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Abstract— This paper studies finite-time consensus for net-
worked multi-agent systems with second-order dynamics in the
presence of inherent nonlinear dynamics under an undirected
fixed interaction graph. We propose a nonlinear distributed
consensus algorithm and then present sufficient conditions such
that finite-time consensus can be achieved. By employing a
similar stability analysis, it is expected that finite-time consensus
can be achieved with/without inherent nonlinear dynamics when
the initial undirected interaction graph is connected and the
difference between the Laplacian matrix for any t > 0 and the
Laplacian matrix at t = 0 is small enough.

I. INTRODUCTION

Distributed control of networked multi-agent systems has

been investigated extensively in the systems and controls

society. The main research problem in distributed control of

networked multi-agent systems is to have a group of mobile

agents achieve desired group behaviors through local infor-

mation exchange. Compared with the traditional centralized

control, distributed control has a number of benefits, such

as easy implementation, low complexity, high robustness,

and good scalability. Although benefits of distributed control

are foreseen, the design and analysis of distributed control

are more complicated and challenging than those of the

traditional centralized control.

Consensus is one fundamental problem in distributed

control of network multi-agent systems. The main objective

of consensus to design local control algorithms such that a

group of agents reaches a common state, such as positions,

phases, and velocities. In the systems and controls society,

the pioneer work is given in [1] where an asynchronous

agreement problem is studied for distributed decision making

problems. Subsequently, the authors in [2]–[5] study consen-

sus for first-order kinematics under various information flow

constraints. For more results about consensus, the readers are

referred to [6]–[9] and references therein.

Finite-time consensus, one interesting research problem

in consensus, refers to the agreement of a group of agents

on a common state in finite time. Finite-time consensus is

first studied in [10] where a nonsmooth consensus algorithm

is proposed and the finite-time convergence analysis of

the closed-loop system is presented under an undirected

fixed/switching interaction graph. Then a continuous non-

linear consensus algorithm is proposed in [11] to guarantee

the finite-time stability under an undirected fixed interaction

graph. The proposed algorithm in [11] is shown in [12] to be
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able to guarantee finite-time consensus under an undirected

switching interaction and a directed fixed interaction graph

when each strongly connected component of the topology

is detail-balanced. Another continuous nonlinear consensus

algorithm is proposed in [13] to guarantee the finite-time

stability under a directed fixed interaction graph. Different

from [10]–[13] where the final state of all agents is in

general not controllable, several nonlinear consensus algo-

rithms are proposed in [14] to guarantee the finite-time χ-

consensus, where the final equilibrium state can be controlled

by designing the χ function. In contrast to [10]–[14] where

finite-time consensus is studied for first-order kinematics, a

nonlinear algorithm is proposed in [15] to solve the finite-

time consensus for double-integrator dynamics under an

undirected fixed interaction graph.

The existing research on consensus focuses mainly on the

case when no inherent dynamics is considered for the agents.

However, in many practical systems, inherent (nonlinear)

dynamics often exists for the agents. For example, in the syn-

chronization of complex dynamical networks [16]–[19], to

name a few, the dynamics of each node is normally described

by the sum of a continuously differentiable function de-

scribing the inherent dynamics associated with the node and

the coupling item identifying the corresponding connection

between the node and the other nodes. More comprehensive

details on the study of the synchronization of complex

dynamical networks can be found in [20], [21]. Recently,

inherent nonlinear dynamics has also been considered in

the consensus problem [22]–[25]. The authors in [22] study

first-order consensus of multi-agent systems in the presence

of inherent nonlinear dynamics. Sufficient conditions are

given to guarantee first-order consensus under a directed

fixed interaction graph. The authors in [23] study finite-time

consensus for first-order kinematics with inherent nonlinear

dynamics. Sufficient conditions are given to guarantee finite-

time consensus under an undirected switching interaction

graph. The authors in [24] study second-order consensus

of multi-agent systems with inherent nonlinear dynamics.

Sufficient conditions are derived to guarantee second-order

consensus under a directed fixed interaction graph. In [25],

the authors propose a connectivity-preserving second-order

consensus algorithm for multi-agent systems with inherent

nonlinear dynamics when there exists a virtual leader. It

can be observed that finite-time consensus for second-order

dynamics with inherent nonlinear dynamics has not been

considered in the existing literature.

In this paper, we study finite-time consensus for second-

order dynamics with inherent nonlinear dynamics under
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an undirected fixed interaction graph. Compared with the

study of finite-time consensus for second-order dynamics and

consensus for second-order dynamics with inherent nonlinear

dynamics, finite-time consensus for second-order dynamics

with inherent nonlinear dynamics is more challenging be-

cause these two problems are considered simultaneously. It

is also worth emphasizing that the proposed techniques in the

study of finite-time consensus for second-order dynamics and

consensus for second-order dynamics with inherent nonlinear

dynamics are not applicable in the study of finite-time

consensus for second-order dynamics with inherent nonlinear

dynamics. To solve the problem, we first propose a nonlinear

distributed consensus algorithm and then present sufficient

conditions such that finite-time consensus can be achieved.

By employing a similar stability analysis, it is expected that

finite-time consensus can be achieved with/without inherent

nonlinear dynamics when the initial undirected interaction

graph is connected and the difference between the Laplacian

matrix for any t > 0 and the Laplacian matrix at t = 0 is

small enough.

II. PRELIMINARIES

A. Graph Theory Notions

For a team of n agents, the interaction among all agents

can be modeled by an undirected graph G = (V ,W), where

V = {v1, v2, · · · , vn} and W ⊆ V2 represent, respectively,

the agent set and the edge set. An edge in an undirected

graph denoted as (vi, vj) means that agents i and j can

obtain information from each other. Accordingly, agent i is

a neighbor of agent j and vice versa. An undirected graph is

connected if there is an undirected path between every pair

of distinct agents.

There are two commonly used matrices used to represent

the interaction graph: the adjacency matrix A = [aij ] ∈
R

n×n with aij > 0 if (vj , vi) ∈ W and aij = 0 otherwise,

and the Laplacian matrix L = [ℓij ] ∈ R
n×n with ℓii =∑n

j=1,j 6=i aij and ℓij = −aij , i 6= j. In particular, we

let that aii = 0, i = 1, · · · , n, (i.e., agent i is not a

neighbor of itself), aij = aji (i.e., A and L are symmetric).

It is straightforward to verify that L is symmetric semi-

definite and L has at least one eigenvalue equal to 0 with a

corresponding left eigenvector 1T
n and a corresponding right

eigenvector 1n, where 1n is an n× 1 all-one column vector.

B. Notations

We use R to denote the set of real number. 0n ∈ R
n

is used to denote the n × 1 all-zero column vector and

0m×n ∈ R
m×n is used to denote the m×n all-zero matrix.

diag(κ1, · · · , κn) is used to denote the n×n diagonal matrix

with the ith diagonal entry given by κi. In ∈ R
n×n is

used to denote the identity matrix. ⊗ is used to denote the

Kronecker product of matrices. We use λ2(·) and λmax(·)
to denote, respectively, the smallest nonzero eigenvalue and

the largest eigenvalue of a symmetric Laplacian matrix

corresponding to an undirected connected interaction graph.

‖·‖ is used to denote the 2−norm. We use sgn(·) to denote

the signum function. Define sig(x)α
△
= sgn(x) ‖x‖

α
. Note

that sig(x)α is continuous with respect to x when α > 0.

Let f : [0,∞) 7→ J ⊆ R
n be a continuous function. The

upper right-hand derivative of f(t) is given by D+f(t) =
lim suph→0+

1
h
[f(t + h) − f(t)]. Given two real vectors

x
△
= [x1, . . . , xp]

T ∈ R
p and y

△
= [y1, . . . , yp]

T ∈ R
p, we

use x ≤ y to denote that xi ≤ yi, ∀i = 1, . . . , p.

Define

M
△
=

1

n

[
nIn − 1n1

T
n

]
. (1)

Let ̺i, i = 1, · · · , n, be the ith eigenvalue of M satisfying

that ̺1 ≤ ̺2 ≤ · · · ≤ ̺n. Because M is a Laplacian matrix

corresponding to an undirected connected graph, ̺1 = 0 and

̺i > 0, i = 2, · · · , n. Let Γ be the unique orthonormal matrix

such that M = ΓT diag(̺1, · · · , ̺n)Γ. It is worth noting that

M2 = M .

C. Problem Statement

Consider a group of n agents given by

ṙi = vi, v̇i = f(t, ri, vi) + ui, i = 1, · · · , n, (2)

where ri ∈ R
m and vi ∈ R

m are, respectively, the position

and the velocity of the ith agent, f(t, ri, vi) : R × R
m ×

R
m 7→ R

m is the unknown inherent nonlinear dynamics for

the ith agent, and ui ∈ R
m is the control input for the ith

agent. Here we assume that

‖f(t, ri, vi)− f(t, rj , vj)‖ ≤ γ(‖ri − rj‖+ ‖vi − vj‖),
(3)

where γ is a known positive constant. The objective

here is to design ui such that ‖ri(t)− rj(t)‖ → 0 and

‖vi(t)− vj(t)‖ → 0 in finite time for all i, j = 1, · · · , n.

That is, all agents’ states reach consensus in finite time. Due

to the existence of the nonlinear term f(t, ri, vi), v̇i(t) in

general does not approach 0m, which is different from the

traditional case where v̇i(t) → 0m as t → ∞.

Remark 2.1: Because f(t, ri, vi) in (2) is unknown, (2)

can not be converted to the well-studied second-order system

by letting ui = −f(t, ri)+φi with φi being the new control

input to be designed. Moreover, due to the existence of the

unknown nonlinear term f(t, ri, vi), the consensus problem

is more challenging than that without the nonlinear term

f(t, ri, vi).

III. FINITE-TIME CONVERGENCE UNDER AN

UNDIRECTED FIXED INTERACTION

In this section, we consider an undirected fixed interaction

graph. We use A, L, and G to denote, respectively, the

adjacency matrix, the Laplacian matrix, and the undirected

graph associated with the n agents.

We propose the following nonlinear finite-time consensus

algorithm for (2) as

ui =−

n∑

j=1

aij [sig(ri − rj)
α1 + sig(vi − vj)

α2 ]

− β

n∑

j=1

aij [(ri − rj) + (vi − vj)], (4)
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where β is a positive constant, aij is the (i, j)th entry of the

adjacency matrix A characterizing the interaction among the

n agents, and α1 ∈ (0, 1) and α2 ∈ (0, 1) are two constant

scalars. The objective of the first term in (4) is to guarantee

the finite-time convergence while the objective of the second

term in (4) is to guarantee the stability when the nonlinear

term f(t, ri, vi) exists in (2). It is worthwhile to mention that

the stability analysis is, in general, difficult to analyze due

to the existence of the unknown nonlinear term f(t, ri, vi).
Definition 3.1: A function f : R

d 7→ R
m is locally

Lipschitz of order χ at x ∈ R
d if there exists Lx and

ǫ ∈ (0,∞) such that ‖f(y)− f(y′)‖ ≤ Lx ‖y − y′‖
χ

for

all y, y′ ∈ B(x, ǫ), where χ > 0 and B(x, ǫ) denotes the

ball centered at x with radius ǫ.

Lemma 3.1: Suppose that F (t, z) : [t0, T ) × J ⊆ R
p 7→

R
q, is a continuous function satisfying that D+F = f(t, z),

where z ∈ R
p, and f(t, z) is piecewise continuous in t and

is locally χ-Lipschitz in z when f(t, z) is continuous at t.

Let G(t, ω) : [t0, T ) × J ⊆ R
p 7→ R

q be a continuous

function whose upper right-hand derivative D+G satisfies the

differential inequality D+G ≤ f(t, ω) with G[t0, ω(t0)] ≤
F [t0, z(t0)]. Then G(t) ≤ F (t) for all t ∈ [t0, T ).

Proof: The proof is similar to that of Lemma 3.3 in [23]

based on the two lemmas presented in the Appendix.

Lemma 3.2: [26] Let A ∈ R
p×p have eigenvalues βi with

associated eigenvectors fi, i = 1, . . . , p, and let B ∈ R
q×q

have eigenvalues ρj with associated eigenvectors gj , j =
1, . . . , q. Then the pq eigenvalues of A ⊗ B are βiρj with

associated eigenvectors fi ⊗ gj , i = 1, . . . , p, j = 1, . . . , q.

Lemma 3.3: Let L be the Laplacian matrix associated

with an undirected connected graph. Let

P
△
=

[
βL M

M M

]
(5)

and

Q
△
=

[
βL −B1

βL−B1−B2

2
βL−B1−B2

2 βL −B2

]
, (6)

where B1 and B2 are two (time-varying) matrices satisfying

the following two conditions:

1. Each row sum of Bi, i = 1, 2, is equal to zero;

2. Each off-diagonal entry of Bi, i = 1, 2, denoted as

ϑ
j
i , i = 1, 2, j = 1, . . . , n2−n, satisfies that

∣∣∣ϑj
i

∣∣∣ < ϕ,

and β is a positive constant. When β ≥
max{ (1+ǫ)λmax(M)

λ2(L) ,
8(n−1)ϕ
λ2(L) }, P and Q are positive

semi-definite, where ǫ is any positive constant. In particular,

for any µ ∈ R
n and ν ∈ R

n,
[
µT νT

] [pβL M

M M

] [
µ

ν

]
=0

only if µ = ς11n and ν = ς21n, where p ≥ 1 is a constant

scalar, ς1 and ς2 are two constant scalars.

Proof: We first show that P is positive semi-definite under

the condition of the lemma. Note that (5) can be written as

P =

[
(1 + ǫ)M M

M M

]

︸ ︷︷ ︸
P1

+

[
βL − (1 + ǫ)M 0n×n

0n×n 0n×n

]

︸ ︷︷ ︸
P2

. (7)

According to the definition of M in (1), we know that M is

a Laplacian matrix corresponding to an undirected connected

graph. Therefore, all eigenvalues of M are nonnegative. Note

also that P1 =

[
1 + ǫ 1
1 1

]
⊗M . Because the two eigenvalues

of

[
1 + ǫ 1
1 1

]
are positive, it then follows from Lemma 3.2

that all eigenvalues of P1 are nonnegative except two zero

eigenvalues, which implies that P1 is positive semi-definite.

Therefore, P is positive semi-definite if P2 is positive semi-

definite. Note that P2 is positive semi-definite if and only

if βL− (1 + ǫ)M is positive semi-definite. For an arbitrary

vector x ∈ R
n, we can rewrite x as x = x‖ + x⊥, where

x‖ is the projection of x along the vector 1n and x⊥ is the

projection of x in the plane that is perpendicular to the vector

1n. It follows that

xT [βL − (1 + ǫ)M ]x

=(x‖ + x⊥)T [βL − (1 + ǫ)M ] (x‖ + x⊥)

=(x‖ + x⊥)T [βL − (1 + ǫ)M ]x‖ + (x‖

+ x⊥)T [2βL− (1 + ǫ)M ]x⊥

=(x‖ + x⊥)T [βL − (1 + ǫ)M ]x⊥

=(x‖)T [βL − (1 + ǫ)M ]x⊥

+ (x⊥)T [2βL− (1 + ǫ)M ]x⊥

=(x⊥)T [βL − (1 + ǫ)M ]x⊥

≥βλ2(L)(x
⊥)Tx⊥ − (1 + ǫ)λmax(M)(x⊥)Tx⊥. (8)

When β ≥ (1+ǫ)λmax(M)
λ2(L) [i.e., βλ2(L) ≥ (1+ǫ)λmax(M)], it

follows that βλ2(L)(x
⊥)Tx⊥−(1+ǫ)λmax(M)(x⊥)Tx⊥ ≥

0, which implies that xT [βL − (1 + ǫ)M ]x ≥ 0. That

is, βL − (1 + ǫ)M is positive semi-definite when β ≥
(1+ǫ)λmax(M)

λ2(L) . Therefore, P is positive semi-definite when

β ≥ (1+ǫ)λmax(M)
λ2(L) .

We next show that Q is positive semi-definite under the

condition of the lemma. Note that Q can be rewritten as

Q = β

[
L 1

2L
1
2L L

]

︸ ︷︷ ︸
Q1

+

[
−B1

−B1−B2

2
−B1−B2

2 −B2

]

︸ ︷︷ ︸
Q2

. (9)

Similar to the previous analysis for P , when β >
λmax(Q2)
λ2(Q1)

,

Q is positive semi-definite. According to the Gershgorin disc

theorem, λmax(Q2) ≤ 4(n−1)ϕ. Note that Q1 =

[
1 1

2
1
2 1

]
⊗

L, it follows from Lemma 3.2 that λ2(Q1) = 1
2λ2(L).

Therefore, when β >
8(n−1)ϕ−1

λ2(L) , Q is positive semi-definite.

Lastly, we show that, for any p ≥ 1, µ ∈ R
n and

ν ∈ R
n,

[
µT νT

] [pβL M

M M

] [
µ

ν

]
=0 only if µ = ς11n

and ν = ς21n, where ς1 and ς2 are two constant scalars.

For simplicity, we only study the case when p = 1. Similar

analysis can be applied to the case for p > 1. When p = 1,[
pβL M

M M

]
= P . Note that P1 =

[
1 + ǫ 1
1 1

]
⊗ M and

the two eigenvalues of

[
1 + ǫ 1
1 1

]
are positive. Without loss
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of generality, let the two eigenvalues of

[
1 + ǫ 1
1 1

]
be λ1

and λ2 with the corresponding right eigenvectors given by

ω1 and ω2. It then follows from Lemma 3.2 that P1 has

only two zero eigenvalues with the associated eigenvectors

given by ω1 ⊗ 1n and ω2 ⊗ 1n. Combining with the facts

that ω1 and ω2 are two real vectors and P1 is positive

semi-definite implies that
[
µT νT

]
P

[
µ

ν

]
= 0 only if

[
µ

ν

]
= k1ω1 ⊗ 1n + k2ω2 ⊗ 1n, where k1 and k2 are two

constant scalars. Note also that
[
µT νT

]
P2

[
µ

ν

]
= 0 only

if µ = k31n, where k3 is a constant scalar. It then follows

from (7) that
[
µT νT

]
P

[
µ

ν

]
= 0 only if µ = ς11n and

ν = ς21n, where ς1 and ς2 are two constant scalars.

We next present the main result for (2) using (4) under

an undirected fixed interaction graph when m = 1 (i.e.,

one-dimensional case). When m > 1 (i.e., high-dimensional

case), similar results can be obtained by applying the corre-

sponding analysis to each dimension.

Theorem 3.2: Assume that the interaction graph G is undi-

rected and connected. Using (4) for (2), |ri(t)− rj(t)| →
0 and |vi(t)− vj(t)| → 0 in finite time if β ≥

max{ (1+ǫ)λmax(M)
λ2(L) ,

8(n−1)γ
nλ2(L) }, where ǫ is any positive con-

stant and γ is defined in (3).

Proof: The proof of the theorem is based on Lemma 3.1.

In order to employ Lemma 3.1, the main objective here is

to propose proper functions F and G such that their upper

right-hand derivatives satisfy the conditions in Lemma 3.1.

We will first propose the function G and analyze the corre-

sponding upper right-hand derivative. Then we will propose

the function F and analyze its upper right-hand derivative.

Note that both G and F are carefully designed here.

Define r
△
= 1

n

∑n

i=1 ri, v
△
= 1

n

∑n

i=1 vi, r̃i
△
= ri − r, and

ṽi
△
= vi − v. We can get

˙̃ri = ṽi

and

˙̃vi =
1

n

n∑

j=1

[f(t, ri, vi)− f(t, rj , vj)]

−

n∑

j=1

aij [sig(ri − rj)
α1 + sig(vi − vj)

α2 ]

− β

n∑

j=1

aij [(ri − rj) + (vi − vj)]

=
1

n

n∑

j=1

[f(t, r̃i + r, ṽi + r)− f(t, r̃j + r, ṽj + v)]

−

n∑

j=1

aij [sig(r̃i − r̃j)
α1 + sig(ṽi − ṽj)

α2 ]

− β

n∑

j=1

aij [(r̃i − r̃j) + (ṽi − ṽj)]. (10)

Note that f(t, ri, vi) satisfies (3). It follows that (10) can be

written as

˙̃vi =
1

n

n∑

j=1

[brij(t)(ri − rj) + bvij(t)(vi − vj)]

−
n∑

j=1

aij [sig(r̃i − r̃j)
α1 + sig(ṽi − ṽj)

α2 ]

− β

n∑

j=1

aij [(r̃i − r̃j) + (ṽi − ṽj)], (11)

where
∣∣brij(t)

∣∣ ≤ γ and
∣∣bvij(t)

∣∣ ≤ γ due to (3). Let

B1 = [b1ij ] ∈ R
n×n and B2 = [b2ij ] ∈ R

n×n be defined

such that b1ij = − 1
n
brij(t) and b2ij = − 1

n
bvij(t) for all

i 6= j, b1ii =
1
n

∑n

j=1,j 6=i b
r
ij(t), and b2ii =

1
n

∑n

j=1,j 6=i b
v
ij(t).

Define r̃
△
= [r̃1, · · · , r̃n]

T , ṽ
△
= [ṽ1, · · · , ṽn]

T , and η
△
=

[r̃T ṽT ]T . Consider the function G(t, η) = 1
2η

T P̃ η, where

P̃
△
=

[
2βL M

M M

]
. (12)

Note that P̃ = P +

[
βL 0n×n

0n×n 0n×n

]
and

[
βL 0n×n

0n×n 0n×n

]

is positive semi-definite. It follows from Lemma 3.3 that P̃

is positive semi-definite under the condition of the theorem.

Define

χ
△
= [χ1, · · · , χn]

T (13)

with χi = −
∑n

j=1 aij [sig(r̃i− r̃j)
α1 +sig(ṽi− ṽj)

α2 ]. Then

the upper right-hand derivative of G(t, η) can be derived as

D+G(t, η) = lim sup
h→0+

1

h
[G(t+ h, η(t+ h))−G(t, η(t))]

=2βr̃TL ˙̃r + r̃TM ˙̃v + ṽTMṽ + ṽTM ˙̃v

=− ηTΩη + r̃TMχ+ ṽTMχ,

where

Ω =

[
M(βL −B1) E

ET M(βL −B2)−M

]

with E
△
= −2βL+M(βL−B1)+(βL−B2)M

2 . According to the

definition of M in (1), we have that ML = L, LM = L,

MBi = Bi, and BiM = Bi, i = 1, 2. Therefore, Ω can be

simplified as

Ω =

[
βL −B1

−B1−B2

2
−B1−B2

2 βL −B2 −M

]
.

In order to employ Lemma 3.1, it is important to propose

a proper function F based on the previous function G and

compute its upper right-hand derivative, which can satisfy

the conditions in Lemma 3.1. For the purpose, we consider

the closed-loop dynamics given by

ξ̇i = ̟i,

˙̟ i = −

n∑

j=1

aij [sig(ξi − ξj)
α1 + sig(̟i −̟j)

α2 ],

i = 1, · · · , n, (14)
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where ξi ∈ R, ̟ ∈ R, ξi(0) = κri(0), ̟(0) = κvi(0), and

κ =

{
1, [η(0)]T P̃ η(0) = 0,√

[η(0)]T P̃ η(0)
[η(0)]TPη(0) , otherwise,

(15)

where P̃ is defined in (12), η is defined before (12), and P

is defined in (5). Define ξ
△
= 1

n

∑n

j=1 ξj , ̟
△
= 1

n

∑n

j=1 ̟j ,

ξ̃i = ξi − ξ, ˜̟ i = ̟i − ̟, ξ̃
△
= [ξ̃1, . . . , ξ̃n]

T , and ˜̟ △
=

[ ˜̟ 1, . . . , ˜̟n]
T . Then (14) can be rewritten as

˙̃
ξi = ˜̟ i, ˙̟̃

i = ˙̟ i − ˙̟ , i = 1, · · · , n.

Let ζ
△
= [ξ̃T , ˜̟ T ]T , and consider the function F (t, ζ)

△
=

ζTPζ, where P is defined in (5). Define χ̃
△
= [χ̃1, · · · , χ̃n]

T

with χ̃i = −
∑n

j=1 aij [sig(ξ̃i−ξ̃j)
α1+sig( ˜̟ i− ˜̟ j)

α2 ]. Then

the upper right-hand derivative of F (t, ζ) can be derived as

D+F (t, ζ) = lim sup
h→0+

1

h
[F (t+ h, ζ(t+ h))− F (t, ζ(t))]

= βξ̃TL
˙̃
ξ + ξ̃TM ˙̟̃ + ˜̟ TM ˜̟ + ˜̟ TM ˙̟̃

= −ζT Ω̃ζ + ξ̃TMχ̃+ ˜̟ TMχ̃,

where Ω̃ =

[
0n×n − 1

2βL
− 1

2βL −M

]
.

With the previously proposed functions F and G and

the computation of D+F and D+G, we next check the

conditions in Lemma 3.1. Note that D+F (t, ζ) is continuous

in t and is locally Lipschitz with order χ in ζ. Note also that

D+G(t, η)−D+F (t, η)

=− ηTΩη + r̃TMχ+ ṽTMχ

− (−ηT Ω̃η + r̃TMχ+ ṽTMχ)

=− ηTQη.

According to Lemma 3.3, Q is positive semi-definite un-

der the condition of the theorem. Therefore, D+G(t, η) −
D+F (t, η) ≤ 0. When ξi(0) = κri(0) and ̟(0) = κvi(0),
it follows that F (0, ζ(0)) = G(0, η(0)). It then follows from

Lemma 3.1 that G(t) ≤ F (t) for all t ≥ 0. Given (14),

if the undirected graph G is connected, it follows from

Theorem 1 in [15] that F (t) → 0 in finite time. Note from

the definition of G(t) for all t ≥ 0 that G(t) ≥ 0 for

all t ≥ 0. It then follows from the facts that G(t) ≥ 0,

G(t) ≤ F (t), and F (t) → 0 in finite time that G(t) → 0 in

finite time. From Lemma 3.3, G(t) = 0 only if η =

[
ς11n

ς21n

]

where ς1 and ς2 are two constant scalars. It then follows

that r̃(t) → ς11n and ṽ(t) → ς21n in finite time. Noting

that 1
T
n r̃(t) = 0 and 1

T
n ṽ(t) = 0 because 1

T
n r̃(0) = 0,

1
T
n ṽ(0) = 0, d

dt
[1T

n r̃(t)] = 0, and d
dt
[1T

n ṽ(t)] = 0, it follows

that ς1 = 0 and ς2 = 0. That is, r̃(t) → 0n and ṽ(t) → 0n

in finite time. Because r̃(t) = Mr(t), ṽ(t) = Mv(t), and

M has only one eigenvalue equal to zero with the associated

eigenvector given by 1n, it follows that |ri(t)− rj(t)| → 0
and |vi(t)− vj(t)| → 0 in finite time.

Remark 3.3: From (11), the inherent nonlinear dynamics

can be considered the disturbance introduced to the sys-

tem when the inherent nonlinear dynamics does not exist.

Specifically, the effect of the inherent nonlinear dynamics

can be interpreted as two (time-varying) matrices added to

the Laplacian matrix corresponding to the undirected fixed

interaction graph. In particular, the two matrices satisfy: (1)

the off-diagonal entries of them are bounded; and (2) the

row sums of them are all equal to zero. Accordingly, the

analysis in Theorem 3.2 can be used to analyze the finite-time

consensus for second-order dynamics with/without inherent

nonlinear dynamics under an undirected switching interaction

graph. Specifically, in the presence/absence of the inherent

nonlinear dynamics, finite-time consensus for second-order

multi-agent systems is expected under an undirected switch-

ing interaction graph if the initial undirected interaction

graph is connected and the difference between the Laplacian

matrix for any t > 0 and the Laplacian matrix at t = 0 is

small enough.

IV. CONCLUSION

In this paper, we studied finite-time consensus for dis-

tributed multi-agent systems with second-order dynamics

in the presence of inherent nonlinear dynamics under an

undirected fixed interaction graph. We proposed a nonlin-

ear distributed consensus algorithm and presented sufficient

conditions to guarantee finite-time consensus. By employing

a similar stability analysis, it was expected that finite-time

consensus can be achieved with/without inherent nonlinear

dynamics when the initial undirected interaction graph is

connected and the difference between the Laplacian matrix

for any t > 0 and the Laplacian matrix at t = 0 is small

enough.
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V. APPENDIX

Lemma 5.1: Let f(t, x, λ) be continuous in (t, x, λ) and

locally Lipschitz of order χ in x (uniformly in t and λ)

on [t0, t1] × D × {‖λ− λ0‖ ≤ c}, where D ⊆ R
n is an

open connected set. Let y(t, λ0) be a (unique) solution of

ẋ = f(t, x, λ0) with y(t0, λ0) = y0 ∈ D. Suppose that

y(t, λ0) is defined and belongs to D for all t ∈ [t0, t1].
Then, given ǫ > 0, there is δ > 0 such that if ‖z0 − y0‖ < δ

and ‖λ− λ0‖ < δ, then there is a unique solution z(t, λ)
of ẋ = f(t, x, λ) defined on [t0, t1], with z(t0, λ) = z0, and

z(t, λ) satisfies ‖z(t, λ)− y(t, λ0)‖ < ǫ for all t ∈ [t0, t1].
Proof: The proof is similar to that of Theorem 3.5 in [27]

by studying ‖z(t, λ)− y(t, λ0)‖ when ‖λ− λ0‖ is small

enough. Due to the continuity of f with respect to λ, for

any α > 0, there exists β > 0 such that

‖f(t, x, λ)− f(t, x, λ0)‖ < α, ∀(t, x) ∈ U, ∀ ‖λ− λ0‖ < β,

where U
△
= {(t, x) ∈ [t0, t1]× R

n| ‖x− y(t, λ0)‖ ≤ ǫ}. Let

α ≤ ǫ and ‖y(0)− z(0)‖ ≤ α. Suppose that f(t, x, λ) is

Lipschitz of order χ in x on U with a Lipschitz of order

χ constant L. By following the analysis in the proof of

Theorem 3.5 in [27], it follows that

‖z(t, λ)− y(t, λ0)‖

≤‖y(0)− z(0)‖+

∫ t

t0

‖f(s, y(s))− f(s, z(s))‖ ds

+

∫ t

t0

‖f(s, z(s), λ)− f(s, z(s), λ0)‖ ds

≤α+ α(t− t0) +

∫ t

t0

L ‖y(s)− z(s)‖
χ
ds.

Let α = 1
κ(1+t−t0)

. When κ is sufficiently large (i.e., α

is sufficiently small), it follows that ‖z(t, λ)− y(t, λ0)‖ is

sufficiently small. Therefore, there exists a positive α⋆ such

that ‖z(t, λ)− y(t, λ0)‖ < ǫ when α ≤ α⋆. Then the proof

completes by choosing δ = min{α⋆, β}.

Lemma 5.2: Consider the following vector differential

equation ż = f(t, z), where z
△
= [z1, . . . , zp]

T ∈ R
p,

and f(t, z)
△
= [f1(t, z), . . . , fp(t, z)]

T is defined such that

fi(t, z), i = 1, . . . , p, is continuous in t and locally Lipschitz

of order χ in zi, i = 1, . . . , p, for all t ≥ t0 and all

z ∈ J ⊆ R
p. Let [t0, T ) (T could be infinity) be the maximal

interval of existence of the solution z, and suppose that

z ∈ J for all t ∈ [t0, T ). Let ω
△
= [ω1, . . . , ωp]

T ∈ R
p

be a continuous function whose upper right-hand derivative

D+ω satisfies the differential inequality D+ω ≤ f(t, ω)
with ω(t0) ≤ z(t0), where ω ∈ J for all t ∈ [t0, T ). Then

ω(t) ≤ z(t) for all t ∈ [t0, T ).
Proof: The proof is similar to that of Lemma 3.2 in [23]

based on Lemma 5.1.
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