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Abstract— Direction-based formation shape control for a col-
lection of autonomous agents involves the design of distributed
control laws that ensure the formation moves so that certain
relative bearing constraints achieve, and maintain, some desired
value. This paper looks at the design of a distributed control
scheme to solve the direction-based formation shape control
problem. A gradient control law is proposed based on the
notion of bearing-only constrained graph rigidity and parallel
drawings. This work provides an interesting and novel contrast
to much of the existing work in formation control where
distance-only constraints are typically maintained. A stability
analysis is sketched and a number of illustrative examples are
also given.

I. INTRODUCTION

The general distributed formation control problem involves
a group of agents which are tasked with maintaining a pre-
scribed geometrical formation described in terms of relative
distance and/or angular constraints. There are two common
aspects of each formation control scheme that precede the
controller design. Firstly, the sensing technology and sensing
graph should be formed. The sensing technology describes
what kind of measurements are taken and the sensing graph
describes for each agent what aspects of what other agents in
the formation are measurements taken. The sensing technol-
ogy for formation control usually consists of either bearing
measurements [1]–[3] or distance measurements. Typically
both kinds of measurements are taken which amounts to
a relative position measurement [4]–[13]. Secondly, albeit
not independently, the control graph and the controlled
parameters are defined [9]. It is typical for the topology of
the control and sensing graph to be equivalent meaning that
agents control some geometrical relationship to those agents
concerning which some measurements are taken. However,
it is typical that the control constraints be either distance
or bearing-only constraints and not both, while the sensing
technology often results in the relative position of certain,
so-called neighbour, agents.

The control graph together with the particular controlled
parameters determines what desired formation shapes/scales
are feasible along with their uniqueness. Obviously, defining
a complete distance constraint graph between a group of
agents will suffice to define a unique formation shape.
However, defining a certain (well-chosen) subset of these
distance constraints can often (generically) define a unique
formation shape; e.g. see the notion of graph rigidity as
it applies to formation control in [4]–[6], [9], [10], [13].
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Directed constraints can also be considered, where some
agents are tasked at maintaining certain distances to other
agents while the converse is not true; e.g. see [11], [14].
Relative angular constraints can also be considered [15],
[16].

Given a sensing and control architecture, one then seeks
to design the control laws that, actively, and in a distributed
fashion, seek to control the desired parameters using the
locally sensed information at each agent. There now exists
a large literature on formation control, e.g. see the related
work in [4]–[13], but the problem remains interesting due to
the various problem formulations, the distributed nature of
the problem itself and the existence of undesired equilibria
in much of the existing systems [12], [13], [17].

In this work, the shape of a formation is controlled by
actively, and in a distributed fashion, controlling a certain set
of inter-agent bearings using relative position measurements.
Specifically, our contribution is the design and analysis of a
novel distributed controller for an arbitrary number of agents
with direction-only constraints to a subset of neighbour
agents. A stability and convergence analysis is undertaken
in line with [10]. Since the agents only seek to control their
relative bearings (to this subset of agents), the formation
control problem considered here and the control law outlined
differs from much of the existing work on formation control.

This work provides an appealing basis for further work
on direction-only constrained formation control. It is also
a stepping-stone to work on formation control with mixed
bearing and distance constraints; e.g. one could look to
combine this work with [10].

II. RIGIDITY THEORY WITH DIRECTION CONSTRAINTS

Consider n agents indexed by V = {1, 2, . . . , n} and with
positions pi ∈ R2. Agent i can measure the bearing and
range (or relative position) to agent j iff j ∈ Ni ⇔ i ∈
Nj where Ni is the set of neighbours of i. The sets V =
{1, 2, . . . , n} and Ni, ∀i ∈ V define a graph that represents
the interactions, e.g. measurements, constraints etc, between
the agents. Denote this graph by G(V, E) where E is the set
of m links (i, j) where (i, j) exists iff j ∈ Ni ⇔ i ∈ Nj .

Definition 1 (Formal Point Formation). A point formation
Fp(G) is defined by a graph G(V, E) and a map p : V → R2

which takes agent i in V to its respective position pi in R2.

The bearing to agent j ∈ Ni at agent i is denoted by
φij . The set E defines the set of measurements taken by the
agents in V . The set of bearing measurements B is

B = {φij , φji ∈ [0, 2π) : (i, j) ∈ E} (1)
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where φij ≡ (π + φji) mod(2π) and |B| = 2m.

Assumption 1 (Global Coordinate System). It is assumed
that each agent i, ∀i, measures the bearing φij to agent
j ∈ Ni with respect to a global direction in R2.

Define also a set of range measurements

D = {‖pi − pj‖ ∈ R+ : (i, j) ∈ E} (2)

where |D| = m. Let dij = ‖pi−pj‖ = dji denote the range.

Definition 2 (Equivalent Formations). Two formations Fq
and Fp are said to be equivalent if their underlying graphs
are identical and the set of bearing measurements B in one
of the formations is equal to the set in the other.

Consider two formations Fp and Fq defined by the same
graph G(V, E) and respective mappings p : V → R2 and
q : V → R2. For each (i, j) ∈ E consider the constraint

(pi − pj)
⊥ · (qi − qj) = 0 (3)

where the operator (·)⊥ rotates a plane vector by π/2
counterclockwise. Then it follows that Fp and Fq are parallel
drawings [15], [16] of each other in the sense that for each
(i, j) ∈ E the vectors (pi − pj) and (qi − qj) are parallel.
The system of equations (3) for all (i, j) ∈ E is a system
of |E| = m homogenous linear equations in the qi and qj
when the pi and pj are treated as known parameters.

Definition 3 (Parallel Point Formations). Assume Fp is given
and Fq is defined on the same underlying graph G(V, E) as
Fp. Then Fq is said to be a parallel point formation with
respect to Fp if and only if (3) is satisfied for all (i, j) ∈ E .
A parallel point formation Fq is trivial with respect to Fp
if it is equivalent to Fp and if Fq can be obtained from Fp
via a translation then a dilation1 (or vice-versa) on R2. All
other parallel point formations are non-trivial.

Consider a formation trajectory defined by a time-varying
qi(t) for all i ∈ V such that Fq(t) is defined by the same
G(V, E) and the time-varying map q(t) : V → R2. Then
Fq(t) is a parallel point formation to Fp if

(pi − pj)
⊥ · (qi(t)− qj(t)) = 0, (i, j) ∈ E , t ≥ 0 (4)

Conversely, a solution to the resulting linear system of equa-
tions defines a parallel point formation Fq(t). Differentiating
(4) with respect to time we have

(pi − pj)
⊥ · (q̇i(t)− q̇j(t)) = 0, (i, j) ∈ E , t ≥ 0 (5)

which can be written in matrix form as

R(p)q̇ = 0 (6)

where p = [p>1 p>2 . . . p>n ]
> and similarly for q. R(p) ∈

Rm×2n is called the rigidity matrix for formations with bear-
ing constraints (or the bearing-constrained rigidity matrix)
[15], [16].

1For a formation Fp, a dilation changes the size but not the shape or
orientation in R2 of the formation. That is, for each pair pi,pj ∈ R2,
i, j ∈ V a dilation of the object Fp preserves the bearing φij and thus φji
but scales all dij = dji by the same positive constant.

Definition 4 (Parallel Rigid Formations). A point formation
Fp is said to be a parallel rigid formation if all parallel
point formations of Fp are trivial with respect to Fp.

A formation that is parallel rigid is one in which the bear-
ing between agents i and j is uniquely defined regardless of
whether or not (i, j) ∈ E and thus is a formation in which the
shape and orientation, albeit not the scale, is uniquely defined
in R2. The novelty of this characterization is that it allows
one to consider only the graphical topology of the formation
and by appropriately choosing the agent interactions, e.g.
the links (i, j) ∈ E , one can define a unique formation shape
with a minimal number of bearing measurements. Later we
design a formation shape control law where the desired shape
is specified by certain bearing constraints, defining a rigid
formation, and the agents attempt to steer their measured
bearings to the desired bearing constraints and achieve the
desired shape and orientation.

Example 1. Consider four agents indexed by 1, 2, 3, and
4. An example of a rigid network is illustrated in Figure 1.
Conditions for testing and confirming parallel rigidity are
given subsequently.
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Fig. 1. A parallel rigid formation defined by the interaction graph G(V, E)
and a random embedding of the four agents on the plane. In this case
V = {1, 2, 3, 4} and E = {(1, 2), (1, 3), (1, 4), (2, 3), (2, 4)}.

The graph associated with the formation has 5 edges and
there are thus a total of 10 bearing constraints (albeit only
5 independent constraints). The edges, arranged in lexico-
graphical order, are {(1, 2), (1, 3), (1, 4), (2, 3), (2, 4)}. The
bearing-constrained rigidity matrix for the formation is given
by (7). The bearing-constrained rigidity matrix is a 5 × 8
matrix in this example. The rows correspond to the edges
in the graph associated with the formation and the columns
correspond to the agents.

We highlight both a graph theoretical and linear algebra
test for bearing-only network rigidity.

Theorem 1. A formation Fp of n agents is parallel rigid if
rank(R(p)) = 2n− 3.

Refer to (6) and note the condition rank(R(p)) = 2n− 3
implies the kernel of R(p) is of dimension 3. It is easily
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agent 1 agent 2 agent 3 agent 4

edge (1, 2)
edge (1, 3)
edge (1, 4)
edge (2, 3)
edge (2, 4)


((p1 − p2)

⊥)> ((p2 − p1)
⊥)> 0 0

((p1 − p3)
⊥)> 0 ((p3 − p1)

⊥)> 0
((p1 − p4)

⊥)> 0 0 ((p4 − p1)
⊥)>

0 ((p2 − p3)
⊥)> ((p3 − p2)

⊥)> 0
0 ((p2 − p4)

⊥)> 0 ((p4 − p2)
⊥)>

 = R(p) (7)

shown that this is the lowest dimension the kernel can take
on and it corresponds to the fact that the trajectories of the
formation at q in (6) are free up to translations (accounting
for two linearly independent solutions q̇ to (6)) and dilations
(accounting for the third solution linearly independent q̇ to
(6)) even when Fq is parallel rigid.

The condition rank(R(p)) = 2n− 3 is almost necessary
in the sense that if Fp is parallel rigid and rank(R(p)) <
2n− 3 then there exists a p′ arbitrarily close to p such that
rank(R(p′)) = 2n− 3.

Definition 5 (Generic Formations). A formation is said to be
in generic position p in R2n if the set of its coordinates are
not algebraically dependent; e.g. see [9] for more details.

Theorem 2. Consider two formations Fp and Fq in generic
positions defined on the same underlying graph G(V, E).
Then Fp is parallel rigid if and only if Fq is parallel rigid.

This theorem underpins the following definition.

Definition 6 (Generically Parallel Rigid Graph). When Fp is
parallel rigid for all generic points p then we say the graph
G(V, E) associated withFp is generically parallel rigid.

We often refer also to the formation Fp whose graph
G(V, E) is generically parallel rigid as a generically parallel
rigid formation. There is a combinatorial test.

Theorem 3 ( [15], [16]). A G(V, E) is generically parallel
rigid if and only if there is a subset E ′ ⊆ E satisfying: (1)
|E ′| = 2n− 3; and (2) for all E ′′ ⊆ E ′, E ′′ 6= ∅ then |E ′′| ≤
2|V(E ′′)| − 3 where V(E ′′) is the set of vertices that are
end-vertices of the edges in E ′′.

Despite the fact that the linear algebraic test for parallel
rigidity may fail when a formation is not in a generic position
we make the following claim.

Claim 1. A generically parallel rigid formation Fp at p ∈
R2n is also a parallel rigid formation as per Definition 4.

That is, every parallel point formation of a particular
generically parallel rigid Fp located at p ∈ R2n is trivial
with respect to Fp.

III. THE RIGID FORMATION CONTROL PROBLEM WITH
BEARING CONSTRAINTS

Consider Fz in R2 with an associated graph G(V, E).
Agent i’s position is zi ∈ R2 and z = [z>1 z>2 . . . z>n ]

>.

Assumption 2. The formation Fz is generically parallel
rigid and zi 6= zj at t = 0, ∀i, j ∈ V .

This assumption does not imply rank(R(z)) = 2n − 3
since z at t = 0 may not be a generic point.

The operator column(B) stacks the bearing measurements
into a column vector that exhibits a lexicographical order
such that φij is above φil if j < l and φij is above φkl if
i < k. Similarly, define d(z) = column(D(z)).

Now define the subset A(z) ⊂ B(z) such that

A(z) = {φij ∈ [0, 2π) : (i, j) ∈ E , i < j} (8)

where |A| = m and then define α(z) = column(A(z)).
Let t ∈ [0,∞) denote time. The motion of agent i is

governed by
d

dt
zi = żi = ui (9)

where ui is a control vector to be determined. The combined
motion of the formation is ż = u.

Now define a set of desired bearing values

Bc = {φcij , φcji ∈ [0, 2π) : (i, j) ∈ E} (10)

where φcij ≡ (π + φcji) mod(2π) and |Bc| = 2m. It suffices
to define only a sub-set of desired bearing values

Ac = {φcij ∈ [0, 2π) : (i, j) ∈ E , i < j} (11)

where |Ac| = m. Let αc = column(Ac).
If agent i knows φij then it knows φji since φij ≡ (π +

φji) mod(2π). Similarly, φcij ≡ (π + φcji) mod(2π).

Definition 7 (Realizable Bearing Sets). Assume a formation
Fp is given. Then a set B′ of bearings are realizable if and
only if each φij ∈ B′ can exist between the respective pi
and pj simultaneously.

Assumption 3. The set of desired bearing values Bc, and
consequently Ac, that define the desired formation shape
and orientation is realizable. Moreover, there is a value φcij
for each (i, j) ∈ E and due to Assumption 2 the desired
formation is generically parallel rigid.

In this work we seek to control only the bearings (between
certain agents) and thus only the desired bearing set Bc (or
Ac) is given and must be realizable.

Note that α(z) is determined by the bearing measurements
and is a function of z whereas αc is a vector of desired
bearing constraints and is constant.

Now define an error vector as

e = α(z)− αc = column(A(z))− column(Ac) (12)

and note e → 0 implies (column(B) − column(Bc)) → 0.
Thus, e is set to become our control error.
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Problem 1. The formation control problem given only bear-
ing constraints is to design a control input ui, ∀i ∈ V , as
a function of at most φij , dij and φcij , for all j ∈ Ni, such
that e = (α(z)− αc)→ 0.

Before outlining the control law proposed to solve Prob-
lem 1 we note that the Jacobian of e ∈ Rm evaluated at a
point p ∈ R2n is given by

Je(p) = ∇e

=
∂

∂z
(α(z)− αc)

∣∣∣∣
z=p

=
∂

∂z
α(z)

∣∣∣∣
z=p

(13)

where Je(p) ∈ Rm×2n.
Let diag(D(z)) take the actual distances, in D, into the

diagonal components of an m×m matrix with a lexicograph-
ical ordering such that dij is above dil if j < l and dij is
above dkl if i < k etc. Let D = diag(D(z)).

The `th element of a m-vector x is (x : `). We then have

Je(p) =
∂

∂z
α(z)

∣∣∣∣
z=p

=


∂(α(z):1)
∂z1

∣∣∣
z1=p1

. . . ∂(α(z):1)
∂zn

∣∣∣
zn=pn

...
...

...
∂(α(z):m)

∂z1

∣∣∣
z1=p1

. . . ∂(α(z):m)
∂zn

∣∣∣
zn=pn


= −D−2R(p) (14)

where R(p) is the bearing-constrained rigidity matrix for the
formation Fz|z=p.

Example 2. Consider four agents indexed by 1, 2, 3, and
4 and the rigid network illustrated in Figure 1 of Example
1. Again, the edges, arranged in lexicographical order, are
{(1, 2), (1, 3), (1, 4), (2, 3), (2, 4)}. There are a total of 10
bearing measurements and constraints (albeit only 5 inde-
pendent measurements/constraints). We write

α(z) = [φ12 φ13 φ14 φ23 φ24]
> (15)

where each measured φij is a function of zi and zj . The
bearing-constrained rigidity matrix for the formation is given
by (7). The bearing-constrained rigidity matrix is a 5 × 8
matrix in this example. The Jacobian Je(p) of the error
vector e is given by (16) and is of the same dimension as (7).
The rows correspond to the edges in the graph associated
with the formation and the columns correspond to the agents.
We note again that an agent i that knows φij also knows φji
and vice versa. Thus, given the measurements φij and dij
at agent i for j ∈ Ni it follows that the rows of Je(p)
corresponding to an edge incident on i are known locally
at agent i and the two columns corresponding to the agent
itself are also known locally.

For a matrix X ∈ Rn×m define ker(X) to be the kernel
of X such that ker(X) = {x ∈ Rm : Xx = 0}.

Lemma 1. Suppose that dij 6= 0 for (i, j) ∈ E and consider
a generically parallel rigid formation Fp. Then ker(R(p)) =
ker(Je(p)) and dim(ker(R>(p))) = dim(ker(J>e (p))).

The proof is immediate from (14). In particular, the
sparsity pattern of both R(p) and Je(p) is identical for an
arbitrary formation Fp.

A. The Proposed Control Law

The control law proposed is a gradient-type control law,
associated with the function 1

2e
>e, and can be written as

u , −(∇e)>e
= −Je(z)

>
e

= R>(z)D−2e (17)

from (14), and there results

ż = u = − Je(z)
>
e

= R>(z)D−2e (18)

More specifically, the control law for an individual agent is

żi = ui

=
∑
j∈Ni

1

dij

[
cosφij
− sinφij

]
(φij − φcij) (19)

which amounts to a superposition of |Ni| vectors pointing
perpendicular to the respective |Ni| links in the formation
Fz leaving agent i and where each vector is scaled by the
length of the link in the formation and an appropriate error
term (which may be negatively signed). The form (19) can
be easily intuited using Example 2.

The controller proposed in this work is similar in principle
to the controller proposed in [10] for formation control
with range-only shape constraints. Indeed, there is a strong
connection between this work and [4], [9]–[11], [13] due
to the relationship between the rigidity matrix with range
constraints and the rigidity matrix with bearing constraints.

Lemma 2. The trajectory of z over t ∈ [0,∞) is such that
zi 6= zj , for all t and for all neighbours i, j such that i ∈
Nj ⇔ j ∈ Ni.

The proof this lemma is based on the fact that as agent i
approaches agent j it follows that

żi →
1

dij

[
cosφij
− sinφij

]
(φij − φcij) (20)

with a similar expression for żj . Now these differential
equations imply that both agents are heading on a line
perpendicular to the line connecting the agents.

The existence and uniqueness of the coupled system of
differential equations (19) is consequently guaranteed using
standard arguments [10], [18].

The next controller property concerns the formation’s
centre-of-mass and follows a similar result in [10] for for-
mation control with range-only shape constraints.

Lemma 3. Let z = 1
|V|
∑
i∈V zi. Then ż = 0.

We must omit the proof for reasons of space. The next
lemma concerns the controller and its invariance to the global
coordinate system chosen. We omit the proof for brevity.
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agent 1 agent 2 agent 3 agent 4

edge (1, 2)
edge (1, 3)
edge (1, 4)
edge (2, 3)
edge (2, 4)


− cosφ12

d12

sinφ12

d12

cosφ12

d12
− sinφ12

d12
0 0 0 0

− cosφ13

d13

sinφ13

d13
0 0 cosφ13

d13
− sinφ13

d13
0 0

− cosφ14

d14

sinφ14

d14
0 0 0 0 cosφ14

d14
− sinφ14

d14

0 0 − cosφ23

d23

sinφ23

d23

cosφ23

d23
− sinφ23

d23
0 0

0 0 − cosφ24

d24

sinφ24

d24
0 0 cosφ24

d24
− sinφ24

d24

 = Je(p) (16)

Lemma 4. For all w ∈ R2 it follows that Je(z) =
Je(z+ (1⊗w)) where 1 is an n-dimensional column vector
of all 1’s. Moreover, for every orthogonal matrix X ∈ R2×2

it follows that Je(z)(In ⊗X)> = Je((In ⊗X)z) where In
is a n× n identity matrix.

IV. STABILITY RESULTS

A. Minimally and Generically Parallel Rigid Formation

We know that a generically parallel rigid formation Fz
is one that can be characterized entirely by the associated
graph G(V, E) defining the formation interactions; e.g. see
Theorem 1. It is also the case, from e.g. Theorem 1, that
a necessary condition for the formation to be (generically)
parallel rigid is that |E| = m ≥ 2|V| − 3 = 2n− 3.

Definition 8 (Minimally Parallel Rigid). A formation Fz
with |E| = m = 2|V| − 3 = 2n − 3 at z ∈ R2n is called a
minimally parallel rigid formation if rank(R(z)) = 2n− 3.
A formation Fz with |E| = m = 2|V| − 3 = 2n − 3 is
called a minimally and generically parallel rigid formation
if and only if it is generically parallel rigid and |E| = m =
2|V| − 3 = 2n− 3.

Lemma 5. Suppose Fz is a minimally and generically
parallel rigid formation. For the existence of each distinct
(i.e. different, but not necessarily disjoint) set

Ci,j,k = {i, j, k ∈ V : φij ≡ φik mod(π), φij , φik, φjk ∈ A}
(21)

where |Ci,j,k| = 3 then rank(R(z)) drops by 1.

Each Ci,j,k is a set of three agents that are collinear in
R2 and which form a cycle in G. This rank condition has
been established previously for the Jacobian Je(z) in [19]
and rank(R(z)) = rank(Je(z)).

The stability analysis in this subsection concerns mini-
mally and generically parallel rigid formations Fz and the
resulting differential system (18). Consider the set

Z∗ = {z ∈ R2n : α(z)− αc = e = 0} (22)

of equilibrium points corresponding to the formation Fz
reaching the desired shape and orientation defined by αc.
Each formation that lives in Z∗ is generically parallel rigid
due to Assumptions 2 and 3.

Definition 9 (Connected Space). A topological space X is
said to be disconnected if there exists two open sets U 6= ∅
and W 6= ∅ such that U ∩W = ∅ and X = U ∪W . If X is
not disconnected than it is said to be connected.

The maximal connected subsets of a nonempty topological
space are called the connected components of the space.
The components of any topological space X are disjoint,
nonempty, and their union is X .

Lemma 6. The set Z∗ is connected and each z′ ∈ Z∗ can
be obtained from z ∈ Z∗ by a translation and then a dilation
(or vice versa).

The proof of the preceding lemma will appear in an
extended version of this work but is easily obtained.

Unfortunately, the set Z∗ is not the only equilibrium set
for the differential system (19) and minimally parallel rigid
formations under Assumption 2. Consider the set

Z∗ = {z ∈ R2n : R>(z)D−2e = 0} (23)

and note that it is trivial to conclude that ż = 0 if and only
if z ∈ Z∗. A question remains as to when Z∗ ≡ Z∗.

Theorem 4. Suppose Assumption 2 holds and the formation
Fz is minimally and generically parallel rigid. Assume that
rank(R(z)) = m = 2n − 3 for all t ∈ [0,∞). Then ż = 0
if and only if z ∈ Z∗.

Proof: The if part of the theorem is obvious from (18).
If rank(R(z)) = m = 2n − 3 then R(z) has full (column)
rank and the kernel of R>(z) is trivial. Thus, Z∗ ≡ Z∗.

We know from Lemma 5 that rank(R(z)) drops by 1
for the existence of each set (21). Thus, any undesirable
equilibria in {Z∗ \ Z∗} must coincide with the existence
of some (possible multiple) sets (21). We conjecture, in the
spirit of [10], that any equilibria in {Z∗ \ Z∗} are non-
attractive. Note that in distance-constraint-based formation
control using the rigidity matrix [10], every initial collinear
formation will remain collinear. The situation here is less
troublesome in this respect.

Analysis concerning the state space and the equilibrium
sets {Z∗ and Z∗} is the topic of further work and will appear
in an extended version of this work.

Theorem 5. Suppose Assumption 2 holds and the formation
Fz is minimally and generically parallel rigid. Then Z∗ is
locally asymptotically stable and there exists a neighbour-
hood U of Z∗ such that for all z(0) ∈ U there exists a point
z∗ ∈ Z∗ such that limt→∞z = z∗.

For reasons of space, the proof will appear elsewhere.
Moreover, the theorem’s validity is not surprising given the
gradient-like nature of the system and the structural similarity
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between the differential system considered here and that
considered in [10].

B. Generically Parallel Rigid Formation

The stability analysis in this subsection concerns (ar-
bitrary) generically parallel rigid formations Fz and the
resulting differential system (18). The only equilibrium set
considered in this subsection is the desired one (22).

Theorem 6. Suppose Assumption 2 holds and the formation
Fz is generically parallel rigid. Then Z∗ is locally asymptot-
ically stable and there is a neighbourhood U of Z∗ such that
∀z(0) ∈ U there exists a z∗ ∈ Z∗ such that limt→∞z = z∗.

The proof of the preceding theorem will appear elsewhere.

V. ILLUSTRATIVE EXAMPLES

In this section we demonstrate the algorithm developed
for distributed formation control with direction constraints.

A. Four Agent Control

Suppose there are four agents indexed by V = {1, 2, 3, 4}
and the interaction topology is defined by the links E =
{(1, 2), (1, 3), (1, 4), (2, 3), (2, 4)}. The control error for this
formation Fz has the form

e = [φ12 φ13 φ14 φ23 φ24]
> − [φc12 φ

c
13 φ

c
14 φ

c
23 φ

c
24]
>

= α(z)− αc (24)

Thus, the formation is defined as in Example 1 and 2 and the
bearing-constrained rigidity matrix and error Jacobian take
the form of (7) and (16) respectively.

1) Random Four-Agent Formation to a Square Formation:
The first example illustrates how the formation converges to
a square given a random initial placement of the agents. The
desired formation in this case is characterized by

αc = [π/4 π/2 0 π 3π/2]> (25)

and the formation motion is illustrated in Figure 2 along with
the convergence of (φij − φcij)→ 0 for (i, j) ∈ E , i < j.

2) Random Four-Agent Formation to a Non-Square For-
mation: This example illustrates how the formation con-
verges to a non-square shape given a random initial place-
ment of the agents. The desired formation in this case is
characterized by

αc = [π/4 π/2 0 3π/4 7π/4]> (26)

and the formation motion is illustrated in Figure 3 along with
the convergence of (φij − φcij)→ 0 for (i, j) ∈ E , i < j.

In this case, the desired formation has three of the agents
collinear, i.e. agents 2, 3 and 4 are collinear in the desired
formation. We see that in this example convergence also
occurs given both a desired three-agent collinear condition
and a random initial placement.

−10 −5 0 5 10 15 20

−15

−10

−5

0

5

10

x−direction

y
−

d
ir
e
c
ti
o
n

 

 

Agent 1 Initial Position

Agent 2 Initial Position

Agent 3 Initial Position

Agent 4 Initial Position

Agent 1 Final Position

Agent 2 Final Position

Agent 3 Final Position

Agent 4 Final Position

Initial Formation Links

Final Formation Links

Agent 1 Trajectory

Agent 2 Trajectory

Agent 3 Trajectory

Agent 4 Trajectory

0 1000 2000 3000 4000 5000 6000 7000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

 

 

Absolute Error on Edge (1,2)

Absolute Error on Edge (1,3)

Absolute Error on Edge (1,4)

Absolute Error on Edge (2,3)

Absolute Error on Edge (2,4)

Fig. 2. The motion of a formation consisting of four mobile agents starting
in a random initial configuration and given a desired square constraint.

3) Collinear Four-Agent Formation to a Square Forma-
tion: This example illustrates how the formation converges
to a square shape given that the initial formation is collinear.
The desired formation in this case is characterized by

αc = [π/4 π/2 0 π 3π/2]> (27)

and the formation motion is illustrated in Figure 4 along with
the convergence of (φij − φcij)→ 0 for (i, j) ∈ E , i < j.

In this case, the desired formation is a square but the
initial formation has all four agents collinear. We thus have
an example where collinearity is not an equilibrium (due to
the chosen αc) and the formation converges to the desired
shape from collinearity.

Note that in distance-constraint based formation control
using the idea of the rigidity matrix [10], any initial collinear
formation will remain collinear.

VI. CONCLUSION

This paper looks at the design of a distributed control
scheme to solve the direction-based formation shape control
problem. In particular, a gradient control law is proposed
based on the notion of bearing-only constrained graph rigid-
ity theory and parallel drawings. An outline stability analysis
is provided.

751



−15 −10 −5 0 5 10 15

−10

−5

0

5

10

15

20

 

 

Agent 1 Initial Position

Agent 2 Initial Position

Agent 3 Initial Position

Agent 4 Initial Position

Agent 1 Final Position

Agent 2 Final Position

Agent 3 Final Position

Agent 4 Final Position

Initial Formation Links

Final Formation Links

Agent 1 Trajectory

Agent 2 Trajectory

Agent 3 Trajectory

Agent 4 Trajectory

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

0

1

2

3

4

5

6

 

 

Absolute Error on Edge (1,2)

Absolute Error on Edge (1,3)

Absolute Error on Edge (1,4)

Absolute Error on Edge (2,3)

Absolute Error on Edge (2,4)

Fig. 3. The motion of a formation consisting of four mobile agents starting
in a random initial configuration and given a non-square desired formation
where three of the agents are collinear.
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