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Abstract— The notion of incremental stability was proposed
by several researchers as a strong property of dynamical and
control systems. Incremental stability describes the convergence
of trajectories with respect to themselves, rather than with
respect to an equilibrium point or a particular trajectory.
Similarly to stability, Lyapunov functions play an important
role in the study of incremental stability. In this paper, we
propose new notions of incremental Lyapunov functions which
are coordinate independent and provide the description of
incremental stability in terms of the proposed Lyapunov func-
tions. Moreover, we develop a backstepping design approach
providing a recursive way of constructing controllers, enforcing
incremental stability, as well as incremental Lyapunov func-
tions. The effectiveness of the proposed method is illustrated
by synthesizing a controller rendering a single-machine infinite-
bus electrical power system incrementally stable.

I. INTRODUCTION

Incremental stability is a the requirement that all trajec-
tories of a dynamical system converge to each other, rather
than to an equilibrium point or a particular trajectory. While
it is well-known that for linear systems such a property is
equivalent to stability, it can be a much stronger property
for nonlinear systems. The study of incremental stability
goes back to the work of Zames in the 60’s [1]; see [2]
for a historical discussion and a broad list of applications of
incremental stability.

Similarly to stability, Lyapunov functions play an im-
portant role in the study of incremental stability. Angeli
[3] proposed the notions of incremental Lyapunov function
and incremental input-to-state Lyapunov function, and used
these notions to prove charactrizations of incremental global
asymptotic stability (δ-GAS) and incremental input-to-state
stability (δ-ISS). Both proposed notions of Lyapunov func-
tions in [3] are not coordinate independent, in general. In
this paper, we propose new notions of incremental Lyapunov
functions and incremental input-to-state Lyapunov functions
that are coordinate invariant. Moreover, we use these new
notions of Lyapunov functions to describe notions of incre-
mental stability, proposed in [2].

Since the proposed notions of Lyapunov functions in this
paper are coordinate invariant, they potentiate the develop-
ment of synthesis tools for incremental stability. As an exam-
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ple, we develop a backstepping design method for incremen-
tal stability for strict-feedback1 form systems. The proposed
approach was inspired by the incremental backstepping ap-
proach provided in [2]. While the approach in [2], provides
a recursive way of constructing contraction metrics, the
proposed approach in this paper provide a recursive way of
constructing incremental Lyapunov functions, identified as a
key property for the construction of finite abstractions in [5],
[6], [7]. See [8], for a broad list of applications of incremental
Lyapunov functions. Like the original backstepping method,
the proposed approach in this paper provides a recursive way
of constructing controllers as well as incremental Lyapunov
functions. Our design approach is illustrated by designing a
controller rendering a single-machine infinite-bus electrical
power system incrementally stable.

II. CONTROL SYSTEMS AND STABILITY NOTIONS

A. Notation

The symbols R, R+ and R+
0 denote the set of real,

positive, and nonnegative real numbers, respectively. The
symbol In denotes the identity matrix in Rn×n. Given a
vector x ∈ Rn, we denote by xi the i–th element of
x, and by ‖x‖ the Euclidean norm of x; we recall that
‖x‖ =

√
x21 + x22 + ...+ x2n. Given a measurable function

f : R+
0 → Rn, the (essential) supremum of f is denoted

by ‖f‖∞; we recall that ‖f‖∞ := (ess)sup{‖f(t)‖, t ≥ 0}.
f is essentially bounded if ‖f‖∞ < ∞. For a given
time τ ∈ R+, define fτ so that fτ (t) = f(t), for any
t ∈ [0, τ), and f(t) = 0 elsewhere; f is said to be locally
essentially bounded if for any τ ∈ R+, fτ is essentially
bounded. A function f : Rn → R is called radially un-
bounded if f(x)→∞ as ‖x‖ → ∞. A continuous function
γ : R+

0 → R+
0 , is said to belong to class K if it is strictly

increasing and γ(0) = 0; function γ is said to belong to class
K∞ if γ ∈ K and γ(r) → ∞ as r → ∞. A continuous
function β : R+

0 × R+
0 → R+

0 is said to belong to class KL
if, for each fixed s, the map β(r, s) belongs to class K∞
with respect to r and, for each fixed nonzero r, the map
β(r, s) is decreasing with respect to s and β(r, s) → 0 as
s→∞. If φ : Rn → Rn is a global diffeomorphism, and
if X : Rn → Rn is a continuous map, we denote by φ∗X
the map defined by (φ∗X)(y) = ∂φ

∂x

∣∣
x=φ−1(y)

X ◦ φ−1(y).
A function d : Rn × Rn → R+

0 is a metric on Rn if for any
x, y, z ∈ Rn, the following three conditions are satisfied: i)
d(x, y) = 0 if and only if x = y; ii) d(x, y) = d(y, x); and
iii) d(x, z) ≤ d(x, y) + d(y, z).

1See equation (III.8) or [4] for a definition.
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B. Control systems

The class of control systems that we consider in this paper
is formalized in the following definition.

Definition 2.1: A control system Σ is a quadruple
Σ = (Rn,U,U , f), where:
• Rn is the state space;
• U ⊆ Rm is the input set;
• U is the set of all measurable, locally essentially

bounded functions of time from intervals of the form
]a, b[⊆ R to U with a < 0 and b > 0;

• f : Rn × U→ Rn is a continuous map satisfying the
following Lipschitz assumption: for every compact set
Q ⊂ Rn, there exists a constant Z ∈ R+ such that
‖f(x, u) − f(y, u)‖ ≤ Z‖x − y‖ for all x, y ∈ Q and
all u ∈ U.

A curve ξ :]a, b[→ Rn is said to be a trajectory of Σ if
there exists υ ∈ U satisfying ξ̇(t) = f (ξ(t), υ(t)), for almost
all t ∈ ]a, b[. We also write ξxυ(t) to denote the point reached
at time t under the input υ from initial condition x = ξxυ(0);
this point is uniquely determined, since the assumptions on f
ensure existence and uniqueness of trajectories [9]. A control
system Σ is said to be forward complete if every trajectory
is defined on an interval of the form ]a,∞[. Sufficient and
necessary conditions for a system to be forward complete
can be found in [10].

C. Stability notions

Here, we recall the notions of incremental global asymp-
totic stability (δ∃-GAS) and incremental input-to-state sta-
bility (δ∃-ISS), presented in [2].

Definition 2.2 ([2]): A control system Σ is incrementally
globally asymptotically stable (δ∃-GAS) if it is forward
complete and there exist a metric d and a KL function β
such that for any t ∈ R+

0 , any x, x′ ∈ Rn and any υ ∈ U
the following condition is satisfied:

d (ξxυ(t), ξx′υ(t)) ≤ β (d (x, x′) , t) . (II.1)
As defined in [3], δ-GAS requires the metric d to be

the Euclidean metric. However, Definition 2.2 only requires
the existence of a metric. We note that while δ-GAS is not
generally invariant under changes of coordinates, δ∃-GAS
is. When the origin is an equilibrium point for Σ and the
map ψ : Rn → R+

0 , defined by ψ(x) = d(x, 0), is
radially unbounded, both δ∃-GAS and δ-GAS imply global
asymptotic stability.

Definition 2.3 ([2]): A control system Σ is incrementally
input-to-state stable (δ∃-ISS) if it is forward complete and
there exist a metric d, a KL function β, and a K∞ function
γ such that for any t ∈ R+

0 , any x, x′ ∈ Rn, and any υ,
υ′ ∈ U the following condition is satisfied:

d (ξxυ(t), ξx′υ′(t)) ≤ β (d (x, x′) , t) + γ (‖υ − υ′‖∞) .
(II.2)

By observing (II.1) and (II.2), it is readily seen that δ∃-ISS
implies δ∃-GAS while the converse is not true in general.
Moreover, whenever the metric d is the Euclidean metric,
δ∃-ISS becomes δ-ISS as defined in [3]. We note that while

δ-ISS is not generally invariant under changes of coordinates,
δ∃-ISS is. When the origin is an equilibrium point for Σ and
the map ψ : Rn → R+

0 , defined by ψ(x) = d(x, 0), is
radially unbounded, both δ∃-ISS and δ-ISS imply input-to-
state stability.

D. Descriptions of incremental stability

This section contains the description of δ∃-GAS and
δ∃-ISS in terms of existence of incremental Lyapunov func-
tions. We start by introducing the following definition which
was inspired by the notions of incremental global asymptotic
stability (δ-GAS) Lyapunov function and incremental input-
to-state stability (δ-ISS) Lyapunov function presented in [3].

Definition 2.4: Consider a control system Σ and a smooth
function V : Rn×Rn → R+

0 . Function V is called a δ∃-GAS
Lyapunov function for Σ, if there exist a metric d, K∞
functions α, α, and κ ∈ R+ such that:

(i) for any x, x′ ∈ Rn
α(d(x, x′)) ≤ V (x, x′) ≤ α(d(x, x′));

(ii) for any x, x′ ∈ Rn and any u ∈ U
∂V
∂x f(x, u) + ∂V

∂x′ f(x′, u) ≤ −κV (x, x′).

Function V is called a δ∃-ISS Lyapunov function for Σ, if
there exist a metric d, K∞ functions α, α, σ, and κ ∈ R+

satisfying conditions (i) and:

(iii) for any x, x′ ∈ Rn and for any u, u′ ∈ U
∂V
∂x f(x, u) + ∂V

∂x′ f(x′, u′) ≤ −κV (x, x′) + σ(‖u− u′‖).
While δ-GAS and δ-ISS Lyapunov functions, as defined

in [3], require the metric d to be the Euclidean metric,
Definition 2.4 only requires the existence of a metric. We
note that while δ-GAS and δ-ISS Lyapunov functions are not
invariant under changes of coordinates in general, δ∃-GAS
and δ∃-ISS Lyapunov functions are.

In the next lemma, we show that δ∃-GAS and δ∃-ISS
Lyapunov functions, defined in Definition 2.4, are invariant
under changes of coordinates.

Lemma 2.5: Let Σ = (Rn,U,U , f) be a control system
and let φ : Rn → Rn be a global diffeomorphism. If the
function V is a δ∃-GAS (resp. δ∃-ISS) Lyapunov function
for Σ, then the function V

(
φ−1, φ−1

)
is a δ∃-GAS (resp.

δ∃-ISS) Lyapunov function for Σ′ = (Rn,U,U , φ∗f).
Proof: For simplifying the proof, we abuse the notation

and use V ◦ φ−1 to denote V
(
φ−1, φ−1

)
. Inequalities (i) in

Definition 2.4, transforms under φ to:

α
(
d
(
φ−1(y), φ−1(y′)

))
≤ V

(
φ−1(y), φ−1(y′)

)
≤ (II.3)

α
(
d
(
φ−1(y), φ−1(y′)

))
.

Therefore, function V ◦ φ−1 satisfies the
inequalities (i) in Definition 2.4 by the metric
d′(y, y′) = d

(
φ−1(y), φ−1(y′)

)
. Let us now show that

condition (ii) in Definition 2.4 holds for V ◦ φ−1. Using
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∂φ−1

∂y
∂φ
∂x

(
φ−1(y)

)
= In, we obtain:

∂(V ◦φ−1)
∂y (φ∗f)(y, u) +

∂(V ◦φ−1)
∂y′ (φ∗f)(y′, u)

= ∂V
∂x

∣∣
x=φ−1(y)

∂φ−1

∂y (φ∗f) (y, u) (II.4)

+ ∂V
∂x′

∣∣
x′=φ−1(y′)

∂φ−1

∂y (φ∗f) (y′, u)

= ∂V
∂x

∣∣
x=φ−1(y)

f
(
φ−1(y), u)

)
+ ∂V
∂x′

∣∣
x′=φ−1(y′)

f
(
φ−1(y′), u)

)
≤ −κV

(
φ−1(y), φ−1(y′)

)
,

which completes the proof. Similarly, it can be shown that
V ◦ φ−1 satisfies the condition (iii) in Definition 2.4 for Σ′

if V satisfies it for Σ.
The following theorem describes δ∃-ISS (resp. δ∃-GAS)

in terms of existence of a δ∃-ISS (resp. δ∃-GAS) Lyapunov
function.

Theorem 2.6: A forward complete control system Σ is
δ∃-ISS (resp. δ∃-GAS) if it admits a δ∃-ISS (resp. δ∃-GAS)
Lyapunov function.

Proof: The proof is inspired by the proof of Theorem
5.2 in [11]. By using property (i) in Definition 2.4, we obtain:

d (ξxυ(t), ξx′υ′(t)) ≤ α−1 (V (ξxυ(t), ξx′υ′(t))) , (II.5)

for any t ∈ R+
0 . By using property (iii) and the comparison

lemma [12], one gets:

V (ξxυ(t), ξx′υ′(t)) ≤ e−κtV (ξxυ(0), ξx′υ′(0)) (II.6)
+e−κt ∗ σ(‖υ(t)− υ′(t)‖),

for any t ∈ R+
0 , where ∗ denotes the convolution integral2.

By combining inequalities (II.5) and (II.6), one gets:

d (ξxυ(t), ξx′υ′(t)) ≤
α−1

(
e−κtV (x, x′) + e−κt ∗ σ(‖υ(t)− υ′(t)‖)

)
≤

α−1
(
e−κtV (x, x′) +

1− e−κt

κ
σ(‖υ − υ′‖∞)

)
≤

α−1
(
e−κtV (x, x′) +

1

κ
σ(‖υ − υ′‖∞)

)
= γ(ρ, φ),

where γ(ρ, φ) = α−1(ρ + φ), ρ = e−κtV (x, x′), and
φ = 1

κσ (‖υ − υ′‖∞). Since γ is nondecreasing in each
variable, we have:

d (ξxυ(t), ξx′υ′(t)) ≤ h
(
e−κtV (x, x′)

)
+h

(
1

κ
σ (‖υ − υ′‖∞)

)
,

where h(r) = γ(r, r) = α−1(2r) and h : R+
0 → R+

0 is a
K∞ function. Moreover, using V (x, x′) ≤ α(d (x, x′)), one
obtains:

d(ξxυ(t), ξx′υ′(t)) ≤ α−1
(
2e−κtα(d(x, x′))

)
+α−1

(
2

κ
σ(‖υ − υ′‖∞)

)
.

2e−κt ∗ σ(‖υ(t)− υ′(t)‖) =
∫ t
0 e
−κ(t−τ)σ(‖υ(τ)− υ′(τ)‖)dτ .

Therefore, by defining functions β and γ as

β(d(x, x′), t) = α−1
(
2e−κtα (d(x, x′))

)
γ(‖υ − υ′‖∞) = α−1

(
2

κ
σ(‖υ − υ′‖∞)

)
,

the condition (II.2) is satisfied. Hence, the system Σ is
δ∃-ISS. The proof also works for δ∃-GAS case by simply
forcing υ = υ′.

In the next section, we propose a backstepping design pro-
cedure, providing a recursive way of constructing controllers
as well as incremental Lyapunov functions, to render control
systems incrementally stable .

III. BACKSTEPPING DESIGN PROCEDURE

The method described here was inspired by the incre-
mental backstepping approach provided in [2]. While the
approach proposed in [2] provides a recursive way of con-
structing contraction metrics, the proposed approach in this
paper provides a recursive way of constructing incremental
Lyapunov functions, identified as a key tool for the con-
struction of finite abstractions of nonlinear control systems,
proposed in [5], [6], [7]. See [8] for a list of applications
of incremental Lyapunov functions. Consider the class of
control systems Σ = (Rn,U,U , f) with f of the parametric-
strict-feedback form [4]:

f1(x, u) = h1(x1) + b1x2,
f2(x, u) = h2(x1, x2) + b2x3,

...
fn−1(x, u) = hn−1(x1, · · · , xn−1) + bn−1xn,
fn(x, u) = hn(x) + g(x)u,

(III.1)

where x ∈ Rn is the state and u ∈ U ⊆ R is the
control input. The functions hi : Ri → R, for i = 1, . . . , n,
and g : Rn → R are smooth, g(x) 6= 0 over the domain of
interest, and bi ∈ R, for i = 1, . . . , n, are nonzero constants.

To clarify later results more, we should note that we use
notations û and û′ to denote points inside U, and their script
version υ̂ and υ̂′ to denote input curves inside U .

We can now state one of the results, describing a back-
stepping controller for the control system (III.1).

Theorem 3.1: For any control system Σ = (Rn,U,U , f)
with f of the form (III.1), for any λ ∈ R+, and any û ∈ U,
the state feedback control law:

k(x, û) =
1

g(x)

[
kn(x)− hn(x)

]
+

1

g(x)
û, (III.2)

where

kl(x) = −bl−1 (xl−1 − φl−2(x))− λ (xl − φl−1(x))

+
∂φl−1
∂x

f(x, k(x)), for l = 1, · · · , n, (III.3)

φl(x) =
1

bl

[
kl(x)− hl(x)

]
, for l = 1, · · · , n− 1,

φ−1(x) = φ0(x) = 0 ∀x ∈ Rn, b0 = 0, and x0 = 0,
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renders the control system Σ δ∃-ISS with respect to the input
υ̂ and the function

V̂ (x, x′) =

√√√√n−1∑
l=0

[
(xl+1 − φl(x))−

(
x′l+1 − φl(x′)

)]2
,

is a δ∃-ISS Lyapunov function for Σ.
Proof: The proposed control law (III.2) transforms a

control system Σ = (Rn,U,U , f) with f of the form (III.1)
into:

f1(x, k(x, û)) = h1(x1) + b1x2,
f2(x, k(x, û)) = h2(x1, x2) + b2x3,

...
fn−1(x, k(x, û)) = hn−1(x1, · · · , xn−1) + bn−1xn,
fn(x, k(x, û)) = kn(x) + û.

(III.4)

The coordinate transformation z = ψ(x), where
ψ : Rn → Rn is a global diffeomorphism, defined by:

z = ψ(x) =


x1

x2 − φ1(x)
x3 − φ2(x)

...
xn − φn−1(x)

 , (III.5)

transforms the control system Σ with f of the form (III.4)
into the control system Σ′ = (Rn,U,U , f ′), where f ′ = ψ∗f
has the following form:

f ′(z, û) = Az +Bû, (III.6)

where

A =


−λ b1 0 0 · · · 0
−b1 −λ b2 0 · · · 0

0 −b2 −λ b3 · · · 0
...

. . .
...

0 · · · 0 −bn−1 −λ

 , B =


0
...
0
1

 .
It can be easily checked that the function

V (z, z′) =

√
(z − z′)T (z − z′),

satisfies
∂V

∂z
(Az +Bû) +

∂V

∂z′
(Az′ +Bû′) ≤ (III.7)

−λV (z, z′) + |û− û′|.

Hence the function V satisfies conditions (i) and (iii) in
Definition 2.4 implying that it is a δ∃-ISS Lyapunov function
for Σ′. Using Theorem 2.6, we obtain that Σ′ is δ∃-ISS with
respect to the input υ̂. Using Lemma 2.5, we conclude that
the function:

V̂ (x, x′) = V (ψ(x), ψ(x′)) =√
(ψ(x)− ψ(x′))

T
(ψ(x)− ψ(x′)) =√√√√n−1∑

l=0

[
(xl+1 − φl(x))−

(
x′l+1 − φl(x′)

) ]2
,

is a δ∃-ISS Lyapunov function for Σ. Therefore, using
Theorem 2.6, we obtain that Σ is δ∃-ISS with respect to the
input υ̂. The δ∃-ISS condition (II.2), as shown in Theorem
2.6, is given by:

d (ξxυ̂(t), ξx′υ̂′(t)) ≤ 2e−λtd(x, x′) +
2

λ
|υ̂ − υ̂′|∞,

where d(x, x′) = ‖ψ(x)− ψ(x′)‖, for any x, x′ ∈ Rn.
Remark 3.2: It can be readily seen that the state feedback

control law (III.2) renders the control system Σ δ∃-GAS and
the function

V̂ (x, x′) =

√√√√n−1∑
l=0

[
(xl+1 − φl(x))−

(
x′l+1 − φl(x′)

) ]2
,

is a δ∃-GAS Lyapunov function for Σ.
Now, we extend the result in Theorem 3.1 to the class

of control systems Σ = (Rn,U,U , f) with f of the strict-
feedback form [4]:

f1(x, u) = h1(x1) + g1(x1)x2,
f2(x, u) = h2(x1, x2) + g2(x1, x2)x3,

...
fn−1(x, u) = hn−1(x1, · · · , xn−1)

+gn−1(x1, · · · , xn−1)xn,
fn(x, u) = hn(x) + gn(x)u,

(III.8)

where x ∈ Rn is the state and u ∈ U ⊆ R is the control
input. The functions hi : Ri → R, and gi : Ri → R, for
i = 1, . . . , n, are smooth, and gi(x1, · · · , xi) 6= 0 over the
domain of interest.

Theorem 3.3: Let Σ = (Rn,U,U , f) be a control system
where f is of the form (III.8). Consider the state feedback
control law u = k(ϕ(x), û), where k is the controller, defined
in (III.2) for the control system Σ′ = (Rn,U,U , ϕ∗f), where
ϕ : Rn → Rn is a global diffeomorphism, defined by:

ϕ(x) =


x1

g1(x1)x2
g1(x1)g2(x1, x2)x3

...∏n−1
i=1 gi(x1, · · · , xi)xn

 . (III.9)

The proposed control law renders control system Σ δ∃-ISS
with respect to the input υ̂ and the function

Ṽ (x, x′) =√
(ψ ◦ ϕ(x)− ψ ◦ ϕ(x′))

T
(ψ ◦ ϕ(x)− ψ ◦ ϕ(x′)),

where ψ was defined in (III.5), is a δ∃-ISS Lyapunov function
for Σ.

Proof: As showed in [2], the coordinate transformation
y = ϕ(x) transforms the control system Σ = (Rn,U,U , f)
with f of the form (III.8) to the control system
Σ′ = (Rn,U,U , f ′), where f ′ = ϕ∗f has the following
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form:
f ′1(y, u) = h′1(y1) + y2,
f ′2(y, u) = h′2(y1, y2) + y3,

...
f ′n−1(y, u) = h′n−1(y1, · · · , yn−1) + yn,
f ′n(y, u) = h′n(y) + g′(y)u,

(III.10)

where h′i : Ri → R, for i = 1, · · · , n, are smooth functions,
g′ =

∏i=n
i=1 gi, and y ∈ Rn is the state of Σ′. As proved in

Theorem 3.1, the state feedback control law k(y, û), defined
in (III.2), makes the function

V̂ (y, y′) =

√
(ψ(y)− ψ(y′))

T
(ψ(y)− ψ(y′)), (III.11)

a δ∃-ISS Lyapunov function, for the control system Σ′. As
proved in Lemma 2.5, the function

Ṽ (x, x′) = V̂ (ϕ(x), ϕ(x′)) =√
(ψ ◦ ϕ(x)− ψ ◦ ϕ(x′))

T
(ψ ◦ ϕ(x)− ψ ◦ ϕ(x′)),

is a δ∃-ISS Lyapunov function , for the control system Σ,
equipped with the state feedback control law k(ϕ(x), û).
Therefore, the state feedback control law k(ϕ(x), û) makes
the control system Σ δ∃-ISS with respect to the input υ̂. The
δ∃-ISS condition (II.2), as shown in Theorem 2.6, is given
by:

d (ξxυ̂(t), ξx′υ̂′(t)) ≤ 2e−λtd(x, x′) +
2

λ
|υ̂ − υ̂′|∞,

where d(x, x′) = ‖ψ◦ϕ(x)−ψ◦ϕ(x′)‖, for any x, x′ ∈ Rn.

Remark 3.4: It can be readily seen that the state feedback
control law k(ϕ(x), û), where k is the controller, defined in
(III.2) for the control system Σ′ = (Rn,U,U , ϕ∗f), renders
the control system Σ δ∃-GAS and the function

Ṽ (x, x′) =√
(ψ ◦ ϕ(x)− ψ ◦ ϕ(x′))

T
(ψ ◦ ϕ(x)− ψ ◦ ϕ(x′)),

is a δ∃-GAS Lyapunov function for Σ.

IV. BACKSTEPPING CONTROLLER DESIGN FOR AN
ELECTRICAL POWER SYSTEM

We illustrate the results in this paper on a single-machine
infinite-bus electrical power system with static VAR com-
pensator [13]. The control system Σ =

(
R3,U,U , f

)
with f

of the form:

f1(x, u) = x2, (IV.1)

f2(x, u) = −ω0

H
E′qVsysvc0 sin(x1 + δ0)− D

H
x2

+
ω0

H
Pm −

ω0

H
E′qVs sin(x1 + δ0)x3,

f3(x, u) = − 1

Tsvc
x3 +

1

Tsvc
u,

models a single-machine infinite-bus (SIMB) electrical
power system with static VAR compensator (SVC). In the
mentioned model, x1 is the deviation of the generator rotor
angle, x2 is the relative speed of the rotor of the generator,

x3 is the deviation of the susceptance of the overall system,
δ0 is the operating point of the generator rotor angle, ω0 is
the operating point of the speed of the generator rotor, H
is the inertia constant, Pm is the mechanical power on the
generator shaft, D is the damping coefficient, E′q is the inner
generator voltage, Vs is the infinite bus voltage, ysvc0 is the
operating point of the susceptance of the overall system, Tsvc
is the time constant of SVC regulator, and u is the input of
SVC regulator. We assume that sin(x1 + δ0) is nonzero over
the domain of the interest.

The control system (IV.1) is of the form (III.8). The
coordinate transformation (III.9), given by:[

y1 y2 y3
]T

= ϕ(x) = (IV.2)[
x1 x2 −ω0

H E
′
qVs sin(δ0 + x1)x3

]T
,

transforms the control system Σ to the control system
Σ′ =

(
R3,U,U , f ′

)
with f ′ = ϕ∗f of the form:

f ′1(y, u) = h′1(y1) + y2 = y2,

f ′2(y, u) = h′2(y1, y2) + y3 = −D
H
y2 +

ω0

H
Pm

−ω0

H
E′qVsysvc0 sin(y1 + δ0) + y3, (IV.3)

f ′3(y, u) = h′3(y) + g′(y)u = y2 cot(y1 + δ0)y3

− 1

Tsvc
y3 −

ω0

HTsvc
E′qVs sin(y1 + δ0)u.

By using the results in Theorem 3.1 for a control system of
the form (IV.3) and for λ = 2, we have:

φ1(y1) = −2y1,

φ2(y1, y2) = −5y1 +
ω0

H
E′qVsysvc0 sin(y1 + δ0)

−ω0

H
Pm +

(
D

H
− 4

)
y2,

k3(y) = −12y1 +

(
D

H
− 6

)
y3 +

(
D

H
− 6

)
ω0

H
Pm

+

(
6− D

H

)
ω0

H
E′qVsysvc0 sin(y1 + δ0)

+
ω0

H
E′qVsysvc0 cos(y1 + δ0)y2

+

(
6
D

H
− D2

H2
− 14

)
y2.

Therefore, the state feedback control law:

k(y, û) = − HTsvc
ω0E′qVs sin(δ0 + y1)

[
− 12y1 (IV.4)

+

(
D

H
− 6 +

1

Tsvc

)
y3

+

(
6− D

H

)
ω0

H
E′qVsysvc0 sin(y1 + δ0)

+
ω0

H
E′qVsysvc0 cos(y1 + δ0)y2

+

(
6
D

H
− D2

H2
− 14

)
y2 +

(
D

H
− 6

)
ω0

H
Pm

−y2 cot(y1 + δ0)y3

]
− HTsvcû

ω0E′qVs sin(δ0 + y1)
,

makes the control system Σ′ δ∃-ISS with respect to the
input υ̂. The corresponding δ∃-ISS Lyapunov function for
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Fig. 1. Evolution of x1, x2, and x3 with initial conditions
(0.2217, − 4.159, 0.086), (0.0471, − 4.159, − 0.214), and
(−0.3019, 2.841, 0.186), respectively.

the control system (IV.3) is given by:

V̂ (y, y′) =

[
(y1 − y′1)

2 +
(
2(y1 − y′1) + (y2 − y′2)

)2
+

[
(y3 − y′3) +

(
4− D

H

)
(y2 − y′2)

+5(y1 − y′1)−
ω0

H
E′qVsysvc0(sin(y1 + δ0)

− sin(y′1 + δ0))

]2] 1
2

.

By using Theorem 3.3, the state feedback control law
(IV.4), and the coordinate transformation (IV.3), we obtain

the state feedback control law k(ϕ(x), û) making Σ δ∃-ISS
with respect to the input υ̂. The corresponding δ∃-ISS
Lyapunov function for the control system Σ is given by:

Ṽ (x, x′) =

[
(x1 − x′1)

2 +
(
2(x1 − x′1) + (x2 − x′2)

)2
+

[
− ω0

H
E′qVs

(
sin(δ0 + x1)x3

− sin(δ0 + x′1)x
′
3

)
+

(
4− D

H

)
(x2 − x′2)

+5(x1 − x′1)−
ω0

H
E′qVsysvc0(sin(x1 + δ0)

− sin(x′1 + δ0))

]2] 1
2

.

We simulate the closed-loop system with û = 0, and
the following parameters: ω0 = 314.159, H = 5.9,
E′q = 1, Vs = 1, ysvc0 = 0.814, δ0 = 57.3◦, D = 5,
Pm = 1, and Tsvc = 0.02. In Figure 1, we show the
closed-loop trajectories stemming from the initial conditions
(0.2217, − 4.159, 0.086), (0.0471, − 4.159, − 0.214),
and (−0.3019, 2.841, 0.186), respectively.
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