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Abstract— We study the adaptive controller design for SISO linear
systems subjected to plant and actuation uncertainties simultaneously.
We first formulate the actuation and plant components of the linear
system as two subsystems sequentially interconnected with additional
feedback, and then convert the robust adaptive control problem as a
nonlinear H∞ control problem under imperfect state measurement. We
derive the estimators and identifiers of the two subsystems using cost-
to-come analysis, and then apply integrator backstepping methodology
to obtain the control law. The controller guarantees the boundedness of
closed-loop signals with bounded exogenous disturbances, and achieves
desired disturbance attenuation level with respect to the unmeasured
exogenous disturbance inputs and arbitrary positive or zero disturbance
attenuation level with respect to the measured disturbance inputs. In
addition, for the measured disturbances that the controller can achieve
zero disturbance attenuation level, the asymptotic tracking objective
is achieved even if they are only uniformly bounded without being of
finite energy.

Index Terms— Nonlinear H∞ control; cost-to-come function analy-
sis; measured disturbances; adaptive control.

I. INTRODUCTION

Adaptive control attracted a lot of research attention in control
theory since 1970s. The classic adaptive control design based on the
certainty equivalence approach leads to structurally simple adaptive
controllers[1] [2], and its effectiveness for linear systems with or
without stochastic disturbance inputs has been demonstrated when
long term asymptotic performance is considered [3]. However, early
designs based on this approach were not robust to exogenous dis-
turbance inputs and unmodeled dynamics[4]. Then, the stability and
the performance of the closed-loop system becomes an important
issue, which motivated the study of robust adaptive control in the
1980s and 1990s.

The robustness of closed-loop adaptive systems was studied
intensely in late 1980s and early 1990s. Various adaptive controllers
were modified to render the closed-loop systems robust [5]. Despite
their successes, they still fell short of directly addressing the
disturbance attenuation property of the closed-loop system.

Worst-case analysis based adaptive control design was motivated
by the success of the game-theoretic approach to H∞-optimal
control problems [6] in late 1990s, which addresses the disturbance
attenuation property directly. This design paradigm has been applied
to worst-case parameter identification problems [7], which has led
to new classes of parametrized identifiers for linear and nonlinear
systems. It has also been applied to adaptive control problems [8],
[9], [10], [11], and offered a promising tool to system subjected to
uncertainties.

Most of the control applications today are implemented based
on digital controllers. Driver is one critical component of control
system as well as actuator, and usually is or can be approximated
as a SISO linear system with zero relative degree. The driver
performance can be impacted by uncertainties such as poor linearity
properties, environmental and thermal issues. Moreover, the plant
output will intendedly or unintendedly feedback to the driver in
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some applications, such as the back-emf voltage in the motor
control applications. Nevertheless, the controller in practice are
usually designed with the assumption that the control command
can be applied on the plant directly by ignoring the actuation
uncertainty induced from driver and actuator. To improve system
performance, we need to take both plant and actuation uncertainties
into account in the controller design. The above driver, actuator and
plant components are essentially in a sequentially interconnected
structure as Figure 1, and it is the real plant in the practical control
system design.

In this paper, we study the adaptive control design for linear sys-
tems under simultaneous driver, plant and actuation uncertainties.
We view the linear system as two subsystems, actuation subsys-
tem(which includes the driver and actuation blocks in Figure 1)
and plant subsystem, sequentially interconnected with noisy output
measurement and partially measured disturbance, and we assume
that they satisfy the assumptions as [12] and [11], respectively. Un-
der these assumptions, we can transform the above two subsystems
into the models which are linear in all of the uncertainties. We then
formulate the robust adaptive control problem as a nonlinear H∞

control problem under imperfect state measurements, and apply the
cost-to-come function analysis to derive the worst-case identifier
and state estimator. The control design of the plant subsystem
follows [12], and the adaptive controller can be obtained by the
integrator backstepping methodology. The control design for the
actuation subsystem can be completed in one step in view of the
last backstepping design step for plant subsystem and the equivalent
cost function. The robust adaptive controller achieves asymptotic
tracking if the disturbances are bounded and of finite energy, and
guarantees the stability of the closed-loop system with respect to the
bounded disturbance inputs and the initial conditions. Furthermore,
the closed-loop system admits a guaranteed disturbance attenuation
level with respect to the exogenous disturbance inputs, where
ultimate lower bound for the achievable attenuation performance
level is only related to the noise intensity in the measurement
channel of the plant subsystem, and zero or arbitrary positive
distance attenuation level with respect to the measured disturbances.
It further leads to a stronger asymptotic tracking property for the
measured disturbances that the controller can achieve disturbance
attenuation level zero with respect to, namely, the asymptotic track-
ing objective is achieved when the above measured disturbances are
only bounded, without requiring it to be of finite energy.

The balance of the paper is organized as follows. In Section
II, we list the notations used in the paper. In Section III, we
present the formulation of the adaptive control problem and discuss
the general solution methodology. In Section IV, we first obtain
parameter identifier and state estimator using the cost-to-come
function analysis in Subsection IV-A, then we derive the adaptive
control law and present the main results on the robustness of the
system in Subsection IV-B. The paper ends with some concluding
remarks in Section V.
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II. NOTATIONS

We denote IR to be the real line; IRe to be the extended real line;
IN to be the set of natural numbers. For a function f , we say that it
belongs to C if it is continuous; we say that it belongs to Ck if it is
k-times continuously (partial) differentiable. For any matrix A, A′

denotes its transpose. For any b ∈ IR, sgn(b) =

{ −1 b < 0
0 b = 0
1 b > 0

.

For any vector z ∈ IRn, where n ∈ IN, |z| denotes (z′z)1/2. For
any vector z ∈ IRn, and any n× n-dimensional symmetric matrix
M , where n ∈ IN, |z|2M = z′Mz. For any matrix M , the vector−→
M is formed by stacking up its column vectors. For any symmetric
matrix M , ←−M denotes the vector formed by stacking up the column
vector of the lower triangular part of M . For n × n-dimensional
symmetric matrices M1 and M2, where n ∈ IN, we write M1 > M2

if M1 −M2 is positive definite; we write M1 ≥ M2 if M1 −M2

is positive semi-definite. For n ∈ IN, the set of n× n-dimensional
positive definite matrices is denoted by S+n. For n ∈ IN∪{0}, In

denotes the n× n-dimensional identity matrix. For any matrix M ,
‖M‖p denotes its p-induced norm, 1 ≤ p ≤ ∞. L2 denotes the set
of square integrable functions and L∞ denotes the set of bounded
functions. For any n, m ∈ IN ∪ {0}, 0n×m denotes the n × m-
dimensional matrix whose elements are zeros. For any n ∈ IN and
k ∈ {1, · · · , n}, en,k denotes

[
01×(k−1) 1 01×(n−k)

]′
.

III. PROBLEM FORMULATION

We consider the robust adaptive control problem for the uncer-
tainty system which is described by the block diagram in Figure 1.
We call the plant as subsystem S1 and assume the system dynamics

Driveru Actuator Plant
u

Fig. 1. Block diagram of uncertainty system.

for plant are as below,

ẋ1 = A1x1 + B1ù + Ď1w̌1 + D1w1

+(y1A1,21 + ùA1,22 +

q̌1∑
i=1

w̌1,iA1,23i)θ1; (1a)

y1 = C1x1 + E1w1 (1b)

where x1 is the n1-dimensional state vectors with initial condition
x1(0) = x1,0, n1 ∈ IN; ù is the scalar control input; y1 is the scalar
measurement output; w1 is q1-dimensional unmeasured disturbance
input vector, q1 ∈ IN; w̌1 is q̌1-dimensional measured disturbance
input vector, q̌1 ∈ IN; θ1 is σ1-dimensional unknown parameter
vector, σ1 ∈ IN; the matrices A1, B1, D1, Ď1, A1,21, A1,22, A1,23,
C1, and E1 are of appropriate dimensions and completely known.

To simplify the illustration, we combine the actuator and driver
blocks in Figure 1 as subsystem S2, and we assume the system
dynamics of S2 are given by,

ẋ2 = A2x2 + B2u + A2,yy1 + Ď2w̌2 + D2w2 + (y2A2,21

+uA2,22 +

q̌2∑
i=1

w̌2,iA2,23i + y1A2,24)θ2; (2a)

y2 = C2x2 + (C̄2,0θ2 + b2,p0)u + E2w2 (2b)

where x2 is the n2-dimensional state vectors with initial condition
x2(0) = x2,0, n2 ∈ IN; u is the scalar control input; y2 is the
scalar measurement output and y2 = ù; w2 is q2-dimensional
unmeasured disturbance input vector, q2 ∈ IN; w̌2 is q̌2-dimensional
measured disturbance input vector, q̌2 ∈ IN; θ2 is σ2-dimensional
unknown parameter vector, σ2 ∈ IN; the matrices A2, B2, A2,y ,
D2, Ď2, A2,21, A2,22, A2,23, A2,24, C2, C̄2,0, b2,p0 and E2 are
of appropriate dimensions and completely known. In addition, the
high frequency gain, b2,0, of the transfer function from u to y2 is
equal to b2,p0 + C̄2,0θ2.

We assume that S1 satisfies the assumptions in [12], and S2

satisfies the assumptions in [11]. To make this paper more readable,
we will summarize the assumption as follows,

Assumption 1: S1 and S2 are observable. The transfer function
of S1 is known to have relative degree r1 ∈ IN, and the transfer
function of S2 is known to have relative degree zero. Moreover,
both subsystems are strictly minimum phase. 2

Based on the above assumptions, we have

A1 = (a1,jk)n1×n1 ;

{
a1,j (j+1) = 1 1 ≤ j ≤ r1 − 1
a1,jk = 0 1 ≤ j ≤ r1 − 1, k > j + 1

Ā1,22 =
[

0σ1×(r1−1) Ā′1,22 0 Ā′1,22 r1

]′
; C1 = [1 01×(n1−1) ]

B1 =
[

01×(r1−1) b1,p0 · · · b1,p(n1−r1)

]′

where A1,22 0 is a row vector, b1,pj j = 0, 1, · · · , n1 − r1 are
constants. Then the high frequency gain of the transfer function of
S1 and S2 are b1,0 = b1,p0 + Ā1,22 0θ1 and b2,0 = b2,p0 + C̄2,0θ2,
respectively.

The subsystems may be uncontrollable, but the uncontrollable
part satisfies the following assumption,

Assumption 2: The uncontrollable parts with respect to ù of (1)
and u of (2) are stable in the sense of Lyapunov. Any uncontrollable
mode corresponding to an eigenvalue of the matrix A1 and A2

on the jω-axis is uncontrollable from w1, w̌1, and y1, w2, w̌2,
respectively. 2

Since we consider the adaptive control design for systems with
noisy output measurements, we have the following assumption,

Assumption 3: The matrices Ei are such that EiE
′
i > 0, for

i = 1, 2. 2

and we define ζi := 1/(EiE
′
i)

1
2 and Li := DiE

′
i, for i = 1, 2.

To guarantee the stability of the closed-loop system and the
boundedness of the estimate of θi, for i = 1, 2, we make the
following assumption.

Assumption 4: The sign of bi,0 is known, and without loss of
generality, assume bi,0 > 0; there exists a known smooth nonneg-
ative radially-unbounded strictly convex function Pi : IRσi → IR,
such that the true value θi ∈ Θi := {θ̄i ∈ IRσi | Pi(θ̄i) ≤ 1}. 2

Since we consider a trajectory tracking control design problem,
we make the following assumption about the reference signal yd.

Assumption 5: The reference trajectory, yd, is r1 times con-
tinuously differentiable. Define vector Yd := [y

(0)
d , · · · , y(r1)

d ]′,
where y

(0)
d = yd, and y

(j)
d is the jth order time derivative of yd,

j = 1, · · · , r1; define Yd0 := [y
(0)
d (0), · · · , y(r1−1)

d (0)]′ ∈ IRr1 .
The signal Yd is available for feedback. 2

Our objective is to derive a control law, which is generated by
the following mapping,

u(t) = µ(ωm) (3)

where µ : C×C×C×C×C → IR, such that x1,1 can asymptotically
track the reference trajectory yd, while rejecting the uncertainty
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(ω1, ω2) ∈ W1×W2, and keeping the closed-loop signals bounded,
where ωm ∈ Wm is the measurement signal of the system

ωm := (y1[0,∞), y2[0,∞), w̌1[0,∞), w̌2[0,∞), Yd0, y
(r1)

d[0,∞))

Wm := C × C × C × C × IRr1 × C

ωi ∈ Wi is the uncertainty of subsystem Si for i = 1, 2,

ωi := (xi,0, θi, wi[0,∞), w̌i[0,∞), Yd0, y
(r1)

d[0,∞))

Wi := IRni ×Θi × C × C × IRr1 × C

The control law µ must also satisfy that, ∀(ω1, ω2) ∈ W1 ×W2,
there exists a solution x1[0,∞) and x2[0,∞) to the system (1) and
(2) , which yields a continuous control signal u[0,∞). We denote
the class of these admissible controllers by Mµ.

Next, we introduce the following assumption about the measured
disturbance w̌1 before we define the disturbance attenuation level to
capture the control objectives by optimizing a game-theoretic cost
function.

Assumption 6: The measured disturbance w̌1 can be partitioned
as: w̌1 =

[
w̌′1,a w̌′1,b w̌′1,c

]′
, where w̌1,a is q̌1,a dimensional,

q̌1,a ∈ IN ∪ {0}, and the transfer function from each element of
w̌1,a to y1 has relative degree strictly less than r1; w̌1,b is q̌1,b

dimensional, q̌1,b ∈ IN ∪ {0}, and the transfer function from each
element of w̌1,b to y1 has relative degree r1. 2

Definition 1: A controller µ ∈ Mµ is said to achieve
disturbance attenuation level γ with respect to disturbance[

w′1 w′2
]′

, arbitrary disturbance attenuation level γ̌ with
respect to w̌1,a, and disturbance attenuation level zero with
respect to disturbance

[
w̌′1,b w̌′1,c w̌2

]′
, if there exists func-

tions l1(t, θ1, x1, y1[0,t], Yd[0,t]), l2(t, θ2, x2, y2[0,t], Yd[0,t]), and a
known nonnegative constant l0, such that

sup
w1∈W1,w2∈W2

J1,γtf + J2,γtf ≤ 0; ∀tf ≥ 0 (4)

where

J1,γtf :=

∫ tf

0

((C1x1 − yd)2 + l1 − γ̌2|w̌1,a|2 − γ2|w1|2)dτ

−γ2
∣∣∣
[

θ′1 − θ̌′1,0 x′1,0 − x̌′1,0

]′∣∣∣
2

Q̄1,0

− l0 (5)

J2,γtf :=

∫ tf

0

(l2 − γ2|w2|2)dτ

−γ2
∣∣∣
[

θ′2 − θ̌′2,0 x′2,0 − x̌′2,0

]′∣∣∣
2

Q̄2,0

(6)

In the equation above, for i = 1, 2, Q̄i,0 > 0 is a (ni +
σi) × (ni + σi)-dimensional weighting matrix, quantifying the
level of confidence in the estimate

[
θ̌′i,0 x̌′i,0

]′
; Q̄−1

i,0 admits

the structure

[
Q−1

i,0 Q−1
i,0Φ′i,0

Φi,0Q
−1
i,0 Πi,0 + Φi,0Q

−1
i,0Φ′i,0

]
, Qi,0 and Πi,0

are σi × σi- and ni × ni-dimensional positive definite matrices,
respectively.

Clearly, when the inequality (4) is achieved, the squared L2

norm of the output tracking error C1x1 − yd is bounded by γ2

times the squared L2 norm of the unmeasured disturbance input[
w′1 w′2

]′
, plus γ̌2 times the squared L2 norm of the measured

disturbance input w̌1,a and some constant. When the L2 norm of
w1, w2, w̌1, and w̌2 are finite, the squared L2 norm of C1x1 − yd

is also finite, which implies lim
t→∞

(C1x1(t) − yd(t)) = 0, under
additional assumptions.

The worst-case optimization of the cost function (4) can be
carried out in two steps as depicted in the following equations.

sup
ω1∈W1, ω2∈W2

Jγtf ≤ sup
ωm∈Wm

( 2∑
i=1

sup
ωi∈Wi|ωm∈Wm

Ji,γtf

)
(7)

The inner supremum operators will be carried out first. We max-
imize over ωi given that the measurement ωm is available for
estimator design, i = 1, 2. In this step, the control input, u, is
a function only depended on ωm, then u is an open-loop time
function and available for the optimization. Using cost-to-come
function analysis, we derive the dynamics of the estimators for
subsystem S1 and S2 independently.

The outer supremum operator will be carried out second. In this
step, we use a backstepping procedure to design the controller µ.

This completes the formulation of the robust adaptive control
problem.

IV. ADAPTIVE CONTROL DESIGN

In this section, we present the adaptive control design, which
involves estimation design and control design. First, we discuss
estimation design.

A. Estimation Design

In this subsection, we present the estimation design for the
adaptive control problem formulated.

To be able to apply cost-to-come function analysis to design a
stabilizing controller, we first expand the system dynamics (1) and
(2) by including θ1 and θ2 as part of the the expanded state vector
ξ1 =

[
θ′1 x′1

]′
and ξ2 =

[
θ′2 x′2

]′
. The expanded system

dynamics are given as (8).
We skip the estimation design for S1 due to page limitation, and

the derivation can be found in [12].
The estimation design of S2 generally follows [11], but the

identifier dynamics are significantly different due to the feedback
input y1 and measured disturbance w̌2 in (2). In this step, the
measurements waveform, y1, w̌2 and Yd are assumed to be known.
We ignore terms considered to be constant in the estimation design
step, and set l2 in (6) to be |ξ2− ξ̂2|2Q̄2

+2(ξ2− ξ̌2)
′l2,2 + ľ2. The

equivalent cost function of (6) is then given by,

J2,γtf :=

∫ tf

0

(|ξ2 − ξ̂2|2Q̄2
+ 2(ξ2 − ξ̌2)

′l2,2 + ľ2 − γ2|w2|2)dτ

−γ2|ξ̃2,0|2Q̄2,0
(9)

where Q̄2 is a matrix-valued weighting function, ξ̂2 is the worst-
case estimates for the expanded state ξ2, l2,2 is a design function,
and ľ2 is considered to be constant in the estimation design step.
The cost function of subsystem S2 is then of a linear quadratic
structure, and the robust adaptive control problem for S2 becomes
an H∞ control of affine quadratic problem, which admits a finite
dimensional solution.

We introduce the value function W2 = |ξ2 − ξ̌2|2
Σ̄−1

2
, and treat

y1 as the measured disturbance of S2, and we then can obtain the
dynamics of state estimator ξ̌2 and worst-case covariance matrix Σ̄2

by the cost-to-come function methodology. However, it is difficult
to analyze Σ̄2 directly, we thus partition Σ̄2, and define Φ2 and Π2

as shown below,

Σ̄2 =

[
Σ2 Σ̄2,12

Σ̄2,21 Σ̄2,22

]
;

Π2 := γ2(Σ̄2,22 − Σ̄2,21Σ
−1
2 Σ̄2,12);

Φ2 := Σ̄2,21Σ
−1
2 ;
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ξ̇1 =

[
0 0

y1Ā1,21 + ùĀ1,22 +
∑q̌1

j=1
w̌1,jĀ1,23 j A1

]
ξ1 +

[
0
B1

]
ù+

[
0

Ď1

]
w̌1 +

[
0

D1

]
w1

=: Ā1ξ1 + B̄1u + ¯̌D1w̌1 + D̄1w1 (8a)

y1 =
[

01×σ1 C1

]
ξ1 + E1w1 =: C̄1ξ1 + E1w1; (8b)

ξ̇2 =

[
0 0

y2Ā2,21 +uĀ2,22 +
∑q̌2

j=1
w̌2,jĀ2,23 j +y1Ā2,24 A2

]
ξ2+

[
0
B2

]
u+

[
0

A2,y

]
y1+

[
0

Ď2

]
w̌2+

[
0

D2

]
w2

=: Ā2ξ2 + B̄2u + Ā2,yy1 + ¯̌D2w̌2 + D̄2w2 (8c)

y2 =
[

uC̄2,0 C2

]
ξ2 + b2,p0u + E2w2 =: C̄2ξ2 + b2,p0u + E2w2; (8d)

then the weighting matrix Σ̄2 is positive definite if and only if Σ2

and Π2 are positive definite. To guarantee the boundedness of Σ2,
we choose the weighing matrix Q̄2 as follows,

Q̄2 =

[
−Φ′2
In2

]
γ4Π−1

2 ∆2Π
−1
2

[
−Φ′2
In2

]′

+

[
ε2(t)(C̄2,0u + C2Φ2)

′γ2ζ2
2 (C̄2,0u + C2Φ2) 0σ2×n2

0n2×σ2 0n2×n2

]

where ∆2(t) is an n2 × n2- dimensional positive-definite matrix,
and ε2 is a scalar function, which can be defined by either of two
possibilities,

ε2(t) := Tr(Σ2(t))
−1/K2,c ∀t ∈ [0, tf ] (10a)

or ε2(t) := 1 ∀t ∈ [0, tf ] (10b)

where K2,c ≥ γ2Tr(Q22,0) is a design constant, Q2,0 is an σ2×σ2-
dimensional positive-definite matrix. The dynamics of Σ2, Φ2, and
Π2 are summarized as follows,

Σ̇2 = (ε2 − 1)Σ2(C̄2,0u + C2Φ2)
′γ2ζ2

2 (C̄2,0u + C2Φ2)Σ2;

Σ2(0) = γ−2Q−1
2,0 (11a)

Φ̇2 = (A2 − ζ2
2L2C2 − ζ2

2Π2C
′
2C2)Φ2 + y2Ā2,21 + u(Ā2,22

−ζ2
2L2C̄2,0 −Π2ζ

2C′2C̄2,0) +

q̌2∑
j=1

w̌2,jĀ2,23 j

+y1Ā2,24; Φ2(0) = Φ2,0 (11b)

Π̇2 = (A2 − ζ2
2L2C2)Π2 + Π2(A2 − ζ2

2L2C2)
′ − ζ2

2Π2C
′
2C2Π2

+D2D
′
2 − ζ2

2L2L
′
2 + γ2∆2; Π2(0) = Π2,0 (11c)

As described in [9], we have the covariance matrix Σ2 upper and
lower bounded as follows,

K−1
2,c Iσ2 ≤ Σ2(t) ≤ Σ2(0) = γ−2Q−1

2,0

γ2Tr(Q2,0) ≤ Tr(Σ2(t))
−1 ≤ K2,c

whenever Σ2 exists on [0, tf ] and Φ2 is continuous on [0, tf ].
To avoid the inversion of Σ2 online, we define s2,Σ(t) :=

Tr((Σ2(t))
−1), and its dynamic is given by,

ṡ2,Σ = γ2ζ2
2 (1− ε2)(C̄2,0u + C2Φ2)(C̄2,0u + C2Φ2)

′;

s2,Σ(0) = γ2Tr(Q2,0)

To guarantee the estimates parameter to be bounded and the
estimate of high frequency gain to be bounded away from zero
without persistently exciting signals, we introduce the following
soft projection design on the parameter estimate.

We first define ρ2 := inf{P2(θ̄2) | θ̄2 ∈ IRσ2 , b2,p0 + C̄2,0θ̄2 =
0}, and we have 1 < ρ2 ≤ ∞ by Lemma 2 in [11]. We then fix any
ρ2,o ∈ (1, ρ2), and we define the open set Θ2,o := {θ̄2 | P2(θ̄) <
ρ2,o}. Our soft projection design will guarantee that the estimate

θ̌2 lies in Θ2,o, which immediately implies |b2,p0 + Ā2,212 0θ̌2| >
c2,0 > 0, for some c2,0 > 0. Moreover, the convexity of P2 implies
the following inequality:

∂P2

∂θ2
(θ̌2) (θ2 − θ̌2) < 0 ∀θ̌2 ∈ IRσ2\Θ2

To incorporate the modifier to the estimates dynamics, we define

P2,r(θ̌2):=





exp
(

1
1−P2(θ̌2)

)
(ρ2,o−P2(θ̌2))3

(
∂P2
∂θ2

(θ̌2)
)′ ∀θ2 ∈ Θ2,o\Θ2

0σ2×1 ∀θ2 ∈ Θ2

and introduce l2,2 = [−(P2,r(θ̌2)
′ 01×n2 ]

′. The dynamics of ξ̌2 is
then given as follows,

˙̌ξ2 = −Σ̄2

[
(P2,r(θ̌2))

′ 01×n2

]′
+ Ā2ξ̌2 + B̄2u + Ā2,yy1

+ ¯̌D2w̌2 − Σ̄2Q̄2(ξ̂2 − ξ̌2) + ζ2
2 (γ2Σ̄2C̄

′
2 + L̄2)

·(y2 − b2,p0u− C̄2ξ̌2); ξ̌2(0) =
[

θ̌′2,0 x̌′2,0

]′

where L̄2 is defined as L̄2 = [01×σ2 L′2]
′.

To analyze the stability of the close-loop system easily, we im-
plement the dynamics of Φ2 as the following pre-filtering systems
for y1, y2, u and w̌2.

A2,f = A2 − ζ2
2L2C2 − ζ2

2Π2C
′
2C2

η̇2 = A2,fη2 + p2,n2y2; η2(0) = η2,0

λ̇2 = A2,fλ2 + p2,n2u; λ2(0) = λ2,0

λ̇2,o = A2,fλ2,o; λ2,o(0) = p2,n2

η̇2,w̌,2 = A2,fη2,w̌,1 + p2,n2 w̌2,1; η2,w̌,1(0) = η2,w̌20

...

η̇2,w̌,q̌2 = A2,fη2,w̌,q̌2 + p2,n2 w̌2,q̌2 ; η2,w̌,q̌2(0) = η2,w̌,q̌20

η̇2,y = A2,fη2,y + p2,n2y1; η2,y(0) = η2y,0

Φ2 = Φ2,u + Φ2,y

Φ2,y =
[

An2−1
2,f η2 · · · A2,fη2 η2

]
M−1

2,f Ā2,21

=
[

T ′2,1ηi · · · T ′2,n2η2

]′
Φ̇2,u = A2,fΦ2,u + (Ā2,22 − ζ2

2L2C̄2,0 −Π2ζ
2C′2C̄2,0)u

+

q̌2∑
j=1

Āj,23 jw̌i,j + Ā2,24y1; Φ2,u(0) = Φ2,u0

where M2,f :=
[

An2−1
2,f p2,n2 · · · A2,fp2,n2 p2,n2

]
; p2,n2

is a n2-dimensional vector such that the pair (A2,f , p2,n2) is
controllable.

This completes the estimation design of S2.
Associated with the estimation design of S1 in [12] and the above

identifier and estimator of subsystem S2, we introduce the value
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function Wi : IRni+σi × IRni+σi × S+(ni+σi) → IR, i = 1, 2 as

Wi(ξi, ξ̌i, Σ̄i)=|θi−θ̌i|2Σ−1
i

+γ2|xi−x̌i−Φi (θi−θ̌i)|2Π−1
i

whose time derivative is as follows

Ẇ1 = −|x1,1 − yd|2 − γ4|x1 − x̂1 − Φ1 (θ1 − θ̂1)|2Π−1
1 ∆1Π−1

1

−ε1 γ2ζ2
1 |θ1 − θ̂1|2Φ′1C′1C1Φ1

+ |C1x̌1 − yd|2 + |ξ1,c|2Q̄1

−γ2ζ2
1 |y1 − C1x̌1|2 + γ2|w1|2 − γ2|w1 − w1,∗|2

+2 (θ1 − θ̌1)
′P1,r(θ̌1) + ε1 |θ1 − θ̂1|2Φ′1C′1C1Φ1

(12)

Ẇ2 = −γ4|x2 − x̂2 − Φ2 (θ2 − θ̂2)|2Π−1
2 ∆2Π−1

2
+ |ξ2,c|2Q̄2

−γ2ζ2
2 |y2 − b2,p0u− C2x̌2 − C̄2,0θ̌2u|2 + γ2|w2|2

−ε2 γ2ζ2
2 |θ2 − θ̂2|2Φ′2C′2C2Φ2

− γ2|w2 − w2,∗|2

+2 (θ2 − θ̌2)
′P2,r(θ̌2) (13)

where ξi,c = ξ̌i − ξ̂i, and wi,∗ is the worst-case disturbance, given
by wi,∗ : IR× IRni+σi × IRni+σi × S+(ni+σi) −→ IR

w1,∗(ξ1, ξ̌1, Σ̄1, w1)= ζ2
1E′

1 (y1 − C̄1ξ1) + γ−2 (Iq1 − ζ2
1E′

1E1)

·D̄′
1Σ̄

−1
1 (ξ1 − ξ̌1)

w2,∗(ξ2, ξ̌2, Σ̄2, w2)= ζ2
2E′

2 (y2 − b2,p0u− C̄2ξ2)

+γ−2 (Iq2 − ζ2
2E′

2E2)D̄
′
2Σ̄

−1
2 (ξ2 − ξ̌2)

We note that (12) and (13) hold when Σi > 0 and θi ∈ Θi,0,
and the last term in Ẇi is nonpositive, zero on the set Θi and
approaches −∞ as θ̌i approaches the boundary of the set Θi,o,
which guarantees the boundedness of θ̌i, i = 1, 2. This completes
the identification design step.

B. Control Design

In this section, we describe the controller design for the uncertain
system under consideration. Note that, we ignored some terms in the
cost function (5) in the identification step, since they are constant
when y1, y2, w̌1 and w̌2 are given. In the control design step, we
will include such terms. Then, based on the cost function (5), the
controller design is to guarantee that the following supremum is
less than or equal to zero for all measurement waveforms,

sup
w1∈W1,w2∈W2

Jγtf

≤ sup
ωm∈Wm

{∫ tf

0

(
|C1x̌1 − yd|2 + |ξ1,c|2Q̄1 + |ξ2,c|2Q̄2

+ľ1 + ľ2 − γ2|w̌1,a|2 − γ2ζ2
1 |y1 − C1x̌1|2

−γ2ζ2
2 |y2 − b2,p0u− C̄2,0θ̌2u− C2x̌2|2

)
dτ

}
(14)

where function ľ1(τ, y1[0,τ ], Yd[0,τ ], w̌1) is part of the
weighting function l1(τ, θ1, x1, y1[0,τ ], Yd[0,τ ], w̌1), and
ľ2(τ, y2[0,τ ], Yd[0,τ ], w̌2) is part of the weighting function
l2(τ, θ2, x2, y2[0,τ ], Yd[0,τ ], w̌2) to be designed, which are
constants in the identifier design step and are therefore neglected.

By equation (14), we observe that the cost function is expressed
in term of the states of the estimator we derived, whose dynamics
are driven by the measurement y1, y2, w̌1, w̌2, the reference
trajectory yd, the input u, and the worst-case estimate for the
expanded state vector ξ̂1 and ξ̂2, which are signals we can either
measure or construct. This is then a nonlinear H∞-optimal control
problem under full information measurements. We can equivalently

deal with the following transformed variables instead of considering
y1, y2, w̌1 and w̌2 as the maximizing variable,

v =




ζ1 (y1 − C1x̌1)
w̌1,a

ζ2 (y2 − b2,p0u− C̄2,0θ̌2 − C2x̌2)


 =

[
v1

v2

]

Then our control design objective is to achieve desired attenuation
level γ with respect to variables v, and the variables to be designed
at this stage are u, ξ1,c, and ξ2,c.

We observe that Σ1, Π1, s1,σ and θ̌1 of subsystem S1 are always
bounded by the estimation design, and η1,w̌,1, · · · , η1,w̌,q̌1 and λ1,o

are bounded since A1,f is Hurwitz. Then, we treat these variables as
states of the stable zero dynamics in the control design procedure.
We can not stabilize Φ1,u in conjunction with x̌1 in the control
design. We will assume they are bounded and prove later they are
indeed so under the derived control law. Since there is a nonnegative
definite weighting on ξ1,c in the cost function (14), we can not
use integrator backstepping to design feedback law for ξ1,c either.
Hence, we set ξ1,c = 0 in the backstepping procedure. After the
completion of the backstepping procedure, we will then optimize
the choice of ξ1,c based on the value function obtained.

Note that the structures of A1 and A1,f in the dynamics are in
strict-feedback form, we will use the backstepping methodology,
see [13], to design the control input ù of subsystem S1.

First, we will stabilize η1 by introducing single η1,d, which is
of the following dynamics with initial condition η1,d(0) = η1,d0,
η̇1,d = A1,fη1,d + p1,n1yd, and is the reference trajectory for η1

to track. Treating x̌1,1 as the virtual control input, and choosing
value function V1,0 := |η1 − η1,d|2Z1 , where Z1 is the solution to
the following algebraic Riccati equation,

A′1,fZ1 + Z1A1,f +
1

γ2ζ2
1

Z1p1,n1p′1,n1Z1 + Y1 = 0

and Y1 is a positive-definite matrix, we complete the step 0 with the
virtual control law α1,0 = yd, which will guarantee the V̇1,0 ≤ 0
under x̌1,1 = α1,0.

At step 1, we introduce z1,1 := x̌1,1 − yd, and choose value
function V1,1 = V1,0 + 1

2
z2
1,1. Treating x̌1,2 as the virtual control

input, we end the step 1 with the virtual control law α1,1, which
guarantees V̇1,1 ≤ 0 under x̌1,2 = α1,1. Repeating the backstepping
procedure until step r1, the control input ù will appear in the
dynamic of ż1,r1 . Using the similar procedure as previous steps, we
can derive the robust adaptive controller α1,r1 such that V̇1,r1 ≤ 0
under ù = α1,r1 to guarantee the dissipation inequality with supply
rate,

−|x11 − yd|2 − |η1 − η1,d|2Y1 −
1

2
z2
11 −

r1∑
i=1

β1,iz
2
1i + γ2|v1|2

Please see [12] for the design detail.
In the design step of S2, we can equivalently deal with the

transformed variable, v2. In view of ù = y2, a clear choice for
control input u and the worst-case estimate ξ2,c, which guarantees
that the right-hand-side of (14) is nonpositive, is

u := µ̄(ωm) =
α1,r1 −

b̌21,0z1,r1
4γ2ζ2

2
− C2x̌2

C̄2,0θ̌2 + b2,p0

(15)

ξ̂2 = ξ̌2 (16)

where b̌1,0 =
[

01×(r1−1) 1 01×(n1−r1)

]
(B1 + A1,22θ̌1).
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For the closed-loop adaptive nonlinear system, we have the
following value function, U = W1 + W2 + V1,r1 , and its time
derivative is given by

U̇ ≤ −|x1,1 − yd|2 − 1

4
|ς1,r1 |2Q̄1

+

∣∣∣ξ1,c +
1

2
ς1,r1

∣∣∣
2

Q̄1

+

2∑
i=1

γ2
(
|wi|2 − |wi − wi,∗|2

)
+ γ2|w̌1,a|2 − γ2|w̌1,a − w̌1,∗|2

where ς1,r1 is function obtained after step r1, w̌1,∗ is the worst
case disturbance with respect to the value function U , and both of
them are defined in [12] and [11].

Then the optimal choice for the variable ξ1,c is, ξ1,c∗ = − 1
2
ς1,r1 ,

which yields that the closed-loop system is dissipative with storage
function U and supply rate:

−|x1,1 − yd|2 + γ2|w1|2 + γ2|w2|2 + γ2|w̌1,a|2

The optimal choice of ξ1,c∗ is generally very complicated. We
could simply choose ξ1,c = 0, i.e., ξ̂1 = ξ̌1. Since it will result in
a simplified identifier structure, this suboptimal choice of ξ̂1 may
be preferable over the optimal one. Then, we summarize the choice
of ξ̂1 and ξ̂2 as follows,

ξ̂1 = ξ̌1 − ε1,c

2
ς1,r1 ; ε1,c =∈ [0, 1] (17)

ξ̂2 = ξ̌2 (18)

Next, we state the strong robustness property of the closed-loop
system in the following theorem.

Theorem 1: Consider the robust adaptive control problem for-
mulated in Section III, the robust adaptive controller µ in (15) with
the choise of ξ1,c as (17) and ξ2,c as (18), achieves the following
strong robustness properties for the closed-loop system.

1) For uncertainties ω1 ∈ W1 and ω2 ∈ W2, the controller µ
achieves disturbance attenuation level γ with respect to w1

and w2, arbitrary disturbance attenuation level γ̌ with respect
to w̌1,a, and disturbance attenuation level zero with respect
to w̌1,b, w̌1,c, and w̌2.

2) For subsystem S1 and S2, the controller µ guarantees
the boundedness of all closed-loop state variables for any
bounded uncertainty ω1 ∈ W1 and ω2 ∈ W2.

3) For uncertainties ω1 ∈ W1 and ω2 ∈ W2 with w1,[0,∞) ∈
L2 ∩ L∞, w2,[0,∞) ∈ L2 ∩ L∞, w̌1,a[0,∞) ∈ L2 ∩ L∞,
w̌1,b[0,∞) ∈ L∞, w̌1,c[0,∞) ∈ L∞, w̌2[0,∞) ∈ L∞ and
Yd[0,∞) ∈ L∞, the output of the subsystem S1, x1,1,
asymptotically tracks the reference trajectory, yd, i.e.,

lim
t→∞

(x1,1(t)− yd(t)) = 0

4) The ultimate lower bound on the achievable performance
level, γ, is only depended on the subsystem S1, i.e., γ ≥
(E1E

′
1)

1
2 or γ > (E1E

′
1)

1
2 .

Proof We can prove the theorem by a line of reasoning that is
similar to that of [12] and [14]. The detailed proof is skipped due
to page limitation.

V. CONCLUSIONS

In this paper, we present the worst case based adaptive control
design for the linear system with plant and actuation uncertainties.
We formulate the actuation and plant of the linear system as two
subsystems sequentially interconnected with additional feedback,
and we assume that the plant subsystem satisfies the same assump-
tions as [12] and actuation subsystem satisfies the assumptions
as [11]. We formulate the robust adaptive control problem as a

nonlinear H∞ control problem under imperfect state measurements,
and then apply cost-to-come function analysis to obtain the finite
dimensional estimators of two subsystems independently due to
the sequentially interconnected structure. The controller of plant
subsystem can be obtained by utilizing the integrator backstepping
methodology recursively, and the controller of actuation subsystem
can be obtained directly in one step. The controller then guarantees
the total stability of the closed-loop system with bounded exogenous
disturbances and achieves asymptotic tracking of the reference
trajectory when the disturbance is of finite energy and uniformly
bounded. The controller also achieves a desired disturbance attenu-
ation level with respect to the exogenous disturbance inputs, where
ultimate lower bound for the achievable attenuation performance
level is only related to the noise intensity in the measurement
channel of the plant subsystem, and zero or arbitrary positive
distance attenuation level with respect to the measured disturbances.
It further leads to a stronger asymptotic tracking property for the
measured disturbances that the controller can achieve disturbance
attenuation level zero with respect to, namely, the asymptotic track-
ing objective is achieved when the above measured disturbances are
only bounded, without requiring it to be of finite energy.
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[7] Z. Pan and T. Başar, “Parameter identification for uncertain linear
systems with partial state measurements under an H∞ criterion,” IEEE
Transactions on Automatic Control, vol. 41, pp. 1295–1311, September
1996.
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