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Abstract—In this paper, we propose a qualitative
model of the MAPK signaling cascade and analyze its
multi-stability properties. Building on our previous
work, we employ Lyapunov and invariant sets theory
to analyze the system. In particular we focus on the
first stage of a class of MAPK cascades, known as
the Mos subsystem, which is the target of a positive
feedback loop. Under general assumptions, we show
that the system is bistable when three equilibria are
present, regardless of the specific feedback dynamics.

I. Introduction

All living organisms rely on complex molecular cir-
cuitry to sense and react to their environment. To guar-
antee survival, these molecular networks should respond
consistently to external stimuli, despite the variability
of their components in every individual. A large body of
research has highlighted that robustness to uncertainty is
often a structural property of specific biological systems.
However, there are few systematic methods to mathemat-
ically model and describe structural robustness. With a
few exceptions, numerical studies are often the preferred
approach to this type of investigation.
Analytical approaches to the study of robustness have

been proposed in specific contexts. A series of recent
papers [1], [2] focused on input/output robustness of
ODE models for phosphorylation cascades. In particular,
the theory of chemical reaction networks is used in [2]
as a powerful tool to demonstrate the property of abso-
lute concentration robustness. Indeed, the so–called defi-
ciency theorems [3] are to date some of the most general
results to establish robust stability of a chemical reaction
network. Monotonicity is also a structural property that
is useful to demonstrate robust dynamic behaviors of a
class of biological models [4], [5]. Robustness has also
been investigated in the context of compartmental mod-
els, which are often encountered in biology and chemistry
[6].
In this paper, we focus on the robust stability of equi-

libria for a class of ordinary differential equation models
describing the mitogen-activated protein kinase (MAPK)
pathway. We follow a qualitative modeling framework
that captures trends, positivity and boundedness of the
interactions among the pathway components [7]. Exact,
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parametric mathematical expressions are not employed.
To analyze the properties of these qualitative models, we
use Lyapunov and invariant-sets methodologies.
Several experimental studies have highlighted the pres-

ence of feedback loops in the MAPK pathway, which
result in different dynamic behaviors. We consider a
specific positive-feedback topology that is described in
detail in Section III. Such positive feedback has been
extensively studied in the literature, since the biochemi-
cal analysis of Huang and Ferrell [8], [9] on the MAPK
cascade in Xenopus oocytes. Depending on the dynamic
properties assumed for the positive feedback loop, we
prove that the system structurally exhibits a different
number of equilibria and stability properties. However,
we demonstrate that when the system presents three
equilibria, bi-stability is guaranteed.
The MAPK cascade model properties that can be

derived from our analysis are structurally robust be-
cause they are not inferred from specific mathematical
expressions chosen to fit data. A limit of our theoretical
investigation is that its systematic application to more
detailed and higher order models is challenging. However,
the set of techniques we employ can be successfully used
to study a large class of simple systems, and are in
general suitable for the analysis of structural robustness
of biological networks, complementary to simulations and
experiments.
The paper is organized as follows. In Section II we
summarize our general approach [7] and provide useful
definitions and background. In Section III, we propose
a model for the considered MAPK pathway and state
our main results. Finally, the proofs of our results are
outlined in Section IV.

II. A general setup to investigate structural

robustness

Consider a class of biological dynamical systems which
are successfully modeled with ODEs and can be written
as:

ẋ = f(x, u), x(0) = x0, (1)

where x is the system state, u models external inputs,
and both are vectors of appropriate dimensions.
Robustness in our framework may be formally defined

as follows.
Definition 1: Let C be a class of systems and P be a

property pertaining such a class. Given a family F ⊂ C
we say that P is robustly verified by F , in short robust,
if it is satisfied by each element of F .
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Countless examples can be brought about families F and
candidate properties. In this work, we will focus on the
property of stability, which is an important feature for
the equilibria of biological networks [10], [5], [11].
We will consider a class of biological network models
consisting of n first order differential equations

ẋi(t) =
∑

j∈Ai

aij(xi, xj)xj −
∑

h∈Bi

bih(xi, xh)xh+

+
∑

s∈Ci

cis(xs) +
∑

l∈Di

dil(xl), i = 1, 2, . . . , n.
(2)

where xi, i = 1, ..., n are the dynamic variables. For the
sake of notation simplicity, we are not denoting external
inputs with a different symbol. Inputs can be easily
included as dynamic variables ẋu = wu(xu, t) which
are not affected by other states and have the desired
dynamics. The sets Ai, Bi, Ci, Di denote the subsets of
variables affecting xi.

The states of equation (2) are associated to concentra-
tions of biochemical species. The different mathematical
terms are in turn associated with specific biological
processes. The terms aij(xi, xj)xj are associated with
production of species; these functions are possibly un-

bouded terms. Similarly, terms bih(xi, xh)xh represent
degradation or conversion of species, and are possibly
unbounded terms. Finally, c(·) and d(·) are associated
with catalytic or cooperative production or degradation
and are monotonic, nonlinear, necessarily bounded terms.
(In the literature, these processes are typically modeled
with Michaelis-Menten or Hill functions [12].)
We assume that system (2) satisfies the following assump-
tions:
Assumption 1: (Smoothness) The involved functions

aij and bih cis and dil are unknown, nonnegative and
continuously differentiable.
Assumption 2: Functions fih(xi, xh) := aih(xi, xh)xh

and gih(xi, xh) := bih(xi, xh)xh, are strictly increasing in
xj and xh respectively:

∂fij(xi, xj)

∂xj

> 0,
∂gih(xi, xh)

∂xh

> 0, ∀x.

Assumption 3: (Saturation) Functions cis(xs) and
dil(xl) are nonnegative and, respectively, non–decreasing
and non–increasing. Moreover cis(∞) > 0 and dil(0) > 0.
Assumption 4: Functions bih(xi, xh) are null at the

lower saturation levels: if xi 6= xh then bih(0, xh) =
0, ∀xh.
Remark 1: Note that the “particular form” chosen for

the terms aij(0, xj)xj and bih(0, xh)xh is the natural
generalization of the linear case aijxj and bihxh often
adopted in approximated models. Note that any smooth
function (then with bounded derivative) of the form
fij(xi, xj) such that fij(xi, 0) = 0 (or gih(xi, 0) = 0),
∀xi, and strictly increasing in the second argument can
be written as fij(xi, xj) = a(xi, xj)xj ( or gih(xi, xh) =
b(xi, xh)xh).
The general model (2) is a nonlinear positive system, and
its investigation will be restricted to the positive orthant.

For brevity, we have considered functions depending on
two variables. Clearly, model (2) can be easily generalized
to include terms as a(xi, xj , xk, . . . ), b(xi, xj , xk, . . . ),
c(xi, xj , xk, . . . ), d(xi, xj , xk, . . . ). with suitably extended
assumptions A1-A4 to multivariate functional terms.
The construction of a dynamic model from trend,

sign and boundedness features of the interactions among
the system variables can be aided by constructing a
graph [7]. The nodes of the graph are the system’s species,
and the qualitative relationships between the species are
associated with four types of arcs as shown in Fig. 1.
For simple networks, this type of graph may provide
intuition regarding their behavior and may facilitate their
structural robustness analysis. (A systematic theoretical
analysis of these graphs is a topic of current and future
work and is not addressed in this paper.)

a
❙ ❙

b c d

Fig. 1. The a, b, c and d types of arcs.

A. Non–smooth Lyapunov functions

Non–smooth Lyapunov functions are particularly use-
ful to analyze the class of models (2), [7]. For the reader’s
convenience, here we briefly recall their main features.
Consider the convex function:

V (x− x̄) = max
i
Vi(x− x̄), i = 1, ..., N,

where each Vi(·) is smooth and convex, and we assume
that V (·) is positive definite. The set of active functions
is never empty and is defined as: A = {i : Vi(x−x̄) = V }.
If we define the generalized Lyapunov derivative as:

D+V (x− x̄) , max
i∈A

∇Vi(x − x̄)f(x),

then the condition for stability becomes:

D+V (x− x̄) < κ(x− x̄), κ(·) negative definite.

We refer the reader to [13] for further details; more recent
works on this topic are [14] and [15].

B. Metzler matrices

As previously mentioned, the general model in equa-
tion (2) is a positive nonlinear system. It is useful to
recall that positive affine systems are a special case of
monotone systems. Positive affine systems are in general
defined by a model ẋ(t) = Ax(t) + b, where b is a
nonnegative vector and A is is a Metzler matrix (M–
matrix), namely, aij ≥ 0 if i 6= j. Metzler matrices are a
recurring element in the analysis of the models considered
in this paper. These matrices exhibit a real dominant
eigenvalue, and the following property holds.
Proposition 1: The following statements are equiva-

lent for an M–matrix: (1) A is stable (i.e. have negative
real part eigenvalues); (2) A has no nonnegative real
eigenvalues; (3) The characteristic polynomial p(s) =
det(sI −A) has positive coefficients.
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III. The MAPK signaling pathway

Mitogen-activated protein (MAP) kinases are proteins
that respond to the binding of growth factors to cell
surface receptors. The pathway consists of three enzymes,
MAP kinase, MAP kinase kinase (MAP2K) and MAP
kinase kinase kinase (MAP3K) that are activated in
series. By activation or phosphorylation, we mean the
addition of a phosphate group to the target protein.
Extracellular signals can activate MAP3K, which in turn
phosphorylates MAP2K at two different sites; in the last
round, MAP2K phosphorylates MAPK at two different
sites. The MAP kinase signaling cascade can transduce a
variety of growth factor signals, and has been evolution-
ary conserved from yeast to mammals.

Several experimental studies have highlighted the pres-
ence of feedback loops in this pathway, which result
in different dynamic properties. Here we consider the
well-known positive-feedback topology found in Xenopus

oocytes [8], [9]. In this type of cells, Mos (MAP3K)
can activate MEK (MAP2K) through phosphorylation
of two residues (converting unphosphorylated MEK to
monophosphorylated MEK-P and then bisphosphory-
lated MEK-PP). Active MEK then phosphorylates p42
(MAPK) at two residues. Active p42 can then promote
Mos synthesis, completing the closed positive-feedback
loop. From now on we will denote each species in the
network as reported in Table I.
Let us now derive a qualitative dynamical model of the

MAPK pathway, using the graph in Fig. 2 as a support.
We assume that MAP1K, associated to the node labeled
as node 1, is produced and degraded at some rate. Based
on the four interaction categories previously introduced,
we can associate the production of MAP1K to a positive
and bounded activation function of type c10; degradation
can be plausibly associated to a function b11(x1)x1. We
assume that each MAP(i)K, for i = 2, 3, mediates the
phosphorylation of MAP(i − 1)K through a Hill-type
activation process, transforming it into a MAP(i − 1)K-
P, phosphorylated at a single site; additionally, MAP(i)K
mediates the addition of a second phosphate group, trans-
forming MAP(i−1)K-P into MAP(i−1)K-PP. Consider
the nodes of the graph at Fig. 2 associated to x1, x2
and x3: it is natural to connect nodes x1 and x3 with a
function of type a13(x2)x3. Similarly for x1 and x4, and
for activation of x6, x7 by x4. Due to mass conservation,
if MAP(i)K causes the increase of MAP(i − 1)K-P and
MAP(i− 1)K-PP, then MAP(i)K also causes a decrease
of MAP(i − 1)K and MAP(i − 1)K-P: this effect is
taken into account by the arcs b21, b31, b54 and b64
in Fig. 2. Furthermore, one can assume a spontaneous
loss of phosphate groups: MAP(i)K-P and MAP(i)K-PP
decay into MAP(i)K and MAP(i)K-P respectively (mass
conservation still holds). This bounded decay effect is
taken into account, together with other kinase degrada-
tion processes, by arcs b33, b44, b66 and b77; the simple
loss of a phosphate group causes a bounded increase of
the concentration of MAP(i)K and MAP(i)K-P, taken
into account through the arcs c23, c34, c56 and c67. Here,
we neglect the input-mediated phosphorylation dynamics
of the MAP3K protein [5]. Finally, we model the positive
feedback between fully active p42 and Mos as the arc
µa17(x1), where µ is introduced for convenience as a

feedback scaling term. Using the graph in Fig. 2 as a
support, a dynamic model can be written as follows:

ẋ1 = a17(x1) µx7 + c10 − b11(x1)x1

ẋ2 = c23(x3)− b21(x2)x1

ẋ3 = a31(x2)x1 + c34(x4)− b31(x3)x1 − b33(x3)x3

ẋ4 = a41(x3)x1 − b44(x4)x4 (3)

ẋ5 = c56(x6)− b54(x5)x4

ẋ6 = a64(x5)x4 + c67(x7)− b64(x6)x4 − b66(x6)x6

ẋ7 = a74(x6)x4 − b77(x7)x7.

The presence of the positive feedback in the MAPK

TABLE I

Definition of the state variables for the MAPK network

x1 x2 x3
MAP3K/Mos MAP2K/MEK MAP2K-P/MEK-P

x4 x5 x6 x7
MAP2K-PP/MEK-PP MAPK/p42 MAP1K-P/p42 MAP1K-PP/p42

cascade has been linked to a bistable behavior: the switch
between two stable equilibria in Xenopus oocytes denotes
the transition between the immature and mature state.
Bi-stability may occur due to other phenomena, such

as multisite phosphorylation [16], rather than due to
feedback loops. However, a large body of literature fo-
cuses on bi-stability induced by the positive-feedback in
the Huang-Ferrel model in Xenopus [17], [18]. In [8] the
feedback a17(x1)x7 was characterized, through in vitro

studies, as a Hill-function with high cooperativity. In [5]
instead, a17(x1)x7 was assumed to be a first order linear
term in the concentration of x7. In Proposition 2 and fol-
lowing, we will explore the effects of different qualitative
functional assumptions on the feedback loop dynamics
a17(x1)x7. We will highlight that the system loses its well-
known bi-stability not only in the absence of feedback,
but also when the feedback becomes unbounded. An
unbounded positive feedback would be caused, for in-
stance, by an autocatalytic process of MAP3K activation,
mediated by active MAPK.
The term µx7 introduces the positive feedback loop

and represents a key parameter for the analysis to follow.
Function b11(x1)x1, functions c23(x3), b21(x2), a41(x3)
and b44(x4)x4, and functions c56(x6), b54(x5), a74(x6)
and b77(x7)x7 are increasing and asymptotically con-
stant, i.e. they are bounded, their derivative is positive
and decreasing. Moreover, a31(x2) = b21(x2), c34(x4) =
b44(x4)x4, b31(x3) = a41(x3), b33(x3)x3 = c23(x3) and
a64(x5) = b54(x5), c67(x7) = b77(x7)x7, b64(x6) =
a74(x6), b66(x6)x6 = c56(x6). We assume c10 to be a
positive constant.
Model (3) is consistent with the well-known dynamic

model for MAPK pathway proposed in [5].
The graph in Fig. 2 can be partitioned considering
three aggregates of variables, precisely {x1}, Σ234 =
{x2, x3, x4} and Σ567 = {x5, x6, x7}. Signal x1 is the
only input for Σ234, signal x4 is the only input for Σ567.
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Fig. 2. Network corresponding to the MAPK pathway

Then x7 is fed back to the first subsystems by arc a17.
Without the positive feedback loop, we will demonstrate
that the system is a pure stable cascade. Note also that
Σ234 and Σ567 can be reduced since ẋ2+ ẋ3+ ẋ4 = 0 and
ẋ5 + ẋ6 + ẋ7 = 0 and therefore the following sums are
constant:

x2(t)+ x3(t) + x4(t) = k, x5(t)+ x6(t) + x7(t) = h, (4)

with k
.
= x2(0) + x3(0) + x4(0) and h

.
= x5(0) + x6(0) +

x7(0). Since xi ≥ 0, all the variables but x1 are bounded.
The system can be studied by removing variables x3 =
k − x2 − x4 and x6 = h − x5 − x7. We must assume
that c10 < limx1→∞ b11(x1)x1, otherwise no equilibrium
is possible.
The following propositions are our main results.

Proposition 2: For µ = 0 the system admits a
unique globally asymptotically stable equilibrium.

The next proposition concerns the existence of equilib-
ria in the case in which an external positive feedback is
present.

Proposition 3: For µ > 0, the system may have
multiple equilibria,1 for specific choices of the involved
functions aij , bij , cij . For µ > 0 suitably large and a17(x1)
lower bounded by a positive number, then the system has
no equilibria.

Proposition 4: For µ > 0 suitably bounded and
a17(x1) increasing, or non-decreasing, and bounded, if
multiple simple2 equilibria exist, then such equilibria are
alternatively stable and unstable. In the special case of
three equilibria, then the system is bistable.
For µ > 0 suitably bounded and a17(x1) increasing
asymptotically unbounded, then the number of equilibria
is necessarily even (typically 0 or 2). Moreover, if we
assume that there exists µ∗ > 0 such that the system
admits two distinct equilibria for any 0 < µ ≤ µ∗, then
one is stable, while the other is unstable.
Remark 2: The simplest case of constant a17 has been

fully developed in [5] and [4], and it turns out that
the system may exhibit bi-stability for suitable values

1This condition is necessarily true for µ small.
2I.e. the nullclines have no common tangent lines.

of the feedback strength µ. Here we show that, for
constant a17, bi-stability is actually a robust property.
Our results are consistent with the fact that the MAPK
cascade is a monotone system and some of them could
be demonstrated with the same tools used in [5], [4].
Note that the existence of an even number of equilibria in
the presence of an unbounded a17, is also consistent with
previous results in the literature [19]. In this context, our
contribution is that of inferring properties such as num-
ber of equilibria and mono or bi-stability starting from
qualitative assumptions on the model, without invoking
monotonicity or analytical solutions.
Remark 3: Finally, it is necessary to remark that our

robustness analysis holds given model (3) and its struc-
ture. Other work in the literature shows that feedback
loops are not required to achieve a bistable behavior
in the MAPK cascade [16], when the dual phosphory-
lation and de-phosphorylation cycles are non-processive
(i.e. sites can be phosphorylated/de-phosphorylation in-
dependently) and distributed (i.e. the enzyme responsible
for phosphorylation/de-phosphorylation is competitively
used in the two steps).

IV. Outline of the proofs

According to the mass conservation condition (4), we
can model the MAPK network dynamics in the reduced
form:

ẋ1 = µ a17(x1)x7 + c10 − b11(x1)x1,

ẋ2 = −b21(x2)x1 + c23(k − x2 − x4),

ẋ4 = a41(k − x2 − x4)x1 − b44(x4)x4, (5)

ẋ5 = −b54(x5)x4 + c56(h− x5 − x7),

ẋ7 = a74(h− x5 − x7)x4 − b77(x7)x7.

Recall that mass conservation yields x3 =MAP2Ktot −
x2 − x4, and x6 =MAPKtot − x5 − x7, so we denoted
k =MAP2Ktot and h =MAPKtot. Due to space lim-
itations, we only provide an outline of the proofs for
propositions 2– 4. The complete proofs can be found in
the additional file of [7].
Proposition 2: If µ = 0, x1 robustly converges to

the steady state value, i.e. x̄1 such that b11(x̄1)x̄1 = c10.
Then assuming x̄1 fixed, we can consider the second
subsystem Σ24 associated with x2 and x4. Its steady state
conditions are given by

φ1(x̄1, x2, x4)
.
= −b21(x2)x̄1 + c23(k − x2 − x4) = 0, (6)

φ2(x̄1, x2, x4)
.
= a41(k − x2 − x4)x1 − b44(x4)x4 = 0. (7)

The piecewise linear function

V (x2, x4) = max{|x2 − x̄2|, |x4 − x̄4|, |(x2 − x̄2) + (x4 − x̄4)|}

is a Lyapunov function for this subsystem; its level
surfaces are depicted in Fig. 3.
Therefore, we conclude that the equilibrium point

(x̄2, x̄4) is stable. It is important to notice that for x̄1 → 0,
(x̄2, x̄4) = (k, 0) and for x̄1 → ∞, (x̄2, x̄4) = (0, k).
Furthermore, since (x̄2, x̄4) are derived implicitly from
(6) and (7), from the implicit function theorem we have
the following expression for the derivatives of x̄2 and x̄4
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Fig. 3. The x2–x4 subsystem

as functions of x̄1

d

dx1

[

x2
x4

]

=

−

[

−(b′
21
x1 + c′

23
) −c′

23

−a′
41
x1 −(a′

41
x1 + (b44(x4)x4)′)

]

−1
[

−b21
a41

]

=

−1

∆24

[

−(a′
41
x1 + (b44(x4)x4)′) + c′

23
) +c′

23

+a′
41
x1 −(b′

21
x1 + c′

23
)

] [

−b21
a41

]

,

where ∆24 is the determinant of the matrix being
inverted. From our assumptions, it can be verified that
∆24 > 0. Then the following relation holds for steady
state values:

dx2

dx1

= −
(a′41x1 + (b44(x4)x4)

′)b21(x2) + c′23a41

∆24

< 0,

dx4

dx1

=
a′41x1b21 + (b′21x1 + c′23)a41

∆24

> 0.

This implies that the steady state x̄2 decreases when x̄1
increases, while x̄4 increases when x̄1 increases.
The same analysis can be repeated for for the subsystem
Σ57, with input x4. (It is sufficient to replace the indices
2 with 5, and 4 with 7 in all the formulas just derived.)
In particular, at steady state we have:

dx7

dx4

=
a′74x4b54 + (b′54x4 + c′56)a74

∆57

> 0.

Moreover for a steady state value x̄1, the corresponding
value of x̄7 is achieved by a compound function ϕ : x̄1 →
x̄4 → x̄7, namely x̄7 = ϕ(x̄1). This function is increasing
(both its components are such) and its derivative is

ϕ′(x1) =
dx7

dx4

dx4

dx1
=

(a′
41
x1b21 + (b′

21
x1 + c′

23
)a41)

∆24

(a′
74
x4b54 + (b′

54
x4 + c′

56
)a74)

∆57

> 0.

Biologically, this means that this cascade model in-
deed transmits the input signal by increasing the con-
centration of the active, doubly–phosphorylated species
MAP2K–PP and MAPK–PP.

Proposition 3: At steady state ẋ1 = 0, µ a17(x1)x7+
c10 − b11(x1)x1 = 0. Using the previously defined com-
pound function x7 = ϕ(x1), we have the steady state
equation:

µa17(x1)ϕ(x1) + c10 = b11(x1)x1.

The terms in the expression above are sketched in Fig.
4. It is apparent that for µ small enough there is an

even number of intersections between the two curves.
For large values there are no intersections because func-
tion a17(x1)ϕ(x1) is strictly increasing and b11(x1)x1 is
bounded.
Proposition 4: Consider the linearized system with

variables δxi = xi−x̄i, i = 1, 2, 4, 5, 7. The corresponding
Jacobian matrix (8) is not a Metzler matrix, but it
can be reduced to the Metzler form by the similarity
transformation T−1JT with T = diag{1,−1, 1,−1, 1}.
The steady state equation can be written as

ψ(x1)
.
= b11(x1)x1 − µa17(x1)ϕ(x1)− c10 = 0,

shown in Fig. 4 (blue curve). When µa17(x1) grows
unbounded there are only two simple equilibria x̄A1 and
x̄B1 . We have ψ′(x̄A1 ) > 0 and ψ′(x̄B1 ) < 0. A necessary
condition for stability (see Proposition 1) is that the
zero degree coefficient of the characteristic polynomial
is positive. This condition can be expressed as:

p0

∆24∆57

= (b11x1)
′ − µa

′

17ϕ(x1)− µa17ϕ
′(x1) =

(b11x1)
′ −

d

dx1

[µa17ϕ(x1)] = ψ
′(x1),

where we recall that ∆24 and ∆57 are the determinants
of the subsystems Σ24 and Σ57. Since ψ

′(x̄B1 ) < 0 we
conclude that point B is unstable for 0 < µ ≤ µ∗.

To show stability of point A we must remember that
the opposite condition holds ψ′(x̄A1 ) > 0, 0 < µ ≤
µ∗. Since the eigenvalues depend continuously on the
system parameters, we have stability for µ small enough.
Moreover, since the Jacobian (8) is similar to a Metzler
matrix, in view of Proposition 1, transition to instability
(if any) for µ increasing must occur corresponding to
µ0 < µ∗ in which J has a zero eigenvalue, which implies
p0 = 0. Therefore it is impossible that ψ′(x̄A1 ) = 0. Hence
A must be stable.

We now outline how to prove stability of the equilibria
for a′17 ≥ 0. The characteristic polynomial of the system’s
Jacobian is given by

p(s, µ) = q(s)− µ [a′17x7r(s) + a17m(s)] ,

where r(s) and m(s) are polynomials with positive coef-
ficients, and q(s) = (s+ (b11x1)

′)r(s).

As already noted, the Jacobian (8) is similar to a
Metzler matrix for any µ ≥ 0. For µ = 0, p(s) = q(s)
has positive coefficients, thus it is stable in view of
Proposition 1. Define the following value 3

µ∗ = inf{µ > 0 : p(s, µ) has unstable roots}.

Since the dominant eigenvalue is real, the polynomial at
the stability boundary, namely p(s, µ∗), has a root in zero,
say p(0, µ∗) = 0. On the other hand, its constant term is

p0 = q0 − µ[a′17x7r(0) + a17m(0)],

which is obviously negative for µ > µ∗. Therefore the

3The parametric study which follows is not affected by the fact
that the intersection point is a function of µ and generically valid
for any matrix of the form of J

2218



J =











−(b11x1)
′ + µa′17x7 0 0 0 µa17

−b21 −[b′21x1 + c′23] −c′23 0 0
a41 −a′41x1 −[a′41x1 + (b44x4)

′] 0 0
0 0 −b54 −[b′54x4 + c′56] −c′56
0 0 a74 −a′74x4 −[a′74x4 + (b77x7)

′]











(8)

necessary and sufficient condition for stability is

p0 = p(0, µ) = q0 − µ[a′17x7r(0) + a17m(0)] > 0.

The previously derived expression p0/∆24∆57 = ψ′(x1),
shows that stability of the equilibrium depends only on
the type of intersection. Since in the first intersection
point A in Fig. 5 we have ψ′(xA1 ) > 0 the first equilib-
rium is stable and the remaining, alternatively, stable–
unstable. The three–point case is depicted in Fig. 5,
which represents a bistable situation.

x1x̄A
1

x̄B
1

A

B

µa17(x1)φ(x1) + c0

b11(x1)x1

ψ(x1)

Fig. 4. Functions µa17(x1)ϕ(x1) + c10, b11(x1)x1 and their
difference ψ(x1).

x1

A

B

C

Fig. 5. Functions µa17(x1)ϕ(x1)+ c10 (red) and b11(x1)x1 (blue):
the points A and C are stable while B is unstable

V. conclusions

We have proposed a qualitative model for the MAPK
pathway and analyzed its stability properties. Such prop-
erties are robustly assured because they do not depend
on the specific functional terms or parameters adopted
in the model, but rather on the qualitative dynamic
relationships between its states. In particular, we have
focused on the effects that different positive feedback
loop dynamics can have on the equilibria. Our analysis
is based on Lyapunov methods, set–invariance theory
and matrix theory. Current and future work includes
modeling and analysis of other feedback loops that can be
present in this pathway and result in different dynamic
responses [20].
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