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Abstract— In this paper we construct high-order approx-
imate solutions to the value function and optimal control
for a finite-horizon optimal control problem for time-varying
discrete-time nonlinear systems. The method consists in expand-
ing the dynamic programming equations (DPE) in a power
series, collecting homogeneous polynomial terms and solving
for the unknown coefficients from the known and previously
computed data. The resulting high-order equations are linear
difference equations for the unknown homogeneous terms and
are solved backwards in time. The method is applied to
construct high-order perturbation controllers around a nominal
optimal trajectory.

I. INTRODUCTION

Consider the time-varying discrete-time control system

xt+1 = ft(xt, ut) (1)

where ft : R
n × R

m → R
n is smooth, i.e., infinitely

differentiable, and ft(0, 0) = 0, for t ∈ {0, 1, . . . , }. Let

t0 ∈ {0, 1, . . . , }, let N be a fixed positive integer, and let

there be given smooth functions ℓt : Rn × R
m → R and

φ : Rn → R. Define for controlled trajectories satisfying (1)

x = (xt0 , xt0+1, . . . , xt0+N )

u = (ut0 , ut0+1, . . . , ut0+N−1),

with initial condition xt0 = x0, the cost

Jt0(x
0,u) = φ(xt0+N ) +

t0+N−1∑

t=t0

ℓt(xt, ut). (2)

We will say that the control sequence

u
∗ = (u∗

t0
, u∗

t0+1, . . . , u
∗

t0+N−1)

solves the optimal control problem (1)-(2) if

Jt0(x
0,u∗) ≤ Jt0(x

0,u)

for all control sequences u = (ut0 , ut0+1, . . . , ut0+N−1). We

let x∗ = (x∗

t0
, x∗

t0+1, . . . , x
∗

t0+N ) denote the state trajectory

corresponding to u
∗. Denote the value function to the optimal

control problem as

πt(x) = min
u

Jt(x,u)
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where now x is the initial condition at time t. Applying

Bellman’s dynamic principle [2], the value functions πt

satisfy the recurrence relation

πt(x) = min
u

[ℓt(x, u) + πt+1(ft(x, u))] ,

with final condition πt0+N (x) = φ(x). If u = αt(x) is a

minimizing controller, then clearly

πt(x) = ℓt(x, αt(x)) + πt+1(ft(x, αt(x))). (DPE1)

Assuming that πt is differentiable for each t (Theorem 2.1),

the following necessary condition for a minimum holds:

0 =
∂ℓt
∂u

(x, αt(x)) +
∂πt+1

∂x
(ft(x, αt(x)))

∂ft
∂u

(x, αt(x)).

(DPE2)

Equations (DPE1)-(DPE2) are the dynamic programming

equations for the optimization problem.

Following the method of Al’brekht [1] (see also [8], [10]),

we construct polynomial approximations to πt and αt as

follows. Let ft, ℓt and φ have the following Taylor series

expansions:

ft(x, u) = Atx+Btu+ f
(2)
t (x, u) + f

(3)
t (x, u) + · · ·

(3a)

ℓt(x, u) =
1
2x

′Qtx+ x′Stu+ 1
2u

′Rtu+ ℓ
(3)
t (x, u) + · · ·

(3b)

φ(x) = 1
2x

′Px+ φ(3)(x) + φ(4)(x) + · · · (3c)

where Qt = Q′

t � 0, Rt = R′

t ≻ 0, and P = P ′ ≻ 0

(prime denotes transposition). The term f
(d)
t (x, u) denotes

a homogeneous polynomial of order d in the components

of (x, u) with coefficients depending on t, and similarly

for ℓ
(d)
t (x, u), φ(d)(x), etc. We assume that πt and αt have

Taylor series expansions of the form:

πt(x) =
1
2x

′Ptx+ π
(3)
t (x) + π

(4)
t (x) + · · · (4a)

αt(x) = Ktx+ α
(2)
t (x) + α

(3)
t (x) + · · · (4b)

To compute the homogeneous components of πt(x) and

αt(x), we substitute the expansions (3)-(4) into the DPE,

collect terms of the same order and solve for the unknown

homogeneous terms of πt(x) and αt(x). For each d ≥ 1,

(DPE1) is used to solve for the (d+ 1) order homogeneous

term of πt(x) and (DPE2) is used to solve for the d order

homogeneous term of αt(x). As will be seen, for d ≥ 2,

the d order term of αt(x) vanishes in the (d + 1) order

equations of (DPE1), resulting in a triangular set of equations

for π
(d+1)
t (x) and α

(d)
t , thereby simplifying the method sub-

stantially. The resulting equations are difference equations
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involving the previously computed lower order terms of

πt(x) and αt(x) and the known data ft(x), ℓt(x) and φ(x).
For d = 1, the equations that arise are the familiar linear

quadratic regulator equations for the linearized dynamics of

(1), i.e., the time-varying discrete Riccati equation [5].

Our high-order approximation method is an extension of

the method of Al’brekht [1] for continuous time-invariant

nonlinear systems. In [1], a method is used to compute

high-order polynomial approximations to the value func-

tion and optimal control for the Hamilton–Jacobi–Bellman

(HJB) equation and a first order necessary condition for

optimality similar to (DPE2). The resulting equations for

the coefficients of the homogeneous polynomial terms of

the value function and optimal controller are algebraic linear

equations. Later, an approach similar to [1] was employed

in [10] for continuous time-varying nonlinear systems and a

finite horizon optimal control problem. In [10], as the HJB

equation is time-varying, the coefficients of the homogeneous

terms of the value function and optimal controller are time-

varying, resulting in ordinary differential equations for the

unknown coefficients. Later in [9], the method of Al’brekht

was applied to discrete time-invariant nonlinear systems and

the resulting equations are algebraic. Hence, our work can

be considered as a natural extension to discrete-time systems

of the method in [10] on continuous-time systems.

A natural application of our method is the construction of

high-order perturbation controllers around a nominal optimal

trajectory, the so-called neighboring extremal method [3, Ch.

6] or perturbation control [5, Section 2.8]. For the case d =
1, our method coincides with the unconstrained neighboring

extremal method found in [3]. The neighboring extremal

method with state and input constraints has been considered

in [6], [7] in the development of fast model predictive control

(MPC) laws. In this paper we do not treat state and input

constraints. In any case, perturbation controllers can be used

to approximate optimal trajectories that are nearby a known

pre-computed optimal trajectory. Consequently, perturbation

controllers can be used to increase the speed of MPC

algorithms by providing a more accurate initial guess to

nearby optimal trajectories.

II. EXISTENCE OF SMOOTH SOLUTIONS

TO THE DPE

Before describing our algorithm for computing polynomial

approximate solutions to the DPE, in this section we show

for completeness that, under the standard assumptions in

the linear quadratic regulator problem [5], there exist se-

quences of smooth functions πt0 , πt0+1, . . . , πt0+N−1 and

αt0 , αt0+1, . . . , αt0+N−1 solving (DPE1)-(DPE2).

Theorem 2.1: Consider the nonlinear system (1) and cost

function (2). Suppose that ℓt, ft, and φ are smooth. Assume

that ℓt and φ vanish along with their first derivatives at

(x, u) = (0, 0), and that also ft(0, 0) = 0. Assume further

that Rt = ∂2ℓt
∂u2 (0, 0) are positive definite, Qt = ∂2ℓt

∂x2 (0, 0)

are positive semi-definite, and P = ∂2φ
∂x2 (0) is positive semi-

definite. Then there exist sequences of smooth functions

πt0 , πt0+1, . . . , πt0+N−1 and αt0 , αt0+1, . . . , αt0+N−1, de-

fined locally about x = 0, solving (DPE1)-(DPE2).

Proof. We begin with the case s = t0+N − 1. Define the

function Ψs : R
n × R

m → R by

Ψs(x, u) = ℓs(x, u) + πs+1(fs(x, u))

and recall that πs+1 = πt0+N = φ is known. Let Bs =
∂fs
∂u

(0, 0). From the assumptions that

∂ℓs
∂u

(0, 0) = 0,
∂πs+1

∂x
(0) = 0,

it follows that the mapping ∂Ψs

∂u
: Rn ×R

m → R
m vanishes

at (x, u) = (0, 0). Furthermore, the m×m symmetric matrix
∂2Ψs

∂u2 (0, 0) is invertible. Indeed, a direct calculations gives

that
∂2Ψs

∂u2
(0, 0) = Rs +BT

s Ps+1Bs,

which is the sum of the positive definite matrix Rs and

the positive semi-definite matrix BT
s Ps+1Bs, and therefore

is also positive definite. By the Implicit Function Theorem

applied to ∂Ψs

∂u
, there exists an open set V ⊂ R

n containing

x = 0 and an open set U ⊂ R
m containing u = 0, and a

unique smooth mapping αs : V → U such that αs(0) = 0
and ∂Ψs

∂u
(x, αs(x)) = 0. In other words,

0 =
∂ℓs
∂u

(x, αs(x)) +
∂πs+1

∂x
(fs(x, αs(x))

∂fs
∂u

(x, αs(x)).

By continuity of the mapping (x, u) 7→ ∂2Ψs

∂u2 (x, u) and the

fact that the set of positive definite matrices is open in the

set of symmetric matrices, we have that for x ∈ V the matrix
∂2Ψs

∂u2 (x, αs(x)) is positive definite (here it may be necessary

to shrink V). Hence, it follows that for each fixed x ∈ V ,

the mapping u 7→ Ψs(x, u) has a minimum at u = αs(x).
Therefore,

πs(x) , min
u

Ψs(x, u) = ℓs(x, αs(x)) + πs+1(fs(x, αs(x)))

and it is clear that πs : V → R is smooth. Thus, we have

proved that αs and πs solve (DPE1)-(DPE2) for s = t0+N−
1 on V . Now, by classical results regarding the discrete-time

linear quadratic regulator problem [5, pg. 63], the assumption

that Qs is positive semi-definite implies that the matrix Ps =
∂2πs

∂x2 (0) is positive semi-definite. We can therefore repeat

our arguments above for the mapping Ψs−1 : V ′ × U ′ → R

defined as

Ψs−1(x, u) = ℓs−1(x, u) + πs(fs−1(x, u)),

where V ′ ⊂ V and U ′ ⊂ U are sufficiently small

open sets such that fs−1(V
′,U ′) ⊂ V . In this way, we

obtain the desired sequences πt0 , πt0+1, . . . , πt0+N−1 and

αt0 , αt0+1, . . . , αt0+N−1, and this completes the proof. �

III. POWER SERIES SOLUTION TO THE DPE

In this section we describe our algorithm for computing the

homogeneous polynomial terms of πt(x) and αt(x) order-

by-order from the DPE.
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A. Order d = 1: Computing Pt and Kt

Substituting the power series expansions (3)-(4) into the

DPE and collecting the quadratic terms from (DPE1) and the

linear terms from (DPE2) yield the familiar equations from

the discrete-time linear quadratic regulator problem:

1
2x

′Ptx = 1
2x

′[Qt + 2StKt +K ′

tRtKt

+ (At +BtKt)
′Pt+1(At +BtKt)]x (5a)

0 = x′[St +K ′

tRt + (At +BtKt)
′Pt+1Bt]. (5b)

As (5b) holds for all x, it follows that

Kt = −(Rt +B′

tPt+1Bt)
−1(St +A′

tPt+1Bt)
′. (6)

Substituting (6) into (5a) and simplifying yields the time-

varying discrete Riccati equation (DRE)

Pt = Qt + A′

tPt+1At − Γt(Rt +B′

tPt+1Bt)
−1Γ′

t (7)

where Γt = (St+A′

tPt+1Bt). The DRE is solved backwards

from t = t0 + N to t = t0 with known final condition

Pt0+N = P .

B. Order d = 2: Computing π
(3)
t and α

(2)
t

Assume we have computed Pt and Kt, and let Ft =
At+BtKt denote the closed-loop matrices. Collecting cubic

terms in (DPE1) yields

π
(3)
t (x) = ℓ

(3)
t (x,Ktx) + π

(3)
t+1(Ftx)

+ x′F ′

tPt+1f
(2)
t (x,Ktx)

+ x′[St +K ′

tRt + (At +BtKt)
′Pt+1Bt︸ ︷︷ ︸

=0 from (5b)

]α
(2)
t (x)

= π
(3)
t+1(Ftx) + ℓ

(3)
t (x,Ktx)

+ x′F ′

tPt+1f
(2)
t (x,Ktx).

Therefore, we obtain the following recurrence relation for

π
(3)
t (x):

π
(3)
t (x) = π

(3)
t+1(Ftx) +W

(3)
t (x) (8)

where

W
(3)
t (x) = ℓ

(3)
t (x,Ktx) + x′F ′

tPt+1f
(2)
t (x,Ktx).

Notice that W
(3)
t (x) depends on the linear part of αt(x)

and on the quadratic part of πt+1(x), which have already

been computed by assumption. The recurrence relation (8)

is solved backwards from t = t0 +N to t = t0 with known

final condition π
(3)
t0+N (x) = φ(3)(x).

Collecting quadratic terms in (DPE2) yields

0 = α
(2)
t (x)′Rt +

∂ℓ
(3)
t

∂u
(x,Ktx) +

∂π
(3)
t+1

∂x
(Ftx)Bt

+ [Btα
(2)
t (x) + f

(2)
t (x,Kx)]′Pt+1Bt

+ x′(At +BtKt)
′Pt+1

∂f
(2)
t

∂u
(x,Ktx).

Therefore, we can solve for α
(2)
t once π

(3)
t+1 is known:

α
(2)
t (x) = −(Rt +B′

tPt+1Bt)
−1V

(2)
t (x)′ (9)

where

V
(2)
t (x) =

∂ℓ
(3)
t

∂u
(x,Ktx) +

∂π
(3)
t+1

∂x
(Ftx)Bt

+ x′(Ft)
′Pt+1

∂f
(2)
t

∂u
(x,Ktx)

+ f
(2)
t (x,Kx)′Pt+1Bt.

Notice that V
(2)
t (x) depends on the linear part of αt(x) and

on up to the cubic part of πt+1(x), which have already been

computed.

C. Order d ≥ 2: Computing π
(d+1)
t and α

(d)
t

Consider now the general case d ≥ 2. Hence, assume that

we have computed πt(x) up to degree d and αt(x) up to

degree d − 1. Collecting d + 1 order terms from (DPE1)

yields the following expression for π
(d+1)
t (x):

π
(d+1)
t (x) = π

(d+1)
t+1 (Ftx) +W

(d+1)
t (x)

+ x′[St +K ′

tRt + (At +BtKt)
′Pt+1Bt︸ ︷︷ ︸

=0 from (5b)

]α
(d)
t (x) (10)

where W
(d+1)
t (x) is a homogeneous polynomial in x of

degree d + 1 depending on πt+1(x) up to degree d and on

αt(x) up to degree d−1, which have already been computed

by assumption. We therefore obtain the following recurrence

relation for π
(d+1)
t (x):

π
(d+1)
t (x) = π

(d+1)
t+1 (Ftx) +W

(d+1)
t (x). (11)

The recurrence relation (11) is solved backwards from t =
t0 + N to t = t0 with known final condition π

(d+1)
t0+N (x) =

φ(d+1)(x).
Next, collecting d order terms from (DPE2) we obtain an

expression of the form

0 = α
(d)
t (x)′(Rt +B′

tPt+1Bt) + V
(d)
t (x)

where V
(d)
t (x) is a homogeneous polynomial in x of degree

d depending on πt+1 up to degree d + 1 and on αt up to

degree d − 1. Therefore, we can solve for α
(d)
t (x) because

π
(d+1)
t+1 has already been computed from (11):

α
(d)
t (x) = −(Rt +B′

tPt+1Bt)
−1V

(d)
t (x)′. (12)

In this way, for a desired order M , the above procedure

produces a polynomial approximation to πt(x) of order

M + 1 and a polynomial approximation to αt(x) of order

M , for t = t0, . . . , t0 +N − 1.

Remark 3.1: It is worth emphasizing the importance of

(5b) in the computation of π
(d+1)
t (x) and α

(d)
t (x) for d ≥ 2.

As one can observe from (10), the relation (5b) eliminates

α
(d)
t (x) from the equation for π

(d+1)
t (x), thereby resulting

in a triangular set of equations for π
(d+1)
t (x) and α

(d)
t (x).

Remark 3.2: As can be seen from (11), the computation

of π
(d+1)
t (x) involves only the evaluation of the known and

previously computed data, i.e, W
(d+1)
t (x), and π

(d+1)
t+1 (x).

The computational work for performing these calculations
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can be carried out efficiently by using matrix representations

of homogeneous polynomials, as opposed to performing

symbolic computations.

IV. PERTURBATION CONTROLLERS AROUND A

NOMINAL OPTIMAL TRAJECTORY

The method of the previous section can be used to

construct perturbation controllers around a nominal optimal

trajectory for discrete nonlinear systems of the form (1) and

cost function (2). Such perturbation controllers can be used to

increase the speed of model predictive controllers (MPC) [6],

[7] by providing more accurate initial guesses to nonlinear

programming solvers. In the MPC formulation, the terminal

cost function φ can be chosen to ensure closed-loop stability

of the resulting MPC feedback [4].

In this section we construct time-varying systems, and the

associated cost function, describing the perturbed dynamics

from a pre-computed optimal trajectory. Our high-order

method can then be used on the perturbed dynamics to

compute approximations to optimal trajectories nearby the

pre-computed optimal trajectory.

Let (x∗,u∗) be an optimal trajectory starting at time t =
t0 with initial condition x0. Using the method of Lagrange

multipliers [5], we augment the constraints (1) to the cost

(2), yielding the Hamiltonian function

H(x,u,λ) = φ(xt0+N ) + λT
t0
(x0 − xt0)

+

t0+N−1∑

t=t0

ℓt(xt, ut) + λT
t+1(ft(xt, ut)− xt+1) (13)

where λ = (λt0 , λt0+1, . . . , λt0+N ) are the undetermined

Lagrange multipliers. For convenience, define

ht(x, u, λ) = ℓt(x, u) + λT ft(x, u).

Re-arranging the expression for H so that the xt’s are lumped

together, H can be written as

H(x,u,λ) = φ(xt0+N )− λT
t0+Nxt0+N + λT

t0
x0

+

t0+N−1∑

t=t0

ht(xt, ut, λt+1)− λT
t xt.

The necessary first order condition for (x∗,u∗,λ∗) to be a

minimizing triple for the Hamiltonian H can be decomposed

into the equations

0 =
∂ℓt
∂x

(x∗

t , u
∗

t ) + λ∗T
t+1

∂ft
∂x

(x∗

t , u
∗

t )− λ∗T
t (14a)

0 =
∂φ

∂x
(x∗

t0+N )− λ∗T
t0+N (14b)

0 =
∂ℓt
∂u

(x∗

t , u
∗

t ) + λ∗T
t+1

∂ft
∂u

(x∗

t , u
∗

t ) (14c)

0 = x0 − x∗

t0
(14d)

0 = ft(x
∗

t , u
∗

t )− x∗

t+1 (14e)

for t = t0, . . . , t0 + N − 1. Now define the mappings

f̃t : R
n × R

m → R
n by

f̃t(x̃, ũ) = ft(x
∗

t + x̃, u∗

t + ũ)− ft(x
∗

t , u
∗

t )

For a controlled trajectory (x̄, ū) of (1), define the perturbed

state x̃ = x̄ − x
∗ and perturbed control ũ = ū − u

∗. Then

it is easy to see that the pair (x̃, ũ) satisfies

x̃t+1 = f̃t(x̃t, ũt).

Define the function H̃ : (Rn)N+1×(Rm)N×(Rn)N+1 → R

by

H̃(x̃, ũ,η) = H(x∗ + x̃,u∗ + ũ,λ∗ + η)−H(x∗,u∗,λ∗)

and functions φ̃ : Rn → R and ℓ̃t : R
n × R

m → R by

φ̃(x̃) = φ(x∗

t0+N + x̃)− λ∗T
t0+N x̃− φ(x∗

t0+N )

ℓ̃t(x̃, ũ) = ℓt(x
∗

t + x̃, u∗

t + ũ)− ℓt(x
∗

t , u
∗

t )

+ λ∗T
t+1f̃t(x̃, ũ)− λ∗T

t x̃.

It it straightforward to verify that

H̃(x̃, ũ,η) = φ̃(x̃t0+N ) +

t0+N−1∑

t=t0

ℓ̃t(x̃t, ũt)

−ηTt0 x̃t0 +

t0+N−1∑

t=t0

ηTt+1(f̃t(x̃t, ũt)− x̃t+1).

Hence, H̃ is the Hamiltonian obtained by adjoining the

dynamical constraints

x̃t+1 = f̃t(x̃t, ũt) (15)

to the cost function

J̃(x̃0, ũ) = φ̃(x̃t0+N ) +

t0+N−1∑

t=t0

ℓ̃t(x̃t, ũt) (16)

where x̃t0 = x̃0. From (14b), the function φ̃ has a Taylor

expansion about x̃ = 0 beginning with quadratic terms.

Similarly, by (14a) and (14c), ℓ̃t has a Taylor expansion

about (x̃, ũ) = (0, 0) beginning with quadratic terms, for

t = t0, . . . , t0 +N − 1.

By construction, if (x̃∗, ũ∗) is an optimal controlled

trajectory for the time-varying system (15) and cost (16)

with initial condition x̃∗

t0
= x̃0, then x̄

∗ = x
∗ + x̃

∗

and ū
∗ = u

∗ + ũ
∗ is an optimal controlled trajectory for

the original system (1) and cost (2) with initial condition

x̄0 = x0 + x̃0. The method of the previous section can be

employed on the time-varying system (15) with the cost (16)

to obtain high-order polynomial approximations to (x̃∗, ũ∗),
and consequently approximations to (x̄∗, ū∗). In the next

section we illustrate the results of this approach with two

examples.

V. EXAMPLES

We consider two examples illustrating our method.

Example 5.1: The system evolves in R and given as

xt+1 = xt +∆t(sin(xt) + ut), (17)

and the cost function is

J(x0,u) = 1
2px

2
N +∆t

N−1∑

t=0

(12qx
2
t +

1
2ru

2
t ) (18)
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where we set q = 2, r = 1, and ∆t = 0.05. The scalar p > 0
is chosen as the solution to the discrete algebraic Riccati

equation arising by considering the linearized dynamics of

(17) and the infinite-horizon cost

J∞(x0,u) = ∆t

∞∑

t=0

(
1
2qx

2
t +

1
2ru

2
t

)
.

The value of p is approximately p ≈ 2.85. The optimal

controlled trajectory (x∗,u∗) for (17) and cost (18) is pre-

computed for initial condition x0 = 0.5 and N = 75. We

now wish to compute the optimal trajectory (x̄∗, ū∗) for (17)-

(18) with initial condition x̄0 = 1.5. As described in §IV,

we form the dynamics for the perturbed state x̃ = x̄ − x
∗

and perturbed control ũ = ū − u
∗, resulting in a time-

varying nonlinear system of the form (15). Using the power

series method described in §III, we computed approximations

of orders 1-5 for the optimal controlled trajectory (x̃∗, ũ∗)
with initial condition x̃0 = x̄0 − x0 = 1. In Fig. 1, we

plot the state error x̄
∗ − (x∗ + x̃

∗) and the control error

ū
∗ − (u∗ + ũ

∗) using the approximations to (x̃∗, ũ∗) of

orders 1-5. The optimal trajectory (x̄∗, ū∗) was computed

using Matlab’s nonlinear solver fminsearch using as an

initial guess ū
∗ ≈ u

∗ + ũ
∗ with ũ

∗ approximated with the

5th order approximation. We remark that the Matlab function

fminsearch failed to converge in computing ū
∗ using the

approximations of ũ∗ of orders 1− 4.

Example 5.2: In this example we illustrate the method on

the pendulum-cart system. The system consists of a cart of

mass mc that is free to move horizontally and acted upon

a horizontal force u. The pendulum rod is pivoted at the

center of mass of the cart and free to swing in a vertical

plane about its frictionless pivot point. The center of mass

of the pendulum is a distance l from its pivot point and has

mass mp. For simplicity, we only consider the dynamics of

the pendulum and ignore the cart. Applying Newton’s laws,

the dynamical equation for the pendulum rod is

θ̈ =
g
l
sin(θ)− 1

2mr θ̇
2 sin(2θ)− mr

ml
cos(θ)u

4
3 −mr cos2(θ)

(19)

where θ is the angle the pendulum makes with the vertical,

mr =
mp

mc+mp
, and g = 9.8 m/s2 is the acceleration due to

gravity. We take the values mp = 2 kg, mc = 8 kg, and

l = 0.5 m. Let x = (θ, θ̇) and let F (x, u) ∈ R
2 denote

the controlled vector field resulting by writing (19) as a first

order system. The Eulerian discretization of (19) yields

xt+1 = f(xt, ut) = xt +∆tF (xt, ut) (20)

where ∆t is the sampling interval, xt = (θ(t∆t), θ̇(t∆t)) is

the state vector, and ut = u(t∆t) is the control force, for

t = 0, 1, . . . ,. We take the value ∆t = 0.05. As cost function

we take

J(x0,u) = 1
2x

′

NPxN +∆t

N−1∑

t=0

(
1
2x

′

tQxt +
1
2u

′

tRut

)
(21)

where Q = diag(q11, q22) is positive definite and R is a

positive scalar. As in the previous example, the matrix P

TABLE I

COMPUTATIONAL TIME AND NUMBER OF ITERATIONS REQUIRED TO

CONVERGENCE TO OPTIMAL SOLUTION (x̄∗
, ū

∗) FOR EXP. 2

Order Time [sec] Newton Iterations Improvement

Linear 0.0495 5 N/A

Previous 0.0399 4 19.4%

1 0.0393 4 20.6%

2 0.0314 3 36.6%

3 0.0303 3 38.8%

4 0.0217 2 56.2%

is chosen as the solution to the discrete algebraic Riccati

equation arising by considering the linearized dynamics of

(20) and the cost

J∞(x0,u) = ∆t

∞∑

t=0

(
1
2x

′

tQxt +
1
2u

′

tRut

)
. (22)

The optimal controlled trajectory (x∗,u∗) for (20) and cost

(21) is pre-computed for initial condition x0 = (−0.7,−0.5)
and N = 25. We now wish to compute the optimal tra-

jectory (x̄∗, ū∗) for (20)-(21) with initial condition x̄0 =
(−0.9,−0.6). We form the dynamics for the perturbed state

x̃ = x̄−x
∗ and perturbed control ũ = ū−u

∗, and computed

approximations of orders 1-4 for the optimal controlled

trajectory (x̃∗, ũ∗) with initial condition x̃0 = x̄0 − x0 =
(−0.2,−0.1). In Fig. 2, we plot the Euclidean norm of the

state error x̄∗−(x∗+x̃
∗) and the control error ū∗−(u∗+ũ

∗)
using the approximations to (x̃∗, ũ∗) of orders 1-4. The

optimal trajectory (x̄∗, ū∗) was computed using Matlab’s

nonlinear solver fminsearch using as an initial guess

ū
∗ ≈ u

∗ + ũ
∗ with ũ

∗ approximated with the 4th order

approximation. In Table I, we show the computational time

and the number of Newton iterations required to compute

the optimal trajectory (x̄∗, ū∗) using the approximations of

orders 1-4 as initial guesses to the nonlinear solver. The first

row in Table I corresponds to using the control sequence

ut = Kxt as an initial guess, where K is the optimal gain

for the linearized dynamics of (20) and cost (22), and the

second row corresponds to using the previously computed

control u∗ as the initial guess. All computations were done

on a computer with a 2 GHz processor and 2 GB of RAM.

VI. CONCLUSIONS AND FUTURE WORKS

In this paper we presented a method for computing high-

order approximate solutions to the value function and optimal

control for a finite-horizon optimal control problem for time-

varying discrete-time nonlinear systems. The method was

applied to construct perturbation controllers around a nomi-

nal optimal trajectory. Examples were given illustrating the

method. A natural direction of future work would consider

state and input constraints.

REFERENCES

[1] E.G. Al’brekht On the optimal stabilization of nonlinear systems, J.
Appl. Math. Mech., 25 (1961), pp. 1254-1266.

[2] Richard Bellman, Introduction to the Mathematical Theory of Control
Processes, Vol. II, Academic Press, New York, NY, 1971.

[3] Arthur E. Bryson and Yu-Chi Ho, Applied Optimal Control, New York,
Hemisphere Publishing, 1975.

401



0 10 20 30 40 50 60 70
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

 

 

1st

2nd

3rd

4th

5th

0 10 20 30 40 50 60 70
−0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

 

 

1st

2nd

3rd

4th

5th

Fig. 1. Error ū∗ − (u∗ + ũ
∗) (top) and error x̄

∗ − (x∗ + x̃
∗) (bottom) using approximations to (x̃∗

, ũ
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