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Abstract— We introduce a magnetometer-plus-GPS aided
inertial navigation system for a helicopter UAV. A nonlinear
observer is required to estimate the navigation states, typically
an Extended Kalman Filter (EKF). A novel approach is the
invariant observer, a constructive design method applicable to
systems possessing symmetries. We review the theory and design
an invariant observer for our example. Using an invariant ob-
server guarantees a simplified form of the nonlinear estimation
error dynamics. These are stabilized using an adaptation of the
Invariant EKF, a systematic approach to compute the gains of
an invariant observer. The resulting design is successfully imple-
mented and validated in experiment and shows an improvement
in performance over a conventional EKF.

I. INTRODUCTION

The University of Alberta’s Applied Nonlinear Controls

Lab (ANCL) Helicopter UAV project has motivated a number

of research directions including aided navigation, e.g. [1]

reports on experimental magnetometer integration into an

Extend Kalman Filter (EKF)-based design. Aided navigation

is a nonlinear observer design problem, and we are interested

in using techniques beyond the conventional EKF. The

catalogue of these is extensive, c.f. the survey paper [2].

A novel nonlinear design method is the invariant ob-

server [3], [4]. This method provides a systematic approach

to deriving the observer equations, and aided navigation ap-

plications such as Attitude and Heading Reference Systems

(AHRS) and Aided Inertial Navigation Systems (INS) are

described by dynamics which naturally possess the required

symmetries (defined in Section II-B). The key feature of an

invariant observer is that it guarantees a simplified form

of the (nonlinear) estimation error dynamics (Theorem 1

in Section II-C), which simplifies the selection of observer

gains.

Nonlinear gain selection is not systematic. A natural first-

pass approach is to rely on linearization to design the

gains, more specifically the EKF method of continuously re-

linearizing a dynamic system about its latest estimate. The

approach of combining the invariant observer’s estimation

error dynamics with the EKF was first proposed by [5].

The contribution of this paper is to treat the invariant

observer design for a magnetometer-plus-GPS aided INS

example, which has not been considered except in [6] for

a different set of dynamics and symmetries; to adapt the In-

variant EKF design method in [5] to this system as explained

in Section III; and to experimentally validate the design and

compare it with a conventional EKF in Section IV.

The authors are with the Department of ECE, University of Alberta,
Edmonton, AB, T6G 2V4, Canada martinb@ece.ualberta.ca;
alan.lynch@ualberta.ca

II. INVARIANT OBSERVER DESIGN

A. System Dynamics

The aided INS dynamics are described in a local tangent

plane as
ṗ = v

v̇ = R(f̃ − bf − νf ) − a

Ṙ = RS(ω̃ − bω − νω)

ḃf = νbf

ḃω = νbω
[
ỹp

ỹm

]

=

[
p+ νp

RTm+ νm

]

,

(1)

where p, v are the vehicle’s position and velocity vectors in

the North-East-Down (NED) navigation frame; R ∈ SO(3)
measures the attitude; S is a skew-symmetric matrix such

that S(x)y = x × y where x, y ∈ R
3; bf and bω are the

unknown biases of the measured accelerometer f̃ and rate

gyro ω̃ signals; a and m are the local gravity and magnetic

field vectors, which are known constants1; ỹp and ỹm are

provided by the on-board GPS receiver and magnetometer,

respectively; and ν terms represent Gaussian white-noise

vectors with zero mean and diagonal covariance matricesQν ,

whose values can be identified from logged sensor data [7,

Chap. 4]. Remark (1) assumes a random-walk (Wiener)

process model for the biases.

We will first design an invariant observer for the nominal

(noise-free) version of (1), i.e. with ν = 0. We denote this

noise-free system as ẋ = f(x, u), y = h(x, u) where x =
[p, v, R, bf , bω]T , u = [f, ω, a,m]T and y = [yp, ym]T are

the state, input and output vectors, respectively. The noise

terms will be brought back for the Invariant EKF design in

Section III.

B. System Symmetries

The most general coordinate-free description of the

smooth nonlinear dynamics ẋ = f(x, u) is the bundle map

F : B → TX where B is the total space of a smooth

fiber bundle over the smooth state manifold X with tangent

bundle TX , e.g. [8, Sec. 13.5]. This framework is used in [9]

to define system symmetries. For invariant observer design

problems, we are able to use the simplification B = X ×U
where U represents the smooth input manifold, i.e. B is a

trivial fiber bundle over X , because the inputs to the observer

1The gravity field is a = [0, 0,−9.81]T [m/s2]; the magnetic
field can be computed from a world magnetic model, e.g. m =
[0.1402, 0.03957, 0.5602]T [G] at flight coordinates 53◦25′12”N,
113◦23′58”W.
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are not functions of its state. Remark this simplification

would not apply for invariant feedback control design [10],

[11]. Using the trivial bundle assumption, take ϕg : G×X →
X , ψg : G × U → U and ρg : G × Y → Y to be smooth

left Lie group actions acting on the system’s state, input

and output manifolds, respectively, where G is the Lie group

associated to the system. Let H : X × U → Y denote the

output map. The system is said to be G-invariant and G-

equivariant if for all g ∈ G,

(ϕg)∗F (x, u) = F (ϕg(x), ψg(u)) and

ρgH(x, u) = H(ϕg(x), ψg(u)),

respectively, where ( )∗ denotes the pushforward. In local

coordinates, this is equivalent to

d

dt
(ϕg(x)) = f(ϕg(x), ψg(u)),

ρgy = h(ϕg(x), ψg(u)).

Finding the symmetry group G and set of actions ϕg , ψg

making the system G-invariant is non-constructive, but is

based on the physics of the problem. For the noise-free

version of (1), the Lie group G = R
3 ×SO(3)×R

3 ×R
3 ∋

(p0 R0 bf0 bω0) = g with group actions

ϕg









p
v
R
bf
bω









=









R0(p+ p0)
R0v
R0R

bf + bf0

bω + bω0









, ψg







f
ω
a
m







=







f + bf0

ω + bω0

R0a
R0m







can be directly verified to provide G-invariance as well as

G-equivariance under the induced action

ρg

(
yp

ym

)

=

(
R0(yp + p0)

ym

)

.

The actions ϕg , ψg, ρg can be verified to be left actions under

group multiplication g1g2 = (p′0+p′′0 , R
′

0R
′′

0 , b
′

f0+b′′f0, b
′

ω0+
b′′ω0). Physically, the entries of G represent constant offsets in

the position and bias states and constant rotations of the NED

frame, and the set of actions ϕg , ψg , ρg applies these to the

state, input and output spaces in such a way that the system’s

dynamics and output equations are not altered, i.e. invariant.

C. Observer Design

Once the system’s symmetries are available, the invariant

observer design steps are systematic [3].

1) Invariants of G: Define the group action φg = ϕg ×
ψg×ρg of G acting regularly and freely on the smooth mani-

fold M = X×U×Y , where dim(M) = m and dim(G) = r
with r ≤ m. The function J : M → R is defined to be

an invariant of G if J(φg(p)) = J(p), p ∈ M, ∀g ∈ G.

The complete set of invariants of G is obtained using the

method of normalization [12, p.161]: write the group action

φg in coordinates and partition it into components (φa
g , φ

b
g) ∈

R
r × R

m−r. Choose c = (c1, . . . , cr) in the range of φa
g ,

then solve φa
g(x) = c for g = γ(x), the moving frame,

whose existence is guaranteed at least locally by the Implicit

Function Theorem. The complete set of (m−r) invariants of

G is then given by φb
γ(x); any other invariant can be uniquely

expressed as an analytic function of these [12, Thm. 8.17].

For our example, we partition φg as φa
g = ϕa

g =
ϕa

g(p,R, bf , bω) and φb
g = ϕb

g×ψg×ρg and solve φa
g(x) = c

for the moving frame:

ϕa
g







p
R
bf
bω







=







R0(p+ p0)
R0R

bf + bf0

bω + bω0







=







0
I
0
0







=⇒ γ(x) =







−p
RT

−bf
−bω







The complete set of invariants is then

φb
γ(x) =













ϕb
γ(x)(v)

ψγ(x)







f
ω
a
m







ργ(x)

(
yp

ym

)













=













RT v
f − bf
ω − bω
RTa
RTm

RT (yp − p)
ym













:=

(
I(x, u)
Jh(x, y)

)

2) Invariant Frame: A vector field w : X → TX is

defined to be G-invariant if (ϕg)∗w(x) = w(ϕg(x))∀g ∈ G.

For dim(X) = n, an invariant frame is defined as an n-tuple

of G-invariant vector fields (wi) which form a global frame

for TX over X , i.e. for each p ∈ M ,
(
w1(p), . . . , wn(p)

)

forms a basis for the fiber π−1(p) = TpX . It can be

verified [3, Lem. 1] that an invariant frame is given by

wi(x) =
(
ϕγ(x)−1

)

∗
vi =

d

dτ

(

ϕγ(x)−1(viτ)

)∣
∣
∣
∣
τ=0

where (vi) ∈ TeX are a set of basis vectors for TeX . The

latter form is used to evaluate the pushforward.

In our example, X = R
3 × R

3 × SO(3) × R
3 × R

3, and

we use basis vectors of T0R
3 ∋ vi = ei and TISO(3) ∋

vi = S(ei) where (ei) denote the standard basis for R
3. We

have γ(x)−1 = (p,R, bf , bω) and compute

d

dτ
ϕγ(x)−1









eiτ
eiτ

S(ei)τ
eiτ
eiτ









∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
τ=0

=
d

dτ









R(eiτ + p)
Reiτ

RS(ei)τ
eiτ + bf
eiτ + bω









∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
τ=0

=⇒









wp
i (x)

wv
i (x)

wR
i (x)

wbf
i

wbω
i









=









Rei

Rei

RS(ei)
ei

ei









3) Invariant Observer: An invariant observer for the G-

invariant, G-equivariant system ẋ = f(x, u), y = h(x, u) is
˙̂x = F (x̂, u, y) with the following three properties:

• F (x, u, h(x, u)) = f(x, u) (F is a pre-observer)

• x̂−x→ 0 as t→ ∞ for all x̂(0), or for all x̂(0) close to

x(0) (F is globally or locally asymptotic, respectively)

• (ϕg)∗ F (x̂, u, y) = F (ϕg(x̂), ψg(u), ρg(y)) (F is G-

invariant)
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By [3, Thm. 1], F (x̂, u, y) is an invariant pre-observer if and

only if

F (x̂, u, y) = f(x̂, u) +

n∑

i=1

Li (I(x̂, u), E(x̂, u, y))wi(x̂),

(2)

where Li are real-valued functions of the estimated invariants

I(x̂, u) and the invariant output error

E(x̂, u, y) = Jh(x̂, h(x̂, u)) − Jh(x̂, y),

which by construction verifies E(x̂, u, y) = 0 ⇐⇒ y =
h(x̂, u) and E(ϕg(x̂), ψg(u), ρg(y)) = E(x̂, u, y). Obvi-

ously, the convergence properties of the observer depend on

the choice of Li, and a general method to compute these is

not available; however the stability analysis is simplified due

to the key result in Section II-C.4 below.

In our example, the invariant output error E(x̂, u, y) is

computed as

(
R̂T (p̂− p̂)

R̂Tm

)

−

(

R̂T (yp − p̂)
ym

)

=

(
R̂T (p̂− yp)

R̂Tm− ym

)

=

(
Ep

Em

)

and the invariant pre-observer is

˙̂p = v̂ + R̂
(
Lp

pEp + Lp
mEm

)

˙̂v = R̂(f − b̂f ) − a+ R̂
(
Lv

pEp + Lv
mEm

)

˙̂
R = R̂S(ω − b̂ω) + R̂S

[
LR

p Ep + LR
mEm

]

˙̂
bf = Lbf

p Ep + Lbf
mEm

˙̂
bω = Lbω

p Ep + Lbω
mEm

(3)

where each L is a 3 × 3 gain matrix whose entries are

functions of I(x̂, u) and E(x̂, u, y).
4) Invariant Estimation Error: The stability analysis of

the invariant pre-observer is simplified by considering the

invariant estimation error

η(x, x̂) = ϕγ(x)(x̂) − ϕγ(x)(x) (4)

which by construction verifies η(x, x̂) = 0 ⇐⇒ x = x̂
and η (ϕg(x), ϕg(x̂)) = η(x, x̂). The convergence of x̂ to x
is equivalent to the stability of η dynamics, whose analysis

is (potentially greatly) simplified due to the following [3,

Thm. 3]:

Theorem 1: For a G-invariant, G-equivariant system ẋ =
f(x, u), y = h(x, u) with associated invariant observer (2),

the dynamics of the invariant estimation error (4) depend on

the system only through its estimated invariants:

d

dt
η = Υ (η, I(x̂, u)) .

In our example, the invariant estimation error η = ϕγ(x)(x̂)−
ϕγ(x)(x) is computed as









RT (p̂− p)
RT v̂

RT R̂

b̂f − bf
b̂ω − bω









−









RT (p− p)
RT v
RTR
bf − bf
bω − bω









=









RT (p̂− p)
RT (v̂ − v)

RT R̂− I

b̂f − bf
b̂ω − bω









=









ηp

ηv

ηR

ηbf

ηbω









For convenience, we re-define ηR = RT R̂, such that R =
R̂ ⇐⇒ ηR = I (instead of 0). The estimated invariants are

I(x̂, u) =










R̂T v̂

f − b̂f
ω − b̂ω
R̂Ta

R̂Tm










:=









Iv
If
Iω
Ia
Im









The invariant output error E can be written as

Ep = R̂T (p̂− p) = (ηR)T ηp

Em = R̂Tm−RTm = Im − ηRIm

and the η dynamics are directly evaluated to be

η̇p = −S
[
Iω + ηbω

]
ηp + ηv + ηR

(
Lp

pEp + Lp
mEm

)

η̇v = −S
[
Iω + ηbω

]
ηv + ηRIf

+ ηR

(
Lv

pEp + Lv
mEm

)
− If − ηbf

η̇R = −S
[
Iω + ηbω

]
ηR + ηRS(Iω)

+ ηRS
[
LR

p Ep + LR
mEm

]

η̇bf = Lbf
p Ep + Lbf

mEm

η̇bω = Lbω
p Ep + Lbω

mEm

(5)

i.e. η̇ depends on the system only through I(x̂, u) terms, as

guaranteed by Theorem 1.

III. INVARIANT EKF

A direct nonlinear design to stabilize (5) by choice of

gains L is clearly the most elegant solution. The use of

rotation matrices R provides a one-to-one parametrization

of the state manifold, making it possible to perform a global

stability analysis. Of course this is also very difficult and

non-systematic. Instead, we use an EKF-based approach to

gain assignment by re-linearizing the invariant estimation

error dynamics (5) about the current estimated state x̂.

The Kalman filter is an optimal observer for systems with

process and measurement noise, so the computed gains will

provide an invariant observer with increased robustness to

sensor noise. The obvious disadvantage is that by relying on

linearization, we can guarantee only local stability, whose

region of attraction is difficult to quantify, e.g. [13]. Using

an EKF to compute the gains of an invariant observer was

first proposed in [5] for the subclass of invariant systems

where the symmetry group G acts on itself by left or right

multiplication [4]. This method was later applied to different

examples in [14], [15]. We modify the proposed method to

make it applicable to our working example (1).

A. Method Overview

We review the continuous-time Kalman filter, e.g. [16,

Chap. 7]. The filter applies to LTV systems

ẋ = A(t)x +B(t)w

y = C(t)x +D(t)v
(6)
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where w and v are the process and measurement white noise

vectors with covariance matrices Qν , Rν , respectively, and

zero correlation: E〈wvT 〉 = 0. The Kalman filter for (6) is

˙̂x = Ax̂+K(y − Cx̂)

K = PCT (DRνD
T )−1

Ṗ = AP + PAT − PCT (DRνD
T )−1CP +BQνB

T ,
(7)

a linear optimal observer designed to minimize the covari-

ance of the estimation error e = x̂ − x, i.e. min(E〈e eT 〉).
From (7) and (6), the estimation error dynamics are

ė = ˙̂x− ẋ = (A−KC)e−Bw +KDv. (8)

The existing invariant observer ˙̂x = F (x̂, u, y) was designed

for the noise-free version of (1). Bringing back the noise

terms in sensor models ũ = u+w, ỹ = y+ v the dynamics

of (1) are

ẋ = f(x, ũ − w) (9)

and the invariant observer is now

˙̂x = F (x̂, ũ, ỹ), (10)

i.e. it employs noisy input and output measurements. We

recall the invariant estimation error η (4), whose form is

unaffected by the addition of w and v, compute η̇ using (9)

and (10), then linearize the result about η = 0, w = 0, v = 0
which results in form (8). We can then extract the matrices

(A,B,C,D) and use (7) to compute the matrix of observer

gains K .

B. Invariant EKF Design

The system dynamics with noise terms were given in (1)

and the invariant observer in (3). Taking the latter as

F (x̂, ũ, ỹ), such that Ẽp = R̂T (p̂− ỹp), Ẽm = R̂Tm− ỹm,

we compute η̇ to be

η̇p = −S
[
Ĩω + ηbω

]
ηp + ηv

+ ηR

(
Lp

pẼp + Lp
mẼm

)
− S(ηp)νω

η̇v = −S
[
Ĩω + ηbω

]
ηv + ηRĨf

+ ηR

(
Lv

pẼp + Lv
mẼm

)
− Ĩf − ηbf − S(ηv)νω + νf

η̇R = −S
[
Ĩω + ηbω

]
ηR + ηRS(Ĩω)

+ ηRS
[
LR

p Ẽp + LR
mẼm

]
+ S(νω)ηR

η̇bf = Lbf
p Ẽp + Lbf

m Ẽm − νbf

η̇bω = Lbω
p Ẽp + Lbω

m Ẽm − νbω

where Ĩω = ω̃ − b̂ω, Ĩf = f̃ − b̂f ; as expected, the above

reduces to (5) for ν = 0. The Ẽ terms are expressed as

Ẽp = R̂T (p̂− p− νp) = (ηR)T ηp − R̂T νp

Ẽm = R̂Tm−RTm− νm = Im − ηRIm − νm

where Im = R̂Tm as before. We linearize the above about

η̄ = 0 (η̄R = I) and ν̄ = 0 to obtain a system in δη = η− η̄.

We have the output error terms

δẼp = Ẽp − Ẽp = δηp − R̂T νp

δẼm = Ẽm − Ẽm = −(δηR)Im − νm

and the linearized invariant estimation error dynamics

δη̇p = −S(Ĩω)δηp + δηv + Lp
pδẼp + Lp

mδẼm

δη̇v = −S(Ĩω)δηv + δηRĨf + Lv
pδẼp

+ Lv
mδẼm − δηbf + νf

δη̇R = δηRS(Ĩω) − S(Ĩω)δηR − S
[
δηbω

]

+ S
[
LR

p δẼp + LR
mδẼm

]
+ S

[
νω

]

δη̇bf = Lbf
p δẼp + Lbf

m δẼm − νbf

δη̇bω = Lbω
p δẼp + Lbω

m δẼm − νbω

We further simplify the above by re-expressing δηR as

follows: recall the rotational kinematics Ṙ = S(ω)R where

ω physically represents the angular velocity vector in the

ground frame. Defining ω = dγ/dt, the kinematics are

written as dR/dt = S(dγ/dt)R =⇒ dR = S(dγ)R. Around

the linearization point η̄R = I , we can write dR ≈ R̂ − R
and dγ = γ̂−γ, and so R̂−R ≈ S(γ̂−γ)R =⇒ R̂RT −I =
S(γ̂− γ) =⇒ δηR = S(δγ). Substituting this last result into

the δη̇ expressions and re-arranging into form (8) gives

δη̇ =









−S(Ĩω) I 0 0 0

0 −S(Ĩω) −S(Ĩf ) −I 0

0 0 −S(Ĩω) 0 −I
0 0 0 0 0
0 0 0 0 0









︸ ︷︷ ︸

A

δη

−









Lp
p Lp

m

Lv
p Lv

m

LR
p LR

m

Lbf
p Lbf

m

Lbω
p Lbω

m









︸ ︷︷ ︸

K

[
−I 0 0 0 0
0 0 −S(Im) 0 0

]

︸ ︷︷ ︸

C

δη

−









0 0 0 0
−I 0 0 0
0 −I 0 0
0 0 I 0
0 0 0 I









︸ ︷︷ ︸

B







νf

νω

νbf

νbω







︸ ︷︷ ︸

w

+









Lp
p Lp

m

Lv
p Lv

m

LR
p LR

m

Lbf
p Lbf

m

Lbω
p Lbω

m









︸ ︷︷ ︸

K

[

−R̂T 0
0 −I

]

︸ ︷︷ ︸

D

[
νp

νm

]

︸ ︷︷ ︸

v

(11)

where δη = [δηp, δηv, δγ, δηbf , δηbω]T .

C. Implementation Details

The invariant observer (3), along with (7) used with

the matrices (11) to compute the observer gains L, are

numerically implemented using the Modified Euler method.

Since the sensor measurements ũ are available at a higher

rate than the aiding measurements ỹ, 100 Hz and 10 Hz

respectively in our case, we integrate the f(x̂, ũ) part of (3)

at the sensor rate to compute (rough) estimates of x̂, which
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are output to the user and also used to build matrices (11) and

perform a full integration at the aiding rate. This is precisely

the complementary filter approach used in conventional EKF

designs [17]. For comparison purposes, we have designed a

conventional EKF for (1). The conventional and invariant

EKF designs employ the same process noise covariance

Qν = blkdiag(Qνf
, Qνω

, Qνbf
, Qνbω

), measurement noise

covariance Rν = blkdiag(Qνp
, Qνm

) and initial estimation

error covariance P (0), and use the same sensor data set

logged during experiment as their input.

IV. EXPERIMENTAL RESULTS

A. Manual Carry

The first experimental run is performed with the engine

off. The helicopter starts aligned with the edge of a rectan-

gular landing pad. It is then picked up by hand and manually

carried around the perimeter of the rectangle in two complete

circuits, keeping the heading aligned with the direction of

travel. The experiment is useful as a preliminary validation

of the observer under controlled conditions, e.g. the geometry

of the trajectory is known from direct measurements of the

landing pad dimensions, and the the sensor noise covariance

parameters, identified a priori under engine-off conditions

and listed in Table I are directly applicable; note Qνp
is

reported by the GPS receiver.

TABLE I

ENGINE-OFF SENSOR NOISE COVARIANCE MATRICES

diag(Qνf
) diag(Qνω ) diag(Qνbf

) diag(Qνbω
) diag(Qνm)

[m2/s3] [rad2/s] [m2/s4] [rad2/s2] [G2 s]
0.00792 0.00172 0.00422 0.000292 0.000582

0.00742 0.00172 0.00202 0.000382 0.000512

0.00902 0.00212 0.00162 0.000322 0.000512

An overhead view of estimated positions (pN , pE) from

the invariant and conventional EKFs is shown in Fig. 1 along

with the measured landing pad geometry. The two designs

are seen to perform essentially the same, which is confirmed

by plotting the deltas between all 15 state estimates in

Fig. 2. We can say that under low-noise and well-modeled

conditions, the Invariant EKF and conventional EKF designs

perform essentially the same.
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Fig. 1. Manual carry experiment: Overhead view
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Fig. 2. Manual carry experiment: Invariant vs Conventional EKF estimation
differences

B. Hover Flight Test

The more interesting experiment is engine-on flight. The

main uncertainty in this setting is noise modeling. The

running engine is a source of noise for the IMU sensors, due

to increased vibration levels and generated electromagnetic

fields. These noise effects also vary with time as a func-

tion of throttle input and state of the vehicle, for instance

the helicopter passes through a resonant frequency during

spool-up. The method used to identify the engine-off noise

characteristics requires many hours of log data to obtain

reliable results, which is not possible due to the 30 min fuel

limit. In practice, we have had good success with scaling

the engine-off parameters in Table I as 100Qνf
, 10Qνω

and

50Qνm
to match the order of magnitude of in-flight signal

covariance, and as 0.01Qνbf
, 0.01Qνbω

to heuristically

increase the time constant of the bias estimates. We also

add a small perturbation to the initial covariance of the bias

error states, P (δbf )(0) = 1 × 10−4 m/s2 and P (δbω)(0) =
1× 10−5 rad/s, for better numerical performance during the

spool-up resonant frequency effect.

The estimation results for the Invariant EKF design are

shown in Fig. 3, where we plot only position and attitude as

the signals most relevant to motion visualization. The plots

identify the main stages of the experiment: the helicopter’s

main rotor is spooled up, creating a counter-torque on the

body, which is in turn compensated by the on-board heading-

hold gyro, standard equipment on R/C helicopters used

to reduce pilot workload. Following a take-off period, a

hover is established, characterized by a nearly-constant yaw

angle ψ provided by the heading-hold gyro. Remark the

estimated positions and roll, pitch vary in hover. This is

due to the relatively low mass of the helicopter, making

it susceptible to unsteady atmospheric effects and requiring

constant corrections on the cyclic inputs. The helicopter then

lands. The estimates are used to render a 3D animation,

which is synchronized with a video taken during the flight

experiment. The results show qualitatively good agreement.

The state estimate deltas between Invariant EKF and con-
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Fig. 3. Hover flight experiment: Invariant EKF

ventional EKF are plotted in Fig. 4. The position estimation

is quite similar for both designs, which is expected since

position is directly measurable (minus the lever-arm effect),

and the receiver provides high-precision (2 cm circular error

probable) measurements through carrier-phase differential

GPS. The attitude estimation exhibits more differences, par-

ticularly in the yaw axis. The overall performance of both

designs is sensitive to covariance tuning, so further adjust-

ments may reduce the performance gap. Using a conventional

EKF with a Gauss-Markov bias model and a modified

set of covariance tunings produces very good performance,

c.f. [1]. However, for the present system (1) with the given

filter parameters, the Invariant EKF performs better than the

conventional EKF design.
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Fig. 4. Hover flight experiment: Invariant vs Conventional EKF estimation
differences

V. CONCLUSIONS

We have reviewed the method of invariant observer de-

sign [3] and applied it to the problem of magnetometer-

plus-GPS aided inertial navigation. The nonlinear observer

gains were computed systematically using an adaptation of

the Invariant EKF method proposed in [5]. The resulting

design was implemented in experiment and compared to a

conventional EKF, demonstrating that the invariant version

performs as well or better than the conventional design in

real-world testing of a helicopter UAV.
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