8], [9].
For example, it is estimated that over 40% of Escherichia coli
transcription factors regulate their own expression through
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Fig. 1. The process of gene-expression where mRNAs are transcribed
from the gene and proteins are translated from individual mRNAs (red
arrows). Different feedback mechanisms in gene-expression where the rate
of transcription or translation is a monotonically deceasing function of either
the mRNA or protein population count (dashed lines).

this feedback mechanism [10]. Both theoretical and experi-
mental studies have shown that such a negative feedback at
the transcriptional level reduces noise in protein numbers
[11], [12], [13]. Recent work has provided evidence of
more sophisticated negative feedback loops where the protein
inhibits the translation of its own mRNA [14] or mRNA
inhibits the transcription of its gene [15]. We here compare
and contrast the noise suppression ability of these different
feedback mechanisms in gene expression.

Gene expression is typically modeled by assuming that
mRNA transcription and protein translation from individual
mRNAs occurs at fixed constant rates. Feedback mechanisms
can be incorporated in this model by assuming that the
transcriptional rate or translation rate is a monotonically
decreasing function of either the protein or the mRNA
population count. This procedure results in four different
negative feedback circuits, which are illustrated in Figure
1. For example, feedback circuit I corresponds to protein
mediated transcriptional regulation where the transcription
rate is a decreasing function of the protein count. Similarly,
feedback circuit IV corresponds to a scenario where the
protein translation rate per mRNA is a decreasing function
of the mRNA count.
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TABLE I
FREQUENCY AND RESET MAPS FOR DIFFERENT STOCHASTIC EVENTS IN THE GENE-EXPRESSION MODEL

Event Reset in population count Probability event will
occur in (t, t +dt]

Transcription m(t)→ m(t)+B kmdt

mRNA degradation m(t)→ m(t)−1 γmm(t)dt

protein translation p(t)→ p(t)+1 kpm(t)dt

protein degradation p(t)→ p(t)−1 γp p(t)dt

We derive analytical expressions for the protein noise
levels for each of these different feedback circuits. Using
these expressions we determine which feedback provides
the best noise suppression, and how does its performance
depend on gene-expression parameters such as mRNA and
protein half-life. It is important to point out that comparisons
between different feedback circuits are done keeping the
mean protein and mRNA population count fixed. Further-
more, we assume that different feedbacks also have the
same feedback strength, which is measured by the sensitivity
of the transcription/translation rate to the mRNA/protein
count. Such a form of comparison is called a mathematically
controlled comparison.

II. GENE-EXPRESSION NOISE WITHOUT FEEDBACK
REGULATION

We begin by first quantifying the extent of stochasticity in
protein levels in a gene-expression model with no feedback
regulation. Consider a model where transcriptional events
take place at rate km with each event creating a burst of B
mRNA molecules, where B is an arbitrary discrete random
variable with probability distribution

Probability{B = z}= αz, z = {1,2,3, . . .}. (1)

Typically B = 1 with probability one. However, many genes
encode promoters that allow for transcriptional bursting
where B > 1 and many mRNAs can be made per transcrip-
tional event [16], [17], [18]. Protein molecules are translated
from each single mRNA at rate kp. We assume that mRNAs
and proteins degrade at constant rates γm and γp, respectively.
In the stochastic formulation of this model, transcription,
translation and degradation are probabilistic events that occur
at exponentially distributed time intervals [19]. Moreover,
whenever a particular event occurs, the mRNA and protein
population count is reset accordingly. Let m(t) and p(t)
denote the number of molecules of the mRNA and protein
at time t, respectively. Then, the reset in m(t) and p(t) for
different gene-expression and degradation events is shown
in the second column of Table I. The frequency with which
different events occur is determined by the third column of
Table I, which lists the probability that a particular event will
occur in the next infinitesimal time interval (t, t +dt].

To quantify noise in protein levels we first write the
differential equations that describe the time evolution of

the different statistical moments of the mRNA and protein
count. The moment dynamics can be obtained using the
following result: For the above gene-expression model, the
time-derivative of the expected value of any differentiable
function ϕ(m, p) is given by equation (2) shown on the
top of next page [20], [21]. Here, and in the sequel we
use the symbol 〈.〉 to denote the expected value. Using (2)
with appropriate choices for ϕ(m, p) we obtain the following
moment dynamics:

d〈m〉
dt

= km〈B〉− γm〈m〉,
d〈p〉

dt
= kp〈m〉− γp〈p〉 (3a)

d〈m2〉
dt

= km〈B2〉+ γm〈m〉+2km〈B〉〈m〉−2γm〈m2〉 (3b)

d〈p2〉
dt

= kp〈m〉+ γp〈p〉+2kp〈mp〉−2γp〈p2〉 (3c)

d〈mp〉
dt

= kp〈m2〉+ km〈B〉〈p〉− γp〈mp〉− γm〈mp〉. (3d)

As done in many studies we quantify noise in protein levels
through the coefficient of variation squared defined as

CV 2 = σ̄
2/ ¯〈p〉2

, (4)

where σ̄2 is the steady-state variance in protein levels and
¯〈p〉 denotes the steady-state mean protein count. Quantifying

the steady-state moments from (3) and substituting in (4) we
obtain

CV 2 =
(〈B2〉+ 〈B〉)γp

2〈B〉(γp + γm) ¯〈m〉
+

1
¯〈p〉

(5)

where

¯〈p〉=
〈B〉km

γpγm
, ¯〈m〉=

〈B〉km

γm
(6)

denote the steady-state mean mRNA and protein count,
respectively. The first term on the right-hand-side of (5)
corresponds to noise in protein levels that arises from
stochastic production and degradation of mRNA molecules,
and is inversely proportional to the mean mRNA count ¯〈m〉.
The second term in (5) represents Poissonian noise arising
from random birth-death of individual protein molecules.
Given that mRNA population counts are typically or-
ders of magnitude smaller than protein population counts( ¯〈m〉/ ¯〈p〉 ≈ 10−3 from [22]

)
, we ignore the second term in
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d〈ϕ(m, p)〉
dt

=

〈
∞

∑
z=1

kmαz[ϕ(m+ z, p)−ϕ(m, p)]+ γmm[ϕ(m−1, p)−ϕ(m, p)]+ kpm[ϕ(m, p+1)−ϕ(m, p)]

〉
+

〈
γp p[ϕ(m, p−1)−ϕ(m, p)]

〉
. (2)

(5) and approximate CV 2 as

CV 2 ≈
(〈B2〉+ 〈B〉)γp

2〈B〉(γp + γm) ¯〈m〉
. (7)

This approximation implies that gene-expression noise pri-
marily arises from fluctuations in mRNA counts that are
transmitted downstream to the protein level. In summary, (7)
represents the steady-state noise in protein level when there
is no feedback in gene-expression.

III. GENE-EXPRESSION NOISE WITH NEGATIVE
FEEDBACK REGULATION

In this section we compare and contrast the magnitude
of gene-expression noise for different negative feedback
circuits shown in Figure 1. To do this, we derive approximate
analytical expressions for the coefficient of variation squared
of p(t) corresponding to feedback architectures I to IV.

A. Feedback regulation at the transcriptional level
We first consider protein mediated transcriptional regula-

tion which corresponds to feedback circuit I in Figure 1.
Transcriptional regulation is incorporated in the above gene-
expression model by assuming that the transcription rate is
dependent on the protein levels. More specifically, transcrip-
tional events occur at rate km(p), which is a monotonically
decreasing function of the protein population count p(t). This
corresponds to a negative feedback mechanism where any
increase (decrease) in protein numbers is compensated by a
decrease (increase) in the transcription rate. To quantify the
protein noise levels we use the linear noise approximation
[23], which involves linearizing the transcription rate km(p)
about the steady-state average number of protein molecules

¯〈p〉. This approximation is valid as long as the stochastic
fluctuations in protein counts are small, which is likely to
be true for tightly regulated essential proteins. Towards this
end, we assume

km(p)≈ km( ¯〈p〉)
[

1−κ

(
p(t)− ¯〈p〉

¯〈p〉

)]
(8)

where km( ¯〈p〉) is the average transcription rate. The dimen-
sionless constant

κ =−
¯〈p〉

km( ¯〈p〉)
dkm(p)

d p
|p= ¯〈p〉 > 0 (9)

determines the sensitivity of the transcription rate to the
protein count and can be interpreted as the strength of the
negative feedback. The dimensionless constant κ determines
the sensitivity of the transcription rate to the protein count
and can be interpreted as the strength of the negative feed-
back.

To obtain the time evolution of the statistical moments we
use (2), with km now replaced by (8). This results in the
following moment dynamics:

d〈m〉
dt

= 〈km(p)〉〈B〉− γm〈m〉,
d〈p〉

dt
= kp〈m〉− γp〈p〉 (10a)

d〈m2〉
dt

= 〈km(p)〉〈B2〉+ γm〈m〉+2〈km(p)m〉〈B〉−2γm〈m2〉
(10b)

d〈p2〉
dt

= kp〈m〉+ γp〈p〉+2kp〈mp〉−2γp〈p2〉 (10c)

d〈mp〉
dt

= kp〈m2〉+ 〈km(p)p〉〈B〉− γp〈mp〉− γm〈mp〉.
(10d)

Quantifying the steady-state moments from (10) and sub-
stituting in (4) gives the following protein noise level for
feedback circuit I:

CV 2
I =

γp(〈B〉+ 〈B2〉)
2〈B〉(γp + γm)(1+κ) ¯〈m〉

, (11)

where the steady-state mean protein count is the unique
solution to the equation

〈B〉kpkm( ¯〈p〉)
γmγp

= ¯〈p〉 (12)

and the steady-state mean mRNA count is given by

¯〈m〉=
¯〈p〉γp

kp
. (13)

As done in the previous section, to obtain the noise level
(11) we assumed that the protein population count is much
larger than the mRNA population count, and hence ignored
expression noise arising from random birth and death of
individual protein molecules. Throughout the paper we use
CV 2

X, X ∈ {I, II, III, IV} to denote the steady-state protein
noise level corresponding to feedback circuit X.

For negative feedback circuit III, the frequency of tran-
scription events km(m) is a decreasing function of the mRNA
copy number m(t). Assuming fluctuations in m(t) are suffi-
ciently small, km(m) can be linearized as

km(m)≈ km( ¯〈m〉)
[

1−κ

(
m(t)− ¯〈m〉

¯〈m〉

)]
(14)

where

κ =−
¯〈m〉

km( ¯〈m〉)
dkm(m)

dm
|m= ¯〈m〉 > 0 (15)

is interpreted as the strength of the negative feedback circuit
III. Replace the right-hand-side of (14) with km in equation
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(2) results in the following moment dynamics

d〈m〉
dt

= 〈km(m)〉〈B〉− γm〈m〉,
d〈p〉

dt
= kp〈m〉− γp〈p〉 (16a)

d〈m2〉
dt

= 〈km(m)〉〈B2〉+ γm〈m〉+2〈km(m)m〉〈B〉−2γm〈m2〉
(16b)

d〈p2〉
dt

= kp〈m〉+ γp〈p〉+2kp〈mp〉−2γp〈p2〉 (16c)

d〈mp〉
dt

= kp〈m2〉+ 〈km(m)p〉〈B〉− γp〈mp〉− γm〈mp〉.
(16d)

Steady-state analysis of the above moment equation results
in the following protein noise level for negative feedback
architecture III

CV 2
III =

γp(〈B〉+ 〈B2〉)
2〈B〉(γp + γm(1+κ))(1+κ) ¯〈m〉

. (17)

B. Feedback regulation at the translational level

We next consider feedback circuit II, where the protein
translation rate per mRNA is a monotonically decreasing
function kp(p) of the protein count p(t). Thus, the total
protein production rate z(t) = kp(p)m is now dependent on
both the mRNA and protein population count. As before,
we assume that the stochastic fluctuations in p(t) and m(t)
around their respective means ¯〈p〉 and ¯〈m〉 are sufficiently
small and approximate the total protein production rate z(t)
as

z(t) = kp(p)m ≈ kp( ¯〈p〉)
[

m(t)−κ ¯〈m〉
(

p(t)− ¯〈p〉
¯〈p〉

)]
,

(18)

where kp( ¯〈p〉) is the average protein translation rate per
mRNA and the dimensionless constant

κ =−
¯〈p〉

kp( ¯〈p〉)
dkp(p)

d p
|p= ¯〈p〉 > 0 (19)

is the strength of the negative feedback circuit II. The
moment dynamics corresponding to this feedback can be
obtained from (2) with kpm replaced by (18). This results
in the following moment dynamics

d〈m〉
dt

= km〈B〉− γm〈m〉,
d〈p〉

dt
= 〈z〉− γp〈p〉 (20a)

d〈m2〉
dt

= km〈B2〉+ γm〈m〉+2〈kmm〉〈B〉−2γm〈m2〉 (20b)

d〈p2〉
dt

= 〈z〉+ γp〈p〉+2〈zp〉−2γp〈p2〉 (20c)

d〈mp〉
dt

= 〈zm〉+ km〈p〉〈B〉− γp〈mp〉− γm〈mp〉. (20d)

Substituting (19) in (20) and performing a steady-state anal-
ysis of the resulting moment equations yields:

CV 2
II =

γp(〈B〉+ 〈B2〉)
2〈B〉(γm + γp(1+κ))(1+κ) ¯〈m〉

. (21)

Finally, we consider feedback circuits IV where the protein
translation rate per mRNA is a monotonically decreasing

function kp(m) of the protein count m(t). The procedure for
quantifying protein noise levels for IV is very similar to that
used for feedback circuits II except that the total protein
production given by equation (18) is now modified as

z(t) = kp(m)m ≈ kp( ¯〈m〉)
[
m(t)−κ

(
m(t)− ¯〈m〉

)]
(22)

where

κ =−
¯〈m〉

kp( ¯〈m〉)
dkp(m)

dm
|m= ¯〈m〉 > 0 (23)

is the strength of the negative feedback circuit IV. Note that
in this case κ < 1 since total protein production z(t) is always
an increasing function of the mRNA population count m(t).
Moment dynamics corresponding to feedback circuit IV is
obtained by replacing (22) in equation (20). A steady-state
analysis of the resulting moment equations gives

CV 2
IV =

γp(〈B〉+ 〈B2〉)(1−κ)2

2〈B〉(γm + γp) ¯〈m〉
. (24)

C. Comparison of gene-expression noise across negative
feedback circuits

To assess the noise suppression abilities of different
feedback circuits we perform a mathematically controlled
comparison where all circuits are assumed to have the
same feedback strength and steady-state mean mRNA count.
Analytical expressions for the protein noise levels derived in
the previous section (i.e., equations (11), (17), (21) and (24))
show the following relationship: When the mRNA half life
is much longer then the protein half-life (γm < γp) then

CV 2
IV < CV 2

II < CV 2
III < CV 2

I . (25)

On the other hand when the mRNA half-life is shorter than
the protein half-life (γm > γp) then we have

CV 2
IV < CV 2

III < CV 2
II < CV 2

I . (26)

Based on these result the main findings of this paper can be
summarized as follows:

1) Assuming all feedback topologies have the same neg-
ative strength, feedback circuit IV provides the best
noise suppression irrespective of the parameters of
gene-expression.

2) Among different feedback architectures, negative feed-
back circuit I is the least effective in reducing gene-
expression noise.

3) Depending on the mRNA and protein half-life, feed-
back circuit II or III will provide the second best
suppression of gene-expression noise.

IV. CONCLUSIONS

What regulatory mechanisms control stochasticity in pro-
tein levels such that cellular process can occur with sufficient
high fidelity is a fundamental question in biology. We here
analyzed the noise suppression properties of four different
negative feedback loops within gene-expression (Figure 1).
Assuming that stochastic fluctuations in the populations of
the protein and the mRNA are sufficiently small, we derived
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explicit analytical formulas for the protein noise level for
each of the four feedback mechanisms. These formulas reveal
that some negative feedback architectures are inherently
better at noise suppression.

Our results indicate that in a mathematically controlled
comparison, feedback circuit IV provides the best suppres-
sion of gene-expression noise. More specifically, for a fixed
feedback strength, a feedback mechanism where the protein
translation rate per mRNA is a monotonically decreasing
function of the mRNA count provides the least amount of
statistical fluctuations in the protein count. Such feedback
circuits can potentially be implement using microRNAs that
are derived from introns within pre-mRNAs. For example, an
intron-derived microRNA that inhibits translation of its own
mRNA will create a scenario where the protein translation
rate per mRNA is inversely proportional to the mRNA
population count. Finally, our results have also shown that
in between all the feedback architectures, feedback topology
I is the least effective in buffering gene-expression noise. In
summary, we have developed results that connect stochas-
ticity in protein levels to the negative feedback architecture
in gene expression. These results will not only be helpful in
analyzing naturally occurring negative feedback circuits but
also be useful for designing synthetic feedback circuits to
reduce random fluctuations in protein copy numbers.
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