
  

  

Abstract—Development of Smart Grid requires power plants 

to be more intelligent, efficient, and reliable, which raises new 

challenges of the control system design for modern power plants. 

Regarding these requirements, an integrated multi-task control 

system using artificial intelligence technologies is proposed to 

improve the efficiency and reliability of a hybrid fuel-cell with 

gas turbine power plant. The integrated control system consists 

of a hybrid Neural Network plant model with online learning 

ability, an Optimal Reference Governor generating optimal 

setpoints as local control references, and a Fault Diagnosis and 

Accommodation system to detect internal plant faults and to 

regulate the plant during plant failures. The three subsystems 

are integrated to provide compressive management for the 

power plant. The hybrid fuel-cell power plant is introduced; the 

structure and strategies of the control system are discussed, and 

simulation results are presented. 

 

Index Terms—Fuel cells, hybrid power plant, artificial neural 

networks, heuristic optimization, fault diagnosis, fault 

accommodation. 

I. INTRODUCTION 

uel cell is a remarkable alternative energy source with 

high energy conversion efficiency and extra low 

emissions. The integration of a fuel-cell stack with a gas 

turbine has become a convincing technology that can greatly 

enhance the overall efficiency of the power plant [1]. Based 

on this hybrid structure, a molten carbonate fuel cell (MCFC), 

where the fuel can be reformed into hydrogen internally at a 

high operation temperature, with gas turbine system has been 

developed as a base-load power source, and is named as 

Direct FuelCell (DFC) with Turbine (DFC/T). As an 

intelligent power source in Smart Grid, the DFC/T power 

plant is expected to run autonomously without supervision 

and is governed by the power load demand signal from the 

central dispatch center. 

To provide effective and autonomous control for the 

DFC/T power plant, a comprehensive control system needs to 

be developed. However, because of the hybrid structure, the 

DFC/T power plant is a nonlinear system with high 

complexity, where the electrochemical reactions, thermal 

dynamics, and thermal mechanical dynamics are highly 

coupled. Thus, the plant-wide optimization and fault detection 
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are difficult with traditional analytical methods. Nevertheless, 

as quantitative methods, modern Artificial Intelligence (AI) 

approaches have shown their potential in solving large scale 

and complex problems. In this paper, artificial neural 

networks, fuzzy logic theories, and heuristic optimization 

algorithms are used to design an integrated multi-task control 

system to improve the overall efficiency and reliability of the 

hybrid fuel-cell power plant.  

II. PROCESS DESCRIPTION OF FUEL-CELL POWER PLANT 

The primary feature of this hybrid power plant is an 

integration of fuel cells and gas turbine that greatly increases 

the energy conversion efficiency [2]. The gas turbine is not a 

simple re-utilization of the exhaust heat, but is fully integrated 

into the heat and mass flow of the fuel-cell system. The flow 

diagram of the DFC/T power plant is shown in Fig. 1. 

A.  Gas Flows 

The fuels, i.e., methane and water, are introduced to the 

plant through a humidifying heat exchanger (HH), and heated 

again by a fuel pre-heater (FP) and a super heater (SH) prior to 

entering the anode of the fuel-cell stack. These heat 

exchangers prepare the cold fuel with an appropriate 

temperature for chemical reactions in the fuel cells and the 

fuel pre-converter, where the fuel is partially reformed into 

hydrogen and carbon dioxide in the presence of catalysts. 

Meanwhile, the air is injected to the system by an air 

compressor connected to a common shaft with a gas turbine. 

The cold air is subsequently heated by a low temperature heat 

recuperator (LTR), a secondary start-up heater (SSH), and a 

high temperature heat recuperator (HTR). The compressed air 

with high temperature is then expanded in the gas turbine, 

propelling the air compressor and a permanent magnet 

generator (PMG) producing extra electric power. The anode 

off-gas containing a portion of un-reacted fuel is fully 
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Fig. 1. The flow diagram of the DFC/T Power Plant. 
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oxidized in an anode gas oxidizer (AGO), producing extra 

heat to drive the gas turbine. The oxidized gas finally enters 

the cathode of the fuel-cell stack as a reactant of the 

electrochemical reactions [3]. 

B. Local Control Schemes 

The output power of the plant is determined by the amount 

of the supplied fuel (nCH4) and the DC current (Istk) drawn 

from the fuel-cell stack, which is regulated by feed-forward 

controls. The stack temperature (Tstk) is maintained by the 

feedback controls on the SSH, LTR, and AGO according to 

the setpoint of cathode inlet temperature (TCIset), which is a 

function of the stack power and is specified by the plant 

manufacturer. The turbine speed (Nturbine) is controlled by the 

PMG and a speed controller according to the speed setpoint. 

Moreover, the plant is operating at constant pressures 

regulated by two pressure controllers with constant setpoints 

determined by the fuel-cell stack design [4].  

III. THE STRUCTURE OF THE MULTI-TASK CONTROL SYSTEM 

The proposed multi-task control system consists of local 

controllers, a hybrid plant model, an optimal reference 

governor (ORG), and a fault diagnosis and accommodation 

(FDA) system. The block diagram of the integrated system is 

shown in Fig. 2. The local controllers regulate local plant 

variables according to the setpoints provided by the ORG and 

fault accommodation system. A hybrid plant model is 

provided by combining a mathematical model and a Neural 

Network (NN) augmenter. 

During normal operations, the ORG uses a multi-objective 

optimization framework to generate optimal setpoints based 

on the power load demand signal. The setpoints are applied to 

the local controllers without modifications. The output of the 

hybrid model serves as a reference for the fault diagnosis 

system to calculate the residuals between the actual plant and 

the simulation model. A fault accommodation system will be 

activated if significant residuals are detected. 

When internal faults are detected, the fault accommodation 

system will regulate the whole system by modifying the 

setpoints to avoid marginal operating status or even 

instabilities. Then it will try to recover the supplied power 

under a faulty condition. These actions give human operators 

time to perform further fault analysis and make decisions.  

Moreover, the residuals are possibly caused by the 

inaccuracy of the model other than actual plant faults. In this 

case, the fault diagnosis system will give a model update 

signal to retrain the NN augmenter with the new operational 

data, and the plant model in the ORG is also updated 

simultaneously.  

IV. HYBRID NEURAL NETWORK MODEL 

A nonlinear mathematical model of an MCFC stack was 

first developed by Lukas, Lee, and Ghezel-Ayagh [3] based 

on principles of energy and mass component balances and 

thermo-chemical properties. Then, a plant-wide model of the 

DFC power plant was built and simulated [5]. The theoretical 

model of the hybrid DFC/T plant is finally obtained with the 

integration of a gas turbine model and the plant-wide DFC 

model [2]. However, due to the assumptions of the nominal 

model and the uncertainties of the actual plant, the 

discrepancies between the simulation and the experimental 

data are non-negligible. Thus, controllers or algorithms 

designed based on the nominal model may become degraded 

or inapplicable to the actual plant. 

A. Structure of Neural Network Augmenter  

Removing the basic assumption of the fundamental model 

will greatly increase the model complexity, and modeling the 

uncertainty of the plant also has considerable difficulty. 

Hence, an augmenter based on neural networks is employed to 

enhance the model only with input and output data of the 

simulation and the actual plant [6]. 

The whole plant is divided into 10 subunits (8 units listed in 

Fig. 1 plus fuel-cell stack and gas turbine). The augmentation 

algorithm is implemented for each subunit as the Hybrid 

Model in Fig. 2, where a particular subunit of the nominal 

model is simulated with the same inputs as the actual plant. 

The simulation result ŷ  differs from the experimental output 

y due to the existence of the model error e, which is used for 

the training of the NN. The augmented result of the hybrid 

model y%  follows the relationships below: 

 ˆe e y y→ = −%  and ˆy y e y= + →% %  (1) 

With the training process, as the estimated error by NN 

augmenter goes to the actual model error, the compensated 

simulation output will go to the real output of the actual power 

plant. Thus, the model accuracy can be improved. 

B. Validation of the Hybrid Neural Network Model 

The Neural Network Augmenters were trained using 

experimental data of the DFC/T power plant from standby 

mode to a full power load. The simulation results of the 

fundamental model and the hybrid model using the exactly 

same inputs as the experiment are compared with the 

operational data and the average relative errors are calculated 

for each subunit in Table I, where it can be seen that the 

relative error of the hybrid model is significantly reduced by 

the NN augmenters. 
Fig. 2. Block diagram of the integrated multi-task control system. 
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TABLE I 

RELATIVE ERRORS OF THE ORIGINAL AND HYBRID MODELS 

Subunits 
Original Model 

Relative Error [%] 

Hybrid NN Model 

Relative Error [%] 

FC Stack 3.7  0.18  

Gas Turbine 12.9 0.89  

HH 1.8  0.24  

LTR 4.3  0.31  

FP 1.3  0.08  

PC 1.8  0.35  

SP 1.3  0.06  

SSH 8.4  0.68  

HTR 2.9  0.11  

AGO 2.7  0.71  

V. OPTIMAL REFERENCE GOVERNOR 

To improve the fuel efficiency of the DFC/T power plant, 

the proposed ORG applies heuristic optimization algorithms 

to find optimal feedforward controls and setpoints that 

guarantee high energy conversion efficiency of the power 

plant [7, 8]. Toward this goal, the ORG is developed as in Fig. 

3, where the optimized setpoints and feedforward controls, 

including fuel cell stack current (Istk), methane flow rate 

(nCH4), turbine speed (Nturbine), heating power of the 

second-startup heater (QSSH), LTR control move (uLTR), and 

AGO control move (uAGO), are determined based on a given 

load demand.  

A. Structure of the Optimal Reference Governor 

The proposed ORG consists of a Multi-objective 

Optimization Module (MOM), a state estimator, and an 

operating window. In this paper, heuristic optimization 

techniques [9] are applied and investigated with the MOM. 

The state estimator works as a plant model that estimates plant 

states and outputs based on the given setpoints. The operating 

window provides possible operating ranges for the 

load-dependent setpoints and serves as the solution space for 

the optimization algorithms. 

The ORG has three possible statuses, i.e., search mode, run 

mode, and updating mode. In the search mode, the candidate 

setpoints provided by MOM are evaluated by the state 

estimator, which can be implemented by any plant model with 

online updating abilities [8]. Then, the objective functions are 

calculated and used by MOM to refine the solutions. After a 

certain number of search iterations, the ORG will switch to the 

run mode, where the optimized setpoints will be given to local 

controllers as the references for plant operation. In the 

meantime, if significant model error is detected, the ORG will 

enter the model updating mode, where the state estimator will 

be re-trained with the newly obtained operating data.  

B. Problem Formulation 

The optimal control can be formulated as a multi-objective 

nonlinear optimization problem, which can be solved by 

MOM. The problem is described as:  

Find the six setpoints that minimize the three objective 

functions: 
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The first objective function is defined on the power load, 

where ( )i

load
P  is the power load demand of the i-th sample point, 

( )i

net
P  is the net output power in steady state provided by the 

state estimator, and M is the total number of sample points for 

power load. The second objective function is defined on the 

cathode inlet temperature error to maintain the temperature of 

the fuel-cell stack, where ( )i

act
TCI  and ( )i

set
TCI  are the actual 

value and the setpoint of cathode inlet temperature, 

respectively. The third objective function is defined on 

efficiency. Here, ( )i

csm
P  is the consumed power, including the 

chemical potential of fuel and the heating power QSSH used by 

SSH [2].  

The state estimator serves as a nonlinear function that maps 

the 6 setpoints to the plant states of interest:  

 ( )
4

[ ] , , , , ,net act SE stk CH turbine SSH LTR AGOP TCI f I n N Q u u=  (5) 

C. Optimization Results 

Particle Swarm Optimization (PSO), a stochastic, 

population-based heuristic optimization algorithm, is selected 

as the first approach for MOM, because it has high 

 

Fig. 3. The structure of the proposed ORG. 
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Fig. 4. Optimal setpoints generated by the ORG. 
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convergence rate for large-scale problems and low 

implementation complexity [10, 11]. Both Pareto optimal 

theory and weighted aggregation have been investigated [7], 

but due to the space limitation, only the second approach is 

presented. The aggregation weights are selected based on the 

importance of the three objective functions in (2)-(4), to 

which the weights factors of [0.4, 0.4, 0.2] are assigned, 

respectively. 

The optimal control setpoints generated by the ORG are 

shown in Fig. 4 for the power loads from 150kW to 300kW 

with 5kW increments. The steady system responses of the 

power plant under the optimal setpoints given in Fig. 4 are 

simulated and presented in Fig. 5. The plant efficiency after 

optimization is also compared with the operating data without 

ORG in dash-dot line showing the improvement.  

VI. FAULT DIAGNOSIS AND ACCOMMODATION 

Efficiency optimization is not sufficient for an autonomous 

control system. Since local controllers have limited 

information, incorrect control behavior may take place due to 

system faults. When fault occurs, the control system should 

detect the fault at an early stage and react properly to avoid 

damage or degradation. A fault diagnosis and accommodation 

system is introduced in this section.  

A. Fuzzy Fault Diagnosis 

1) Definition of Fuzzy Faults: Internal faults can occur 

anywhere in the power plant at any time. However, it is 

impossible and unnecessary for a control system to identify 

the exact locations of all minor faults. On the other hand, the 

ability of locating faults at a subunit level will be sufficient. 

Since temperature control is the most important control 

scheme, fault diagnosis is designed to aim at temperature 

control failures [12]. 

In this paper, six fault patterns are defined on temperature 

control failures at the six major heat exchangers as below. 

• Humidifier/Heat exchanger (HH) fault 

• Fuel Pre-Heater (FP) fault 

• Low Temperature Recuperator (LTR) fault 

• High Temperature Recuperator (HTR) fault 

• Anode Gas Oxidizer (AGO) fault 

• Second Start-up Heater (SSH) fault 

To provide more information about the temperature 

failures, two faulty styles are defined for each fault pattern 

according to fault symptoms: 

• The first style is “P-fault,” which represents the case that 

the actual output temperature is higher than expected.  

• In contrast, the second style is “N-fault,” which 

represents the case that actual output temperature is 

lower than expected.  

Although these faulty styles are defined on heat exchangers, 

they can also represent a series of faults having similar 

symptoms, such as failures in sensors, actuators, and other 

parts of control loops or gas flows.  

2) Diagnosis Algorithm: The fault diagnosis algorithm 

usually includes two steps: residual generation and decision 

making. In this paper, the analytical redundancy method [13] 

is applied. The hybrid NN model works as a reference of 

nominal operations without any fault. The outputs of the 

power plant are compared with the estimated outputs of the 

model. The discrepancies between the plant and model serve 

as the residuals used for decision making. The residual resi of 

the i-th subunit is calculated from the output yi of the actual 

power plant and the estimated output 
i
y%  of the plant model, as 

shown in Fig. 6.  

A number of decision making methodologies have been 

investigated by researchers [14-17]. In this work, fuzzy logic 

is selected, because it is an effective tool in processing the 

ambiguous relationships of fuzzy faults. Both the residual and 

its integral are taken as the inputs of the fault diagnosis logic. 

The integral of residual contains more information about the 

time history and is more important for fault diagnosis than 

only the residual [18]. However either a large residual or a 

small residual can be accumulated to the same integral values 

as time elapses. The small residual could be caused by the 

inaccuracy of the model but not the system fault. Thus, the 

residuals of each subunit are also taken into consideration.  

Slow plant degradations, such as fouling and corrosion, are 

not considered as system faults at the beginning since their 

effects are small. These slow degradations will be learned by 

the NN augmenter and compensated by the hybrid model. As 
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Fig. 5. System responses under the optimized setpoints from ORG. 

Fig. 6. The structure of the fault diagnosis and accommodations system. 
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the fouling or corrosion grows, the plant degradations are 

accumulated by the NN augmenters and build up a large 

augmentation signal. At this time, the diagnosis system will 

give out a warning signal indicating maintenance is required 

for one or multiple subunits.  

3) Fuzzy Rules: The major fuzzy rules for fault diagnosis 

can be concluded as below: 

• If the integral of the residual is high/low and the residual 

is high/low, then a “P”/“N” fault exists. 

• If the integral of the residual is high or low and the 

residual is not high or not low, then model error exists. 

The first rule defines the condition for the existence of a 

“P” or “N” fault, and second rule defines the condition for the 

existence of model error. The degree of high or low is 

represented by the degree of truthfulness that a variable 

belongs to a particular fuzzy set, i.e., “high” or “low.”  

B. Fault Accommodation 

Detecting faults alone is not sufficient, though it is 

necessary for a control system. When a fault occurs, the plant 

needs to be regulated to prevent from entering critical or even 

unstable operating regions before the fault is cleared or human 

takes over the control system. Due to the high complexity of 

the DFC/T power plant and the random nature of faults, it is 

difficult to design specific and detailed regulators to 

accommodate the system with very limited information on the 

causes and consequences of the faults. Nevertheless, fuzzy 

logic, as a qualitative scenario, is a powerful tool that has low 

complexity and less difficulty in designing the fault 

accommodation system [19].  

1) Accommodation Strategies: Maintaining the electro- 

chemical reactions smooth and stable is the primary goal of 

the control system either under normal situations or during 

system failures. During system failures, the local control 

schemes may become weak, not functional, or even broken. 

On the other hand, the stack temperature is determined by the 

energy contained in the fuel. Thus, the stack temperature still 

can be maintained by adjusting the amount of the fuel and the 

amount of the fresh air. The output power can be regulated by 

adjusting the stack current.  

The control strategies can be described as follows: 

• If the stack temperature is higher/lower than normal, 

then decrease/increase the fuel flow rate nCH4 and 

increase/decrease the compressor speed Nturbine; 

• If the output power is higher/lower than demand, then 

decrease/increase the stack current Istk. 

2) Accommodation Structure: According to the 

compensation strategies, the control scheme in Fig. 7 is 

implemented for the FDA system. The input signals are the 

residuals of the two variables that need to be regulated, i.e., 

the stack temperature Tstk and the net output power Pnet. Both 

the residuals and their integrals are introduced to the 

accommodation controller for the same reason as in the 

diagnosis system. The outputs of the controller are setpoint 

modifications, which will compensate the original setpoints to 

take effect. The modified setpoints are restricted to the 

operational limitations to prevent instability and damages.  

C.  Simulation Results 

An SSH-N fault is simulated under a power demand of 

150kW. At such low power, the SSH serves as an electric 

heater to provide additional heat, and the generator works as 

an electric motor to provide additional torque. As a possible 

failure mode, an SSH-N fault is simulated at t = 0s, such that 

no additional heat is provided.  

Fig. 8 shows the vector of the diagnosis result, where each 

element of the vector provides the likelihood index for the 

existence of each fault pattern. The solid lines indicate the 

results without measurement noise. The SSH result steps to 

-0.8 within 3 seconds indicating the existence of an SSH-N 

fault, while other outputs remain at zero. The dotted lines 

show the diagnosis results with Gaussian White Noises 

( 0µ = , 5σ = °C for temperature, 0.1σ = mole/s for gas 

flow rate) in measurement data. Although the results are 

disturbed by the noise, the SSH fault can still be distinguished 

from others because of its magnitude and response time.  

The simulation results of the accommodation system are 

shown in Fig. 9, where the upper two plots show the dynamic 

system responses under the accommodation actions in the 

lower three plots. Three control methods, i.e., PI controller (in 

dotted lines), fuzzy controller (in solid lines), and 

fuzzy-neural network (in dashed lines) [12], are implemented 

with the fault accommodation strategies and framework in 

Fig. 7. The dash-dot lines denote the system response without 

 

Fig. 7. The structure of the fault accommodation system. 
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fault accommodation.  

Without the FDA system, although the output power drops 

by only 4kW, the stack temperature drops by 20°C to 570°C, 

which is sufficiently low to stop all electrochemical reactions. 

Once the plant is shut down, it may take days to restart and 

may cause significant offline time. When the FDA system is 

applied, the system is driven to a steady working status in 300 

seconds with a temperature drop of 10°C. The fuzzy 

controller has less overshoot and the fuzzy-neural network is 

faster than the traditional PI controller in regulating the stack 

temperature. The three controllers have comparable 

disturbances of 10kW in power control, but the fuzzy 

controller has slightly more oscillations as time elapses. 

VII. CONCLUSION 

In this paper, an integrated multi-task control system is 

proposed for the hybrid fuel-cell and gas turbine power plant. 

The integrated control system consists of a hybrid plant model, 

an ORG, and a FDA system, and provides comprehensive 

plant-wide management for the hybrid power plant. The 

hybrid model is an adaptive plant model with high accuracy 

and on-line updating ability. The ORG optimizes plant 

operations by generating optimal control references. The 

FDA system monitors the actual plant and plant model to 

report plant faults and model errors, and regulates the power 

plant if any internal fault is present. The overall system is not a 

simple combination of the individual control systems, but is 

an integrated system that each part cooperates with each other. 

With the integrated system, the efficiency and reliability of the 

DFC/T power plant can be considerably improved and the 

performance of the entire control system is upgraded.  
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Fig. 9. DFC/T response during SSH-N fault @ 150 kW. 

2993


