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Abstract— This paper extends the so-called Simultaneous
Long-Short (SLS) linear feedback stock trading analysis given
in [2]. Whereas the previous work addresses a class of idealized
markets involving continuously differentiable stock prices, this
work concentrates on markets governed by Geometric Brown-
ian Motion (GBM). For this class of stock price variations, the
main results in this paper address the extent to which a positive
trading gain g(t) > 0 can be guaranteed. We prove that the SLS
feedback controller possesses a remarkable robustness property
that guarantees a positive expected trading gain E[g(t)] > 0 in
all idealized GBM markets with non-zero drift. Additionally,
the main results of this paper include closed form expressions
for both g(t) and its probability density function. Finally, the
use of the SLS controller is illustrated via a detailed numerical
example involving a large number of simulations.

I. INTRODUCTION

This paper is part of a growing body of literature, for

example, see [1]–[16], intended to address the following

question: What might classical control theory have to

offer to the area of stock trading? At the simplest level,

the controller output is the amount invested I(t) in the

trade and basic inputs to the controller might be the stock

price p(t) and trading gain or loss g(t). In contrast to

classical approaches in finance, for example see [17]–[19],

this paper and others in this line of research do not address

controller design using a predictive model for the future

stock price p(t); e.g., see [1], [2] and [9]. Instead, the

controller treats p(t) as an uncontrolled external input and

no stochastic model is used. The feedback controller simply

processes the history of p(t) to determine the appropriate

investment level I(t).

To explore the ultimate potential for control theoretic

methods in stock trading, we use the notion of an idealized

market. The key idea here is to use this market to determine

which control algorithms are worthy of the large investment

associated with a full-scale back-test. That is, the idealized

market serves as the “proving ground” within which

theoretical performance certifications are obtained.

The idealized market, more carefully defined in Section II,

is characterized by some class of prices P plus assumptions

regarding liquidity, continuous trading and price-taking.

For example, in [2], the class P is the set of non-negative

continuously differentiable functions on [0, T ]. Note that
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this class of prices is “idealized” in the sense that the

possibility of price gaps is ruled out. In contrast, this paper

takes P to be the collection of Geometric Brownian Motions

(GBM) with drift µ and volatility σ. Within this context, it

is important to note that a performance certification must

be robust with respect to P . Hence, feedback gains entering

into the controller are not allowed to be selected assuming

a priori knowledge of µ and σ.

Within the framework of an idealized GBM market,

we consider classical linear time-invariant feedback and

explore the ultimate potential of control theory by studying

the profit or loss on a trade, henceforth called the cumulative

trading gain g(t) on [0, t]. Subsequently, the following

fundamental question is addressed: To what extent can a

positive trading gain g(t) > 0 be assured? In the previously

mentioned case, when the idealized market is defined by

continuously differentiable prices, a remarkable result is

obtained: By taking the instantaneous investment I(t) to

be a combination of two linear feedbacks, one representing

a long trade and the other a short trade, for every non-

zero price variation, the result g(t) > 0 is guaranteed.

This is called a trading gain arbitrage and the feedback

combination above is called the Simultaneous Long-Short

(SLS) linear feedback control strategy.

The main objective of this paper is to explore the efficacy

of this same SLS controller in an idealized GBM market. In

this stochastic setting, we can no longer guarantee g(t) > 0.

However, we prove that the SLS controller in a GBM

market possesses an analogous property in which a positive

expected trading gain E[g(t)] > 0 is guaranteed for every

non-zero drift for t > 0. Furthermore, we provide closed

form expressions for both the trading gain and its probability

density function.

II. IDEALIZED GEOMETRIC BROWNIAN MOTION MARKET

As explained in Section 1, we take the point of view that a

feedback control trading strategy must provide theoretical

certifications of performance in an idealized market prior to

a full-scale back-test. Such performance certification results

are viewed as a necessary condition for credibility in real

markets where things are much less predictable.

In the sequel, at time t ≥ 0, we use notation p(t) for

the stock price, I(t) for the amount invested with I(t) < 0
being a short sale and g(t) for the cumulative trading gain
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on [0, t]. Since the purpose of this paper is to concentrate

exclusively on g(t), the analysis to follow does not include

variables such as account value, cash reserves, interest and

broker margin and interest accrual.

Continuous Trading: It is assumed that the trader can react

instantaneously to observed price variations. Motivation

for this assumption is derived in part from the world of

high-frequency trading where the ability exists to literally

execute thousand of trades per second. It is also noted that

this assumption is present in the celebrated Black-Scholes

model; e.g., see [17].

Costless Trading: It is assumed that trading occurs

with no brokerage commissions, fees or margin costs. In

practice, this corresponds to the situation faced by a large

trader or investment house.

Perfect Liquidity: It is assumed that the trader faces

no gap between a stock’s bid and ask prices, and, consistent

with the continuous trading assumption, orders are filled

instantaneously at the market price p(t).

Trader as a Price-Taker: It is assumed that the trader

is not trading sufficiently large blocks of stock so as to have

an influence on the price. Note that this assumption would

be faulty in the case of a large hedge or mutual fund.

Adequate Resources: It is assumed the the trader has

adequate resources so that no transactions are stopped due

to a failure to meet collateral requirements. For example,

this can be satisfied if the account has a suitably large cash

balance or if other securities in the account, not bought on

margin, provide adequate collateral.

Stock Price Governed by Geometric Brownian Motion:

In this type of idealized market, we assume that prices are

governed by the stochastic equation

dp

p
= µdt+ σdZ

where dp
p is the return of the stock over the next instanta-

neous time increment dt and Z(t) is a standard Brownian

motion. Note that dZ can be viewed as a normal random

variable distributed as N (0, dt). The parameter µ, often

called the drift, captures the annualized expected return, and

the parameter σ, often called the volatility, represents the

annualized standard deviation associated with the underlying

process. This is perhaps the most popular financial model for

stock price movements and includes the celebrated Black-

Scholes framework [17].

A. Trading Gain Dynamics

Recalling that the instantaneous investment is denoted

by I(t), the trading gain is readily calculated over the next

incremental interval dt by multiplying the investment by the

return of the stock. That is, dg = dp
p I . When I is a feedback

of the form I = f(g), the increment above becomes

dg =
dp

p
f(g) = (µdt+ σdZ)f(g)

which is the stochastic equation governing g(t). In the

section to follow, the Simultaneous Long-Short trading strat-

egy we use is seen to be a combination of two classical

linear time-invariant feedbacks. In terms of the notation

above, these two feedbacks are of the form f(g) = I0 +
Kg where I0 = I(0) denotes the initial investment. More-

over, as shown in the next section, the resulting stochastic

equation

dg =
dp

p
(I0 +Kg)

is seen to admit a closed form solution.

III. SLS IN AN IDEALIZED GBM MARKET

In this section, our goal is to analyze the performance of the

Simultaneous Long-Short feedback controller in an idealized

Geometric Brownian Motion market.

A. Simultaneous Long-Short Strategy

We first construct a controller which is a superposition of two

linear feedbacks as described above, one being a long trade

with I(t) > 0 and the other being a short trade with I(t) < 0.

These trades can be viewed as running simultaneously in

parallel. Letting gL(t) and gS(t) denote the trading gain from

the long and short trades respectively, and taking I0 > 0 and

K > 0, the corresponding investments are

IL(t)
.
= I0 +KgL(t) and IS(t)

.
= −I0 −KgS(t)

leading to overall investment

I(t) = IL(t) + IS(t) = K(gL(t)− gS(t)).

The feedback control loop associated with this control law

is seen in Figure 1.
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-K

K

Fig. 1. Feedback Control Loop for SLS Trading

Now, the first main result, a closed form for the trading

gain, has two salient features. First, under the SLS feedback

controller, g(t) is independent of the drift µ and the price

path p(·) over [0, t]; only the final value p(t) and volatility

σ come into play.

Theorem 3.1: For t ≥ 0 the SLS feedback controller leads

to the trading gain

g(t) = I0
K

[

(

p(t)
p(0)

)K

e
1
2σ

2(K−K2)t

+
(

p(t)
p(0)

)−K

e−
1
2σ

2(K+K2)t − 2

]

.
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Proof: We first solve for the trading gain gL(t) associated

with the long strategy. Under GBM, the stochastic equation

for the gain is given by

dgL = (I0 +KgL)(µdt+ σdZ).

Making the substitution f = I0+KgL, leads to the equation

df = K(µdt+ σdZ)f,

which itself is of the form of GBM. The solution is given in

closed form as

f(t) = f(0)e(µK− 1
2σ

2K2)t+σKZ(t).

By substituting back into f = I0 + KgL, solving for gL,

and recognizing that
p(t)
p(0) = e(µ−

1
2σ

2)t+σZ(t), recalling that

g(0) = 0, we obtain

gL(t) =
I0
K

(

(

p(t)

p(0)

)K

e(
1
2σ

2(K−K2))t − 1

)

.

The gain on the short trade is similarly obtained by replacing

I0 and K with −I0 and −K; i.e.,

gS(t) =
I0
K

(

(

p(t)

p(0)

)−K

e−
1
2σ

2(K+K2)t − 1

)

.

Thus, the gain on the SLS feedback controller is given by

the sum of gL and gS . Namely,

g(t) = I0
K

[

(

p(t)
p(0)

)K

e
1
2σ

2(K−K2)t

+
(

p(t)
p(0)

)−K

e−
1
2σ

2(K+K2)t − 2

]

. �

Figure 2 provides a plot of the gain for various values of the

volatility σ. Note that in contrast with the continuously dif-

ferentiable idealized market in [2], no trading gain arbitrage

is possible in the idealized GBM market. In fact, Figure 2

indicates that if the stock price p(t) is within an interval

about the initial price p(0), the feedback controller will

incur a loss. In fact, beginning with the formula above, the

following sections derive the statistics of the gain, quantify

its win/loss boundary, and provide an explicit expression for

its probability density function.

B. Statistics of the Trading Gain

Since positivity of the trading gain is not guaranteed in

this idealized market, it is natural to ask: When will the

expected value of the trading gain be positive? Remarkably,

the following theorem, the main result of this paper, indicates

that the answer to these questions is “always.” In the results

to follow, we make use of the constants

a = e
1
2σ

2(K−K2)t; c = e−
1
2σ

2(K+K2)t.

Theorem 3.2: The expectation and variance of the trading

gain resulting from the SLS feedback control are

E[g(t)] =
I0
K

[

eµKt + e−µKt − 2
]
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Fig. 2. Trading Gain for Various Values of σ. (K = 8, t = 0.5, I0 = 1.)

and

V ar[g(t)]=
I20
K2

(

eσ
2K2t− 1

)(

e2µKt+ e−2µKt+ e−σ2K2t
)

.

Moreover, for all non-zero drifts µ and t > 0,

E[g(t)] > 0.

Proof: Recall the fact that the K-th moment of a log normal

random variable X with logX ∼ N (µY , σ
2
Y ) is

E[XK ] = eKµY + 1
2K

2σ2
Y .

Now taking X = p(t)
p(0) ; µY = (µ − 1

2σ
2)t; σY = σ2t, the

expected value of the trading gain is given by

E[g(t)] =
I0
K

(

aE(XK) + cE(X−K)− 2
)

=
I0
K

(

aeKµY + 1
2K

2σ2
Y + ce−KµY + 1

2K
2σ2

Y

)

which, upon substitution for µY , σY , a and c, leads to the

formula for E[g(t)]. Now, to complete the proof for expec-

tation, we simply note that E[g(t)] > 0 follows immediately

from the fact that the function ex + e−x − 2 is positive

for x 6= 0. For the case of the variance, using V ar[g(t)] =
E[g2(t)] − E

2[g(t)], we again obtain a linear combination

of the moments of X , and, a straightforward substitution

for µY , σY , a and c leads to the result. �

Note the remarkable property of the SLS feedback controller.

The expected value of the resulting trading gain is positive.

That is, for µ 6= 0, one expects a positive trading gain

by following the SLS feedback controller, regardless of the

realized drift and volatility in the idealized GBM market.

C. Quantifying the Win/Loss Boundary

Suppose we wish to estimate the ranges of price at

time t for which the trade is winning or losing. Noting

that g(t) < 0 when p(t) = p(0) and t > 0, it is

straightforward to show that there is an open interval of

prices (p−(σ,K, t), p+(σ,K, t)), about p(0), in which

the SLS feedback controller results in a losing trade. The

following lemma quantifies this interval exactly and provides
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an explicit formula for the probability of a losing trade.

Lemma 3.1: The SLS feedback controller results in a

losing trade g(t) < 0 if and only if

p(t) ∈ (p−(σ,K, t), p+(σ,K, t))

where

p±(σ,K, t)
.
=
[

e−
1
2σ

2(K−K2)t
(

1−
√

1± e−σ2K2t
)]1/K

p(0).

Additionally, the probability of a loss is

P (g(t) < 0) = Φ

(

y+ − µY

σY

)

− Φ

(

y− − µY

σY

)

where

y± = log

[

1

a

(

1±
√
1− ac

)

]1/K

,

and Φ(·) is the cumulative distribution function of the

standard normal.

Proof: Substituting X =
(

p(t)
p(0)

)K

into the gain equation

and setting it equal to zero gives aX2 − 2X + c = 0. Then,
solving using this quadratic equation and substituting back
in for a, c and X leads to lower and upper loss boundary
limits

p±(σ,K, t) =
[

e
−

1
2
σ2(K−K2)t

(

1−
√

1± e−σ2K2t
)]1/K

p(0).

Using the simplifying notation a and c introduced above,
the probability of a loss becomes

P (g(t) < 0) = P

(

[ 1

a

(

1 −
√

1 − ac
)

]1/K
<

p(t)

p(0)
<

[ 1

a

(

1 +
√

1 − ac
)

]1/K
)

.

Recalling that p(t)/p(0) is generated via Geometric Brown-

ian Motion, this random variable is log normally distributed.

That is, the random variable Y = log p(t)
p(0) is normally

distributed with mean µ
Y

= (µ − 1
2σ

2)t and standard

deviation given by σ
Y
= σ

√
t. Now introducing the classical

normalization, it follows that the random variable Z
.
=

Y−µ
Y

σ
Y

is standard normal; i.e., N (0, 1). Thus, defining

y±
.
= log

[

1

a

(

1±
√
1− ac

)

]1/K

the probability of loss can be written as

P (g(t) < 0) = Φ

(

y+ − µY

σY

)

− Φ

(

y− − µY

σY

)

. �

Figure 3 shows the probability of loss as a function of the

volatility σ and the gain K.
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Fig. 3. Probability of Loss for µ = 0.15, t = 0.5, I0 = 1.

D. PDF for the SLS trading gain

The main result in this section is a closed form expression
for the probability density function for the trading gain g(t).
The following notation facilitates presentation of results in
the theorem to follow.

X±(x, t)
.
=

1

2
e
1
2
σ2(K−K2)t





(

K

I0

x + 2

)

±

√

√

√

√

(

K

I0

x + 2

)2

− 4e−σ2K2t



 ;

ν
.
= µ− σ2

2
; Z+(x, t)

.
=





logX
1
K
+ (x, t)− νt

σ
√
t





2

;

Z−(x, t)
.
=





logX
1
K
− (x, t)− νt

σ
√
t





2

;

A(x, t)
.
=

1

σI0
√
2πt

√

(

K
I0
x+ 2

)2

− 4e−σ2K2t

.

Theorem 3.3: For t > 0, the probability density func-

tion f(x, t) for the trading gain g(t) is as follows: For

x ≤ 2I0
K

[

e−
1
2σ

2K2t − 1
]

.
= g∗(t),

f(x, t) ≡ 0, and, for x > g∗(t),

f(x, t) = A(x, t)
(

e−
1
2Z

2
+(x,t) + e−

1
2Z

2
−(x,t)

)

.

Proof: Beginning with the formula

g(t) = I0
K

[

(

p(t)
p(0)

)K

e
1
2σ

2(K−K2)t

+
(

p(t)
p(0)

)−K

e−
1
2σ

2(K+K2)t − 2

]

for the trading gain, to simplify calculations, we introduce

the temporary shorthand notation X
.
=
(

p(t)
p(0)

)K

. Noting

that the pdf f(x, t) is zero when x is below the minimum

of g(t), we break the proof into two cases:

The Zero pdf Case: To minimize g(t) with respect

to X , we set the derivative of the convex function

G(X)
.
= aX + cX−1 − 2

2892



to zero and obtain minimizer X∗ =
√

c
a = e−

1
2σ

2Kt and

associated price ratio
p∗(t)
p(0) = e−

1
2σ

2t. Hence, the trading

gain corresponds to a loss given by g∗(t). Now it follows

that for x ≤ g∗(t), the cdf is given by

F (x, t)
.
= P (g(t) ≤ x) = 0

and the corresponding pdf is f(x, t) = ∂F (x,t)
∂x = 0.

The Positive pdf Case: We first calculate the cdf

F (x, t) = P (g(t) ≤ x) = P

(

I0
K

(aX + cX−1 − 2) ≤ x

)

.

Letting b
.
= K

I0
x+ 2, the cdf above reduces to

F (x, t) = P (aX2 − bx+ c ≤ 0)

= P (X−(x, t) ≤ X ≤ X+(x, t))

where X±
.
= b

2a±
√
b2−4ac
2a . Now expressing the cdf in terms

of the underlying prices and noting that the random variable

Y
.
= log

p(t)

p(0)
= logX

1
K

is N (νt, σ2t), using the classical normalization, it follows

that Z
.
= logX

1
K −νt

σ
√
t

is N (0, 1) and

F (x, t) = P (Z− ≤ Z ≤ Z+) =
1√
2π

∫ Z+

Z−

e−
ζ2

2 dζ.

Now, to obtain the pdf, we use Leibnitz rule to differentiate

the integral above. That is, f(x, t) = f+(x, t) − f−(x, t)
where

f±(x, t)
.
=

1√
2π

e−
1
2Z

2
±
∂Z+

∂x
.

Now calculating the partial derivative

∂Z+

∂x
=

∂

∂x

(

logX
1
K
+ − νt

σ
√
t

)

=
1

KX+σ
√
t

∂X+

∂x

and substituting into f+ (and similarly for f−), we obtain

f±(x, t) =
1

KX±σ
√
2πt

e−
1
2Z

2
±
∂X±
∂x

.

To complete the calculation of f , we note that it is straight-

forward to verify that

1

X+

∂X+

∂x
=

K

I0
√
b2 − 4ac

=
K

I0

√

(

K
I0
x+ 2

)2

− 4e−σ2K2t

= − 1

X−

∂X−
∂x

.

Now substituting into f+, f− and f and recalling the

definition of A(x, t), obtain the formula for f(x, t). �

Figure 4 includes illustrative plots of the probability

density function f(x, t) for the trading gain g(t) which

were obtained via the theorem with K = 4, t = 0.5 and

σ = 0.2. One salient feature of these plots, consistent with

common sense, is that the larger the realized value of the

ratio γ
.
= |µ|

σ , the more attractive the trade becomes. For

example, in the figure, for those plots when γ > 2, it is

obvious by inspection that the probability of a significant

rate of return is quite high; e.g., when |µ| = 1, by performing

a straightforward integration, and recalling that I0 = 1, we

conclude that the probability that the raw rate of return is

100% is about 0.55. For this same scenario, the probability

of a 25% return is about 0.94.

On the other hand, when the realized value of the γ
ratio is small, the likelihood of a loss can be quite high. For

example, for the “driftless” case corresponding to γ = 0,

a straightforward integration of the density function

results in a probability p ≈ 0.62 that g∗(0.5) < 0 and a

probability p ≈ 0.2 that a raw return of 10% or more will

result. Finally, to provide a balanced picture of this low γ
trade, it is important to recall one important aspect of the

theorem: That is, for the simultaneous long-short feedback

controller, the loss is no more than g∗(t) with probability

one. For this γ = 0 scenario under consideration, using the

formula in the theorem, we obtain g∗(0.5) ≈ −0.07. That

is, a loss of about 7% is the maximum that can occur.
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Fig. 4. Probability Density Function for g(t) for Various Values of µ with
σ = 0.2, K = 4, t = 0.5 and I0 = 1.

IV. NUMERICAL EXAMPLE

We performed a massive numerical test of the SLS feedback

controller using 2, 400, 000 GBM price paths. Each path

was obtained by making a selection of µ and σ and then

obtaining 252 discrete-time prices corresponding to daily

closing for one year. Subsequently, we used an initial

investment of I0 = 1 and a feedback gain of K = 4. To

illustrate the robustness of the SLS feedback controller,

for each value of µ satisfying −0.3 ≤ µ ≤ 0.3, we

generated N = 40, 000 GBM price paths obtained by

randomly selecting σ using a uniform distribution over the

interval [0, 2µ].

Evaluation of Performance: Corresponding to each

value of µ above, a “raw return” was calculated as follows:
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Letting Gi(µ) and Ii(µ) denote the trading gain and mean

absolute investment respectively, via simulation, we obtained

a raw annualized return Ri(µ)
.
= Gi(µ)

Ii(µ)
. Then, to obtain the

overall return corresponding to drift µ, the raw return Ri(µ)
for the i-th path was assigned weight wi in accordance

with the amount invested; i.e.,wi
.
= Ii(µ)

∑N
i=1 Ii(µ)

. Hence, for

drift µ, the overall return is calculated to be

R(µ)
.
=

N
∑

i=1

wiRi(µ) =

∑N
i=1 Gi(µ)

∑N
i=1 Ii(µ)

.

In Figure 5, a plot of R(µ) versus µ is given. Consistent

−0.2 −0.1 0 0.1 0.2 0.3
0

0.05

0.1

0.15

0.2

0.25

Raw Annualized Return R(µ)  Versus µ 

Price Drift µ

Fig. 5. Plot of the Raw Annualized Return for the SLS Feedback Control.

with the results of Theorem 3.2, in every case, the expected

trading gain of the SLS feedback controller is positive. In

generating the R(µ) plot, we also kept track of the conver-

gence of partial sums over the course of the simulation. Our

simulations indicate that the distribution of trading gains is

heavily positively skewed. For example, it is apparent that a

small number of the GBM paths result in very high trading

gains Gk(µ). There are also a large number of paths resulting

in a loss. However, in view of Theorem 3.3, these losses are

very small compared to the large profits which result from the

exceptional trades; see the conclusion for further discussion.

V. CONCLUSIONS AND FURTHER RESEARCH

In this paper, we provided a detailed analysis of the

performance of the Simultaneous Long-Short (SLS)

feedback controller in an idealized Geometric Brownian

Motion (GBM) market. In addition to deriving closed

form expressions for the trading gain and its density

function, we also proved that the SLS controller possesses

the remarkable property of a positive expected trading

gain E[g(t)] > 0 for all non-zero drifts µ and all t > 0.

The simulations in Section IV indicate that profits often

resulted from “exceptional trades.” The attainment of such

profits typically involved a large investment I(t) which was

permitted by the adequate resource assumption. In view of

these considerations, it would be of interest to conduct future

research which includes an upper bound |I(t)| ≤ Imax on

the investment. Another natural continuation of this work

involves the development of an “adaptive SLS” feedback

controller which essentially adjusts the gain K entering into

the investment I(t) based on considerations such as the

“realized” drift and volatility or other factors such as the

need to regulate the amount at risk.

REFERENCES

[1] B. R. Barmish, “On Trading of Equities: A Robust Control Paradigm,”
in Proceedings of 17th World Congress of The International Federation

of Automatic Control, Seoul, Korea, pp. 1621–1626, July 2008.
[2] B. R. Barmish, “On Performance Limits of Feedback Control-Based

Stock Trading Strategies,” in Proceedings of the 2011 American

Control Conference, (San Francisco, CA), July 2011.
[3] A. Bemporad, T. Gabbriellini, L. Puglia, and L. Bellucci, “Scenario-

Based Stochastic Model Predictive Control for Dynamic Option
Hedging,” in Proceedings of 49th IEEE Conference on Decision and

Control, (Atlanta, GA), pp. 3216–3221, December 2010.
[4] G. C. Calafiore, “Multi-Period Portfolio Optimization with Linear

Control Policies,” Automatica, vol. 44, no. 10, pp. 2463–2473, 2008.
[5] G. C. Calafiore, “An Affine Control Method for Optimal Dynamic

Asset Allocation with Transaction Costs,” SIAM Journal of Control

and Optimization, vol. 48, no. 4, pp. 2254–2274, 2009.
[6] V. V. Dombrovskii, D. V. Dombrovskii, and E. A. Lyashenko, “Predic-

tive Control of Random-Parameter Systems with Multiplicative Noise:
Application to Investment Portfolio Optimization,” Automation and

Remote Control, vol. 66, no. 4, pp. 583–595, 2005.
[7] F. Herzog, Strategic Portfolio Management for Long-Term Investments:

An Optimal Control Approach. PhD thesis, ETH Zurich, Zurich,
Switzerland, 2005.

[8] F. Herzog, S. Keel, G. Dondi, L. M. Schumann, and H. P. Geering,
“Model Predictive Control for Portfolio Selection,” in Proceedings

of the 2006 American Control Conference, (Minneapolis, Minnesota),
pp. 1252–1259, June 2006.

[9] S. Iwarere and B. R. Barmish, “A Confidence Interval Triggering
Method for Stock Trading via Feedback Control,” in Proceedings of

the 2010 American Control Conference, (Baltimore, MD), pp. 6910–
6916, July 2010.

[10] P. Meindl, Portfolio Optimization and Dynamic Hedging with Re-

ceding Horizon Control, Stochastic Programming, and Monte Carlo

Simulation. PhD thesis, Stanford University, 2006.
[11] P. Meindl and J. A. Primbs, “Dynamic Hedging with Stochastic

Volatility Using Receding Horizon Control,” in Proceedings of Fi-

nancial Engineering Applications, (Cambridge, MA), pp. 142–147,
November 2004.

[12] P. Meindl and J. A. Primbs, “Dynamic Hedging of Single and Multi-
Dimensional Options with Transaction Costs: A Generalized Utility
Maximization Approach,” Quantitative Finance, vol. 8, pp. 299–312,
April 2008.

[13] S. Mudchanatongsuk, J. A. Primbs, and W. Wong, “Optimal Pairs
Trading: A Stochastic Control Approach,” in Proceedings of the

American Control Conference, (Seattle, WA), pp. 1035–1039, June
2008.

[14] J. A. Primbs and C. H. Sung, “A Stochastic Receding Horizon Control
Approach to Constrained Index Tracking,” Asia Pacific Financial

Markets, vol. 15, pp. 3–24, March 2008.
[15] J. A. Primbs, “LQR and Receding Horizon Approaches to Multi-

Dimensional Option Hedging under Transaction Costs,” in Proceed-

ings of the 2010 American Control Conference, (Baltimore, MD),
pp. 6891–6896, July 2010.

[16] J. A. Primbs, “Dynamic Hedging of Basket Options under Proportional
Transaction Costs using Receding Horizon Control,” International

Journal of Control, vol. 82, pp. 1841–1855, October 2009.
[17] F. Black and M. Scholes, “The Pricing of Options and Corporate

Liabilities,” Journal of Political Economy, vol. 81, pp. 637–659, 1973.
[18] R. C. Merton, “Optimum Consumption and Portfolio Rules in

a Continuous-Time Model,” Journal of Economic Theory, vol. 3,
pp. 373–413, December 1971.

[19] P. A. Samuelson, “Lifetime Portfolio Selection by Dynamic Stochastic
Programming,” Review of Economics and Statistics, vol. 51, pp. 68–
126, 1969.

2894


