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Abstract— In this work an observer structure for a certain
class of nonlinear fractional order systems is proposed. For sol-
ving this task we introduce a Fractional Algebraic Observability
(FAO) property which is used as a main tool in the design of the
observer system. We apply our proposals in the master-slave
synchronization problem, where the coupling signal is viewed
as output and the slave system is regarded as observer (the
slave is requested to recover the unknown state trajectories
of the master). Finally, as numerical example we consider a
fractional order Rössler hyperchaotic system and by means of
some simulations we show the effectiveness of the suggested
approach.

I. INTRODUCTION

Fractional calculus is as old as conventional calculus, but
is not as popular in science and engineering as conventional
calculus. In the last three centuries this subject was studied
only in mathematics, but in recent years it has been used
in many fields of engineering and science [1]. “It might be
that this mathematical tool help us modelling the reality in
a better way and also, might be, that this is the calculus of
the XXI century” [2].

Among the publications dedicated to fractional order sys-
tems, some subjects have been studied, e.g., linear systems
[3], chaotic dynamics and its synchronization [4]–[7], sta-
bility [8], [9], delayed systems [10], systems identification
[2], control systems [11], optimal control [12], quantitative
finances [13], quantic evolution of complex systems [14],
digital image processing, variational principles and its appli-
cations, Euler-Lagrange equations, applications in finances
and economy, bioengineering applications, fractional Fourier
transform, sliding modes, robotics, among others [15].

The synchronization problem is an interesting topic in
fractional chaotic systems [16]. The synchronization of inte-
ger order chaotic systems has been extensively investigated
since its introduction by Pecora and Carroll [17]. On the
other hand, [18] is the first work concerning on synchro-
nization of fractional systems, the authors showed by means
of a control law that fractional order chaotic systems can be
synchronized by using the similar scheme as that of their
integer counterparts.
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Some techniques related to chaos synchronization in frac-
tional systems have been proposed. For instance, we mention
the works [6], [19], [20] in which the authors propose
the employment of feedback controllers, which allows to
achieve the synchronization between two identical fractional-
order chaotic systems, the theoretical analysis is derived by
utilizing the stability criterion of linear fractional systems; in
[21] is studied the synchronization of fractional order chaotic
systems with unidirectional linear error feedback coupling;
in [22] is presented a classical Luenberger observer design
for the synchronization of fractional-order chaotic systems,
i.e., the observer structure needs a copy of the system and
a linear output error feedback, the application is restricted
to scalar coupling signals; in [23], [24] are given sufficient
conditions for the synchronization between two identical
fractional systems by using the Laplace transform theory.

The main contribution in this work is to show a novel
technique for the synchronization problem in nonlinear
fractional-order systems via observer design. Here arises a
basic practical question: would it be possible to reconstruct
the unknown signals? We give an answer to this question
by introducing a basic definition (similar to the differen-
tial and algebraic approach used in nonlinear integer order
systems [25]) related with the estimation (reconstruction)
of the unknown variables, so-called Fractional Algebraic
Observability (FAO) property1. As far as we know in the
literature this class of observer structure has not been used
in fractional order systems.

The rest of this paper is organized as follows. In Section
II is given a brief note about fractional derivatives and
Mittag-Leffler type function. Section III presents the problem
statement and its solution, based on FAO and the master-
slave synchronization scheme. In Section IV we apply the
methodology presented in Section III to the fractional order
Rössler hyperchaotic system, also some numerical results are
shown. The intention of choosing this system is to clarify the
proposed methodology and to highlight the simplicity and
flexibility of the suggested approach. Finally, we conclude
with some remarks in Section V.

II. ON FRACTIONAL DERIVATIVES

There are several definitions of a fractional derivative of
order α [11], [26], [27], we will use the Caputo fractional
operator in the definition of fractional order systems, because

1An observable system in this sense can be regarded as a system in which
the unknown variables can be expressed in terms of the output signal and
a finite number of its fractional derivatives.
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the meaning of the initial conditions for systems described
using this operator is the same as for integer order systems.

Definition 1 (Caputo Fractional derivative): The Caputo
fractional derivative of order α ∈ R+ of a function x is
defined as: see [11]

x(α) = t0D
α
t x(t) =

1
Γ(m− α)

∫ t

t0

dmx(τ)
dτm

(t−τ)m−α−1 dτ,

(1)
where: m− 1 ≤ α < m, dmx(τ)

dτm is the m-th derivative of x
in the usual sense, m ∈ N and Γ is the gamma function2.�

Now we define the following notation

D(rα)x(t) = t0D
α
t t0D

α
t . . . t0D

α
t t0D

α
t︸ ︷︷ ︸

r-times

x(t) (2)

i. e., it is the Caputo fractional derivative of order α applied
r ∈ N times sequentially, with D(0)x(t) = x(t), we can note
that if r = 1 then D(α)x(t) = x(α).

A. Mittag-Leffler type function

The Mittag-Leffler function with two parameters is defined
as [28]:

Eα,β(z) =
∞∑

i=0

zi

Γ(αi + β)
, z, β ∈ C, Re(α) > 0 (3)

this function is used to solve fractional differential equations
as the exponential function in integer order systems. In the
particular case when α = β = 1, we have that E1,1(z) = ez .
Now if we have particular values of α, the function (3) has
asymptotic behavior at infinity.

Theorem 1 ([11]): If α ∈ (0, 2), β is an arbitrary complex
number and µ is an arbitrary real number such that

πα

2
< µ < min {π, πα} (4)

then for an arbitrary integer κ ≥ 1 the following expansion
holds:

Eα,β(z) = −
κ∑

i=1

1
Γ(β − αi)zi

+ O

(
1

|z|κ+1

)
(5)

with |z| → ∞, µ ≤ | arg(z)| ≤ π. �
The Mittag-Leffler function has the following properties:
Property 1 [11].∫ t

0

τβ−1Eα,β(−kτα) dτ = tβEα,β+1(−ktα) ,

with β > 0.
Property 2 [29].Eα,β(−x) is completely monotonic, i. e.,

(−1)nE
(n)
α,β(−x) ≥ 0 for 0 < α ≤ 1 and β ≥ α,

for all x ∈ (0,∞) and n ∈ N ∪ {0}.
We will use these facts in the following problem.

2To simplify the notation we omitted the time dependence in x(α), in
what follows we take t0 = 0

III. PROBLEM STATEMENT AND MAIN RESULT

We take the initial condition problem for an autonomous
fractional order nonlinear system, with 0 < α < 1,

x(α) = f(x), x(0) = x0

y = h(x̄)
(6)

where x ∈ Ω ⊂ Rn, f : Ω → Rn is a Lipschitz continuous
function3, with x0 ∈ Ω ⊂ Rn, in this case y denotes the
output of the system (the measure that we can obtain), x̄ ∈
Rp represents the states that we can observe (known states),
h : Rp → Rq is a continuous function and 1 ≤ p < n.

Consider the system given by (6), we will separate in
two dynamical systems with states x̄ ∈ Rp and η ∈ Rn−p

respectively with xT = (x̄T , ηT ), the first system will
describe the known states and the second represents unknown
states, then the system (6) can be written as:

x̄(α) = f̄(x̄, η)
η(α) = ∆(x̄, η)
yx̄ = y = h(x̄)

(7)

where f T (x) =
(
f̄ T (x̄, η),∆T (x̄, η)

)
, f̄ ∈ Rp and ∆ ∈

Rn−p. Now the problem is: How can we estimate the η ′s
states? this question arises because if we know the η ′s states
we can use these signals to generate measuring depending
on them. In order to solve this observation problem let us
introduce the following observability property.

Definition 2 (FAO): A state variable ηi ∈ R satisfies the
Fractional Algebraic Observability (FAO) if it is a function
of the first r ∈ N sequential derivatives (in the sense of the
equation (2)) of the available output yx̄, i.e.,

ηi = φi

(
yx̄, y

(α)
x̄ ,D(2α)yx̄, . . . , D(rα)yx̄

)
(8)

where φi : R(r+1)q → R. �
If we assume that the components of unknown state vector

η are FAO, then we can describe our problem in terms of
the master-slave synchronization scheme, which is defined
in the following way.

Let us consider the master system:

η
(α)
i = ∆i(x̄, η) (9)

yηi
= φi

(
yx̄, y

(α)
x̄ ,D(2α)yx̄, . . . , D(rα)yx̄

)
(10)

for i ∈ {p + 1, . . . , n}, where ηi is a component of the state
vector η and yηi denotes the output of the i-th master system.

Now let us propose a fractional dynamical system with
the same order α, which will be the slave system (observer):

η̂
(α)
i = kη̂i(yηi − η̂i), (11)

yη̂i
= η̂i, (12)

for i ∈ {p+1, . . . , n}, where η̂i is the state, and yη̂i
denotes

the output of the slave system and kη̂i
is a positive constant.

In the master-slave synchronization scheme, the output of
the master system (10) describes the target signal, while (12)

3This assures the unique solution [28]
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represents the response signal. Therefore the synchronization
problem can be established as:
Given the master system (9) and our slave system (11), it
should be determined some conditions, such that the output
of the slave system (12) synchronizes with the output of the
master system (10).

Let us define the synchronization error as:

ei = yηi
− yη̂i

= ηi − η̂i. (13)

Now we establish a convergence analysis of the synchro-
nization error.

Proposition 1: Let the system (6) which can be expressed
in the form (7), where the following conditions are fulfilled:

H1: ηi satisfies the FAO property for i ∈ {p+1, . . . , n}.
H2: ∆i is bounded, i.e., ∃M ∈ R+ such that

‖∆(x)‖ ≤ M , ∀x ∈ Ω.
H3: kη̂i ∈ R+.

Then, the synchronization of the master output (10) with
the slave output (12) is achieved, for global initial condition
of the states.
Proof. From H1 we can write equations (9)-(13). Taking the
fractional derivative of the equation (13), we have

e
(α)
i = η

(α)
i − η̂

(α)
i (14)

Substituting the fractional dynamics (9) and (11) into (14),
we obtain

e
(α)
i + kη̂iei = ∆i(x) (15)

There exists a unique solution for the system (15), due to
∆i(x(t))−kη̂i

ei(t) is a Lipschitz continuous function on e.4

Solving the above equation [28], we have

ei(t) = ei0Eα,1(−kη̂i
tα)

+
∫ t

0

(t− τ)α−1Eα,α(kη̂i(t− τ)α)∆i(x(τ))dτ

(16)
where ei(0) = ei0.

Using Triangle and Cauchy-Schwarz inequalities and H2

|ei(t)| ≤ |ei0Eα,1(−kη̂i
tα)|

+M

∫ t

0

|(t− τ)α−1Eα,α(−kη̂i
(t− τ)α)|dτ

The functions (t − τ)α−1Eα,α(−kη̂i
(t − τ)α) and

Eα(−kη̂i
tα) are not negative due to Property 2 of Mittag-

Leffler function and H3

|ei(t)| ≤ |ei0|Eα,1(−kη̂i
tα)

+M

∫ t

0

(t− τ)α−1Eα,α(−kη̂i
(t− τ)α)dτ

Using Property 1 of Mittag-Leffler function

|ei(t)| ≤ |ei0|Eα,1(−kη̂it
α) + MtαEα,α+1(−kη̂it

α)

4Equation (15) is non-autonomous, but the Lipschitz condition assures a
unique solution [28].

If t → ∞, we use the equation (5) with µ = 3πα/4 due
to H3.

lim
t→∞

|ei(t)| ≤ |ei0| lim
t→∞

Eα,1(−kη̂i
tα)

+M lim
t→∞

tαEα,α+1(−kη̂it
α)

=
M

kη̂i

�

Remark 1: If the FAO of a state variable is expressed in
terms of the fractional sequential derivatives of the output
y, which are unknown, then is necessary to introduce an
artificial variable (if it is possible) in order to avoid the use
of these unknown derivatives.

IV. NUMERICAL EXAMPLE

In this section, the synchronization of the fractional order
Rössler hyperchaotic system is treated.

Remark 2: Chaotic systems are characterized by global
boundedness of the trajectories [30]. By this fact, H2 is
always satisfied.

First, consider the fractional order Rössler hyperchaotic
system [31]

x(α) =


x3 + ax1 + x2

−cx4 + dx2

−x1 − x4

b + x3x4


y =

(
x1

x2

) (17)

where x = (x1, x2, x3, x4)T is the state vector, y1 and y2 are
the considered outputs. When a = 0.32, b = 3, c = −0.5,
d = 0.05, and α = 0. 95, the Rössler equations (17) has a
hyperchaotic attractor (see Fig. 1).

Now, we rewrite system (17) in the form (7) as follows

x̄(α) =
(

η3 + ax̄1 + x̄2

−cη4 + dx̄2

)
η(α) =

(
−x̄1 − η4

b + η3η4

) (18)

where x1 = x̄1, x2 = x̄2, η3 = x3, η4 = x4, yx̄1 = x̄1 and
yx̄2 = x̄2. From (18), it is not difficult to find the following
relations

η3 = φ3

(
yx̄, y

(α)
x̄

)
= y

(α)
x̄1

− ayx̄1 − yx̄2 (19)

η4 = φ4

(
yx̄, y

(α)
x̄

)
= −1

c
y
(α)
x̄2

+
d
c
yx̄2 (20)

then we say that η3 = x3 and η4 = x4 are FAO and therefore
H1 is fulfilled.

From above, the master systems are given by{
η
(α)
3 = −x̄1 − η4

yη3 = η3 = y
(α)
x̄1

− ayx̄1 − yx̄2

(21)

 η
(α)
4 = b + η3η4

yη4 = η4 = −1
c
y
(α)
x̄2

+
d
c
yx̄2

(22)
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(a) (b)

(c) (d)

Fig. 1. Phase plot of the fractional-order Rössler hyperchaotic system with a = 0.32, b = 3, c = −0.5, d = 0.05, α = 0. 95, and initial conditions
x1(0) = −30, x2 = 60, x3(0) = −20, and x4(0) = 20: (a) x3-x1 plane, (b) x3-x4 plane, (c) x2-x1 plane, and (d) x3-x1-x4 space.

Now we design the corresponding slave systems for (21)
and (22). By using (11), we have

η̂
(α)
3 = kη̂3(yη3 − η̂3) (23)

with kη̂3 ∈ R+ (condition H3).
Replacing (19) into (23) leads to

η̂
(α)
3 = kη̂3

(
y
(α)
x̄1

− ayx̄1 − yx̄2

)
− kη̂3 η̂3 (24)

In order to avoid the use of the fractional derivative y
(α)
x̄ ,

we introduce an auxiliary variable γη̂3 :

γη̂3 = −kη̂3yx̄1 + η̂3 (25)

then
η̂3 = γη̂3 + kη̂3yx̄1 (26)

Substituting (26) and its fractional derivative of order α
into (24), we obtain

γ
(α)
η̂3

= −kη̂3γη̂3 − kη̂3 (ayx̄1 + yx̄2)− k2
η̂3

yx̄1 , (27)

with γη̂3(0) = γη̂30
.

Then, the corresponding slave system of (21) is given by{
η̂3 = γη̂3 + kη̂3yx̄1

yη̂3 = η̂3
(28)

By means of the same procedure we have obtained the
following slave system for (22)

{
η̂4 = γη̂4 −

kη̂4

c
yx̄2

yη̂4 = η̂4

(29)

where the dynamics of the auxiliary variable γη̂4 is given by

γ
(α)
η̂4

= −kη̂4γη̂4 +
d
c
kη̂4yx̄2 +

k2
η̂4

c
yx̄2 , (30)

with γη̂4(0) = γη̂40
and kη̂4 ∈ R+ (condition H3).

Numerical simulations are performed for a = 0.32, b =
3, c = −0.5, d = 0.05, and α = 0. 95. We consider the
following initial conditions to the master system x̄1(0) =
−30, x̄2(0) = 60, η3(0) = −20, η4(0) = 20, the initial
conditions to the slave system η̂3(0) = −50, η̂4(0) = 10,
and the gain parameters are taken as kη̂3 = kη̂4 = 100. The
synchronization between masters (21)-(22) and slaves (28)-
(29) is shown in Fig. 2.

V. CONCLUSIONS

It was introduced a new concept so-called Fractional
Algebraic Observability (FAO) which is a fundamental issue
to determinate the unknown variables of nonlinear fractional
order systems by means of the master-slave synchronization
scheme, in particular we applied the results to a hyperchaotic
fractional order system with success, however this technique
can be applied to other class of systems which satisfy the
properties of Proposition 1. Some numerical simulations have
illustrated the effectiveness of the suggested approach.
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Fig. 2. Synchronization of the fractional-order Rössler hyperchaotic system.
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