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Abstract— In this companion paper, the choice of kernels
for estimating the impulse response of linear stable systems is
considered from a classical, “frequentist”, point of view. The
kernel determines the regularization matrix in a regularized
least squares estimate of an FIR model. The quality is assessed
from a mean square error (MSE) perspective, and measures and
algorithms for optimizing the MSE are discussed. The ideas are
tested on the same data bank as used in Part I of the companion
papers. The resulting findings and conclusions in the two papers
are very similar despite the different perspectives.

I. INTRODUCTION

We study the problem of estimating the impulse response

of linear stable systems. Consider a single-input–single-

output linear stable system

y(t) = G0(q)u(t)+ v(t) (1)

Here, y(t) is the measured output, q is the shift operator,

qu(t) = u(t +1), v(t) is the additive white noise, independent

of the input u(t), and the transfer function is

G0(q) =
∞

∑
k=1

g0
kq−k (2)

The coefficients {g0
k}∞

k=1 form the impulse response of the

system. Given the input-output data {u(t),y(t),t = 1, . . . ,N},

the goal is to find estimates {ĝk}∞
k=1 of the impulse response

coefficients {g0
k}∞

k=1.

This is of course a problem that has been studied for a

long time, and has a huge literature, see e.g., [1]. Recently,

this problem is studied from a Gaussian process regression

perspective [2], [3], [4]. In particular, in Part I of the compan-

ion papers [4], it is discussed how to find suitable kernels for

the Gaussian process regression that give estimates {ĝk}∞
k=1

as good as possible. On the other hand, in our recent paper

[5], we formulate a classical regularization approach, focused

on finite impulse response (FIR) models, and show that this

basic regularized least squares approach is a focal point

for interpreting other approaches, like Bayesian inference

and Gaussian process regression. In this contribution, we

continue our discussions and focus on how to deal with

the kernel (regularization matrix) selection problem from a

classical, “frequentist”, perspective.

In [4], the quality of the kernel is assessed from its

associated marginal likelihood. In contrast, the quality of
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the regularization matrix (kernel) is assessed here from its

associated mean square error (MSE). The ideas are tested

on the same data bank as used in Part I of the companion

papers [4]. The resulting findings and conclusions in the two

papers are very similar despite the different perspectives.

II. PRELIMINARY

Before running into the details, we first provide some

preliminary discussions that will be used later.

A. Model Structures

Traditionally, the problem of estimating impulse responses

of linear systems is approached by selecting a particular

parametrization (or model structure) of the impulse response:

y(t) = G(q,θ )u(t)+ v(t) (3)

where

G(q,θ ) =
∞

∑
k=1

gk(θ )q−k (4)

The finite-dimensional parameter θ is estimated, e.g., as

θ̂N = argmin
θ

N

∑
t=1

(y(t)−G(q,θ )u(t))2 (5)

and then the impulse response estimate is found as

ĝk = gk(θ̂N), k = 1,2, . . . ,∞ (6)

This is a simple description of the prediction error method

(PEM) which gives the maximum likelihood (ML) estimate

when the noise v(t) is Gaussian, see, e.g., [1].

B. Classical Estimation Goal

In the classical perspective, the goal is to find estimates

{ĝk}∞
k=1 of {g0

k}∞
k=1 such that

∞

∑
k=1

(g0
k − ĝk)

2 (7)

is as small as possible.

Now, the estimates {ĝk}∞
k=1 will be random variables, since

they are formed from data {u(t),y(t),t = 1, . . . ,N} that is

affected by the noise v(t), so the above sum (7) is a random

variable. Therefore we take expectation w.r.t. the noise v(t)
to form the mean square error

MSE(θ̂N) =
∞

∑
k=1

E(g0
k − ĝk)

2 (8)
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III. REGULARIZED LEAST SQUARES

An especially simple choice of model structure (4) is to

truncate the impulse response, and let the parameter vector be

the impulse response coefficients themselves. This is known

as an FIR (finite impulse response) model:

G(q,θ ) =
n

∑
k=1

gkq−k, θ =
[

g1 g2 . . . gn

]T
(9)

We will from now on assume that g0
k = 0, k > n so that the

true unknown system can be described as an FIR model. In

the following, we let the true impulse response coefficients

be denoted by

θ0 =
[

g0
1 g0

2 . . . g0
n

]T
(10)

The problem of estimating the FIR model (9) can be

written as a linear regression as follows:

YN =
[

y(n + 1) . . . y(N)
]T

ΦN =











u(n) u(n + 1) . . . u(N −1)
u(n−1) u(n) . . . u(N −2)

...
... . . .

...

u(1) u(2) . . . u(N −n)











VN =
[

v(n + 1) . . . v(N)
]T

YN = ΦT
Nθ +VN

(11)

Note that eq. (11) corresponds to eq. (3) in [4].

A. Least Squares

Corresponding to (10), let the well-known least squares

(LS) estimate of θ0 be denoted by

θ̂ LS
N =

[

ĝLS
1 ĝLS

2 . . . ĝLS
n

]T
(12a)

which is given by

θ̂ LS
N = argmin

θ
‖YN −ΦT

Nθ‖2 = R−1
N ΦNYN (12b)

RN = ΦNΦT
N (12c)

For FIR models of high order n (say 125) this estimate will

typically have large variance.

B. Regularized Least Squares: Bias–Variance Trade-Off

The classical way of handling high variance estimates, is

to allow some bias in the estimate that reduces the variance,

but reaches a smaller MSE (MSE is the sum of the square of

the bias and the variance). For linear regressions, the standard

way is to introduce regularization. Corresponding to (10), let

the regularized LS estimate of θ0 be denoted by

θ̂ R
N =

[

ĝR
1 ĝR

2 . . . ĝR
n

]T
(13)

which is given by

θ̂ R
N = min

θ
‖YN −ΦT

Nθ‖2 + θ T Z−1θ , Z−1 ≥ 0

= (RN + Z−1)−1ΦNYN

(14)

where Z−1 is the regularization matrix. The regularized esti-

mate θ̂ R
N depends on Z but we suppress this in the notation.

Note that this estimate θ̂ R
N corresponds to eq. (19) in [4] and

the matrix Z−1 corresponds to the kernel σ2(λ̂ 2K̂(β̂ ))−1 in

eqs. (16) and (19) in [4].

C. Mean Square Error

From (11) and (10), the true system (3) can be written as

YN = ΦT
Nθ0 +VN (15)

Then the mean square error matrix of θ̂ R
N is

MN(θ̂ R
N ) = E(θ̂ R

N −θ0)(θ̂
R
N −θ0)

T

=(RN + Z−1)−1(σ2RN + Z−1θ0θ T
0 Z−T )(RN + Z−1)−1

(16)

Consequently, the MSE measure (8) for the regularized

estimate θ̂ R
N is

MSE(θ̂ R
N ) = traceMN(θ̂ R

N ) (17)

We also see how Z affects the bias variance trade-off.

Roughly speaking, the larger Z (the smaller Z−1), the smaller

the bias will be but the larger the variance. In the limiting

case Z−1 = 0 we are back in the un-regularized case (12b).

The matrix MN(θ̂ R
N ) will be our main tool to evaluate the

quality aspects of various choices for Z.

Remark 3.1: To compute the mean square error of the

estimate we make the follow assumptions:

1) The disturbance v(t) is white noise with variance σ2.

2) The input u is a known sequence; hence RN is a known,

deterministic matrix.

3) The regularization matrix Z is a known, constant

matrix; hence independent of VN .

Actually, we will work with cases later on (“empirical

Bayes”) where Z is partly estimated from data. Then as-

sumption 3 does not hold strictly. But then Z will converge

to an V -independent matrix (as N → ∞), so the expressions

will hold asymptotically. Otherwise the expressions above

are exact, and not asymptotic in N.

IV. REGULARIZATION MATRIX (KERNEL) SELECTION

A. A Matrix Inequality for the MSE

Let Q0 = θ0θ T
0 . Then MN(θ̂ R

N ) in (16) can be rewritten as

MN(θ̂ R
N ) =MN(RN ,Q0,Z)

=(RN + Z−1)−1(σ2RN + Z−1Q0Z−1)(RN + Z−1)−1

(18)

The following algebraic matrix relationship is important:

MN(RN ,Q0,Z) ≥ MN(RN ,Q0,Q0/σ2) ∀ RN > 0,Q0,Z ≥ 0

(19)

Note that the inequality holds in a matrix sense,

i.e., MN(RN ,Q0,Z)− MN(RN ,Q0,Q0/σ2) is positive semi-

definite for all positive definite RN and positive semi-definite

Q0, Z. So the mean square error matrix MN(RN ,Q0,Z) is

minimized by the choice Z = Q0/σ2. The proof consists of

elementary matrix calculations and can be found in [5].
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Remark 4.1: It may happen that Z may be singular, so

the expressions in (16) contain non-existing inverses. If so,

expressions like (RN + Z−1)−1 are rewritten as

(RN + Z−1)−1 = (ZRN + I)−1Z (20)

to contain well-defined expressions.

Remark 4.2: If Z in (14) has rank 1, the regularization is

best interpreted through the solution:

θ̂ R
N = (RN + Z−1)−1ΦNYN = (ZRN + I)−1ZΦNYN (21)

Assume Z=LLT for a column vector L. Further noting RN =
ΦNΦT

N yields

θ̂ R
N = (LLT ΦNΦT

N + I)−1LLT ΦNYN = ηL

η = LT ΦN(ΦT
NLLT ΦN + I)−1YN (scalar)

so the estimate is forced to be parallel to L.

B. Best Regularization For a Known System

The basic result (19) gives a solution to the kernel selec-

tion problem. The best that can be achieved by regularization

for a known system with impulse response coefficients θ0 is

to let

Zopt = θ0θ T
0 /σ2 (22)

This is an interesting insight but cannot be used in practice,

since the objective is to find θ0. It also turns out that the

choice may be quite sensitive w.r.t. Z. We shall return, in

the next section, to show how this insight could be used in

practice.

C. Robustified Choices of Regularization

The optimal choice depends very fundamentally on the

given, unknown system. Then a natural question to ask is

what is the best choice of Z for a collection of given systems,

say, θ0 ∈ Θα . This leads to two kinds of strategies:

• Best worst case choice for the given set:

Z
opt
α = argmin

Z

max
θ0∈Θα

traceMN(RN ,θ0θ T
0 ,Z) (23)

• Best average choice for the given set:

Z
opt
α = argmin

Z

Eθ0∈Θα traceMN(RN ,θ0θ T
0 ,Z) (24)

Even in a frequentist framework we may of course

ask for the expected (average) behavior over a set of

possible true systems (θ0 ∈ Θα).

a) Best Worst Case Choice for White Input: There is

an interesting connection between the best worst case choice

and the “ideal” choice (19). To illustrate the idea, assume Θα

is the interior of an ellipsoid of the following form

Θα = {θ0|θ T
0 Λθ0 < α} (25)

where Λ is positive semi-definite and α > 0. Also assume

sufficient regularity so that we can interchange the minimiza-

tion and maximization operations in (23). In this case

Z = arg max
θ0∈Θα

min
Z

traceMN(RN ,θ0θ T
0 ,Z) (26)

Now, from (19) we see that the solution to the inner mini-

mization is

Z(θ0) = θ0θ T
0 /σ2 (27)

and hence

min
Z

traceMN(RN ,θ0θ T
0 ,Z) (28)

= trace((θ0θ T
0 RN/σ2 + I)−1θ0θ T

0 ) (29)

=
σ2θ T

0 θ0

θ T
0 RNθ0 + σ2

(30)

Further assume that the input u(t) is white noise with

variance µ so

RN/N → µIn, N → ∞ (31)

Then for sufficiently large N, the outer maximization prob-

lem in (26) is equivalent to maximizing

max
θ0

σ2θ T
0 θ0

σ2 + Nµθ T
0 θ0

(32)

subject to θ T
0 Λθ0 ≤ α (33)

Note that the ratio above is monotonic in θ T
0 θ0 so it is a

matter of maximizing the norm ‖θ0‖ subject to the constraint

(33). This is clearly done by letting θ0 be proportional to

the eigenvector corresponding to the minimum eigenvalue

of Λ. Finally, noting (27) yields that the solution to (23) is

again of the form (22) with θ0 corresponding to the smallest

eigenvalue of the matrix Λ defined in (25).

b) Best Average Choice: Note that the problem (24) –

even without “trace” – can be written

Z
opt
α = argmin

Z

MN(RN ,Qα ,Z), Qα = Eθ0∈Θα θ0θ T
0 (34)

regardless of the shape of the set Θα . This follows since

MN(RN ,θ0θ T
0 ,Z) is linear in θ0θ T

0 . From (19) we know the

solution to (34):

Z
opt
α = Qα/σ2 (35)

Remark 4.3: The case with averaging over a given subset

of systems has an obvious Bayesian interpretation. If we

“know” that the system lies in a given set Θα where the

covariance matrix of θ0 is Qα , we can view that as prior

information about the parameter. Adding the assumption

that the noise v(t) is Gaussian with variance σ2 and the

prior distribution is Gaussian θ0 ∈ N(0,Qα), gives the pos-

terior density of the parameter, given the observations YN

as N(θ̂ R
N ,Ppost). Here, the mean θ̂ R

N is given by (14) with

Z = Qα/σ2 and Ppost = ((σ2R−1
N )−1 + Q−1

α )−1.

V. PARAMETERIZATIONS OF THE “Z” MATRIX

To get an idea of how the regularization matrix Z might be

parameterized, we first specialize to the case of a diagonal

Z-matrix

Z = diag(z1, ...,zn) (36)
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and the case of the input u(t) being of white noise, so that

for sufficiently large N, according to (31), the n diagonal

elements of MN(θ̂ R
N ) in (16) are readily found to be

E(ĝR
k −g0

k)
2 =

σ2Nµ +(g0
k/zk)

2

(Nµ + 1/zk)2
, k = 1, . . . ,n (37)

For each k, this is minimized by

zk = (g0
k)

2/σ2 (38)

which is well in line with the optimal choice (19). Of course,

the true impulse response is not known, but this is a case

where we could have some idea about how to parameterize

the regularization matrix Z. Assume that the unknown linear

stable system has all poles inside a circle with radius
√

λ .

Then there exists c > 0 such that

(g0
k)

2 ≤ cλ k, k = 1, . . . ,n (39)

Therefore we have a natural parametrization of a diagonal

regularization matrix

ZDI
α = diag(cλ , . . . ,cλ n), α = [c,λ ] (40)

The parameter α is often called a hyper-parameter and may

not be known, but could be estimated in some ways. We will

return to that in the next section.

Thinking that Z in some way should mimic the optimal

choice Z = θ0θ T
0 /σ2, then λ in the diagonal case presented

above captures the decay of the impulse response. We

may also try to encapsulate the smoothness of the impulse

response. The off-diagonal elements in θ0θ T
0 describe the

“correlation” between different parts of the true impulse

response. Picking a parameter ρ to describe this smoothness

we obtain a matrix, with k, j-element

ZDC
α (k, j) = cρ |k− j|λ (k+ j)/2, α = [c,λ ,ρ ] (41)

Here |ρ | ≤ 1 and ρ ≈ 1 means that neighboring values of g0
k

are very close, while ρ < 0 means that neighboring values

of g0
k tend to have opposite signs.

Remark 5.1: Notice that these assumptions on decay (λ )

and smoothness (ρ) of the impulse response coefficients can

be given corresponding interpretations about the frequency

response of the system, cf the discussion in [6].

We may also link the exponential decay to the correlation

(somewhat ad hoc) by ρ =
√

λ to obtain the regularization

matrix

ZTC
α (k, j) = cmin(λ j,λ k), α = [c,λ ] (42)

and by ρ = −
√

λ to obtain the regularization matrix

ZHF
α (k, j) = c(−1)k− j min(λ j,λ k), α = [c,λ ] (43)

Remark 5.2: It is interesting to see that the two regular-

ization matrices ZTC(α) and ZHF (α) can also be introduced

in a “stochastic” argument in Part I of the companion papers

[4]:

• ZTC corresponds to the 1st order stable spline K1 in eq

(10) of [4]. (λ ∼ e−β1)

• ZHF corresponds to high frequency stable spline K3 in

eq (14) of [4]. (λ ∼ e−β3)

In the numerical illustration section, we will also test the

so-called 2nd order stable spline kernel [2]:

ZSS
α (k, j) =

{

c λ 2k

2
(λ j − λ k

3
), k ≥ j

c λ 2 j

2
(λ k − λ j

3
), k < j

, α = [c,λ ] (44)

that corresponds to K2 in eq (11) of [4]. (λ ∼ e−β2). The

scaling factor c in (40) to (44) corresponds to λl in (4) of

[2].

VI. ESTIMATION OF THE HYPER-PARAMETER

Among a large number of possible parameterizations of

the regularization matrix we have now singled out the

particular ones, ZDI
α ,ZDC

α ,ZTC
α and ZHF

α , based on ideas to

mimic the behavior of the optimal (but inaccessible) one,

Zopt = θ0θ T
0 /σ2.

They all contain “hyper-parameter” α reflecting assumed

decay and smoothness of the unknown impulse response. In

a given estimation situation, the parameter α needs to be

found, guessed or estimated.

There are several possibilities to do that, for example,

• Explicitly Minimizing the MSE

• Empirical Bayes Method

A. Explicitly Minimizing the MSE

For a known impulse response θ0, known variance σ2 and

known input RN we can compute the MSE (8) for a given

regularization matrix Zα using (16) by

f (α,θ0,σ
2,RN) =trace

(

(RN + Z−1
α )−1×

(σ2RN + Z−1
α θ0θ T

0 + Z−T
α )(RN + Z−1

α )−1
)

(45)

and then estimate the hyper-parameter α by

α̂ = argmin
α

f (α,θ0,σ
2,RN) (46)

Remark 6.1: A problem is of course that the system θ0

and the variance σ2 are not known, but a preliminary

estimate θ̂N and σ̂2 could first be obtained and then the

hyper-parameter is found by

α̂ = argmin
α

f (α, θ̂N , σ̂2,RN) (47)

B. Empirical Bayes Method

A given regularization matrix Zα can, according to (35),

be given a Bayesian interpretation. Assume θ ∼ N(0,Qα).
Then, under the Gaussian assumption of the noise v(t), we

find from (11) that

YN ∈ N(0,Σα), Σα = σ2In + ΦT
NQα ΦN (48)

and from the observation of YN we can estimate α with the

maximum likelihood method:

α̂ = argmin
α

Y T
N Σ−1

α YN + logdetΣα (49)

With a known α̂ , we can compute the corresponding MSE

f (α̂ ,θ0,σ
2,RN) according to (45), i.e., (17). Recall that in

this case the MSE expression is only valid asymptotically as

mentioned in Remark 3.1.
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VII. NUMERICAL ILLUSTRATIONS

We use the data bank of systems and data sets in Part I of

the companion papers [4] for simulations. Like [4], there are

four experiments. We refer to [4] for details of the data bank

and the four experiments. Here, we use FIR model order of

150 for the 2nd experiment, and 100 for the remaining three

experiments.

A. Measure of fit

The quality of an estimated FIR model

G(q, θ̂N) =
n

∑
k=1

ĝkq−k, θ̂N =
[

ĝ1 ĝ2 . . . ĝn

]T
(50)

is evaluated according to the MSE in (8). With the knowledge

of RN , σ̂2, and the true impulse response θ0, we can calculate

the MSE according to (17) for a given regularization matrix

Z. To have a measure that does not depend on the actual size

of the impulse response, we will use the following normal-

ized measure of fit (in line with the compare command in

the System Identification toolbox):

fit = 100

(

1−
√

∑n
k=1 E(g0

k − ĝk)2

∑n
k=1(g

0
k − ḡ)2

)

, ḡ =
1

n

n

∑
k=1

g0
k (51)

where the term ∑n
k=1 E(g0

k − ĝk)
2 is nothing but (17) for the

estimated FIR model (50). The fit (51) is calculated for each

estimated FIR model. Each figure in the tables below is an

average of the fits, for a particular regularization matrix, over

the data bank of data sets.

Remark 7.1: It should be noted that the model fit mea-

sures used in [4] (eq (21)) are computed based on the

estimated FIR models (50). However, we do not need to

know estimated FIR models (50) to compute (51). The

expression (17) only involves the true impulse response θ0,

RN , σ2, and the regularization matrix Z. The quantities θ0

and RN are known from the data bank and σ2 is estimated

from the sample variance of the estimated FIR model of

order 150 or 100 using the LS method. The regularization

matrix Zα defined is computed for each system as described

in Section V.

B. Sketch of the simulation

For each data set in one of the four experiments, we

compute model fit measures for the following four cases:

1) LS method (without regularization).

2) Optimal regularization for completely free regulariza-

tion matrix. That is, the optimal regularization matrix

(22) is applied to get the MSE (17).

3) Optimal regularization within each of the five regular-

ization matrices defined in Section V, using the method

of minimizing the MSE. That is, solving (46) for the

hyper-parameter α , and apply the resulting one to get

the MSE (17). We use (46) rather than (47) to find

the theoretical best fit, not depending on a particular

preliminary estimate.

4) Similar to 3) but the hyper-parameter α is solved using

the Empirical Bayes method (49).

Note that 3) and 4) require global optimization of a non-

convex criterion, and we cannot of course guarantee that we

always reach that optimum.

C. Simulation results

1) Cases 1) and 2) in Section VII-B: The results are

shown in the table below.

Exp. No. LS without Reg. Opt. Reg. with (22)

Exp. 1 55.6 97.1

Exp. 2 70.8 98.1

Exp. 3 -3.4×106 96.5

Exp. 4 -2.6×106 94.7

The very bad fits in the un-regularized LS case in Exp. 3 and

4, are due to the low pass inputs used in those experiments.

The matrix RN is the n× n covariance matrix of the input,

which for n = 100 has a condition number of 4 · 1012.

(Essentially the ratio between the largest and the smallest

value of the spectrum of the input for this large n). For

the un-regularized case the covariance and MSE matrix is

essentially R−1
N which explains why regularization is quite

necessary.

2) Case 3) in Section VII-B: The five regularization ma-

trices defined from (40) to (44) are tested and correspond to

the first five columns of the table below. Moreover, “BEST”

denotes the result for the model that has the smallest MSE

over all the regularization matrices. The results are shown in

the table below.

Exp. No. DI SS HF TC DC BEST

Exp. 1 83.2 82.2 84.3 83.7 86.4 86.7

Exp. 2 88.5 88.5 89.2 89.2 90.7 90.9

Exp. 3 59.3 60.9 48.8 61.4 61.6 63.2

Exp. 4 69.9 89.7 37.7 87.5 89.3 89.8

3) Case 4) in Section VII-B: Similar to the table above,

the results using the empirical Bayes method for different

regularization matrices are shown in the table below. Here,

“BEST” denotes the result for the model that has the largest

marginal likelihood over all the regularization matrices.

These figures correspond to the analogous results in Fig. 3

of the companion paper [4].

Exp. No. DI SS HF TC DC BEST

Exp. 1 81.9 77.9 82.9 81.9 85.1 85.8

Exp. 2 88.1 85.6 88.5 88.4 90.2 90.5

Exp. 3 52.3 52.8 11.5 54.5 55.2 58.1

Exp. 4 65.0 88.0 -26.2 85.8 87.0 88.1

Recall that each figure in the second and third tables is an

average for the 1000 fits obtained for the different systems

in the experiments. It is of course interesting to study the

distribution of the fits over the different individual data sets.

It can be seen from the box plots in Figures 1 and 2 that

the method of minimizing the MSE is more robust than the

empirical Bayes method, while the figures in the second and

third tables look similar.
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Experiment 1
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18 outliers 20 outliers 39 outliers 11 outliers 18 outliers 7 outliers
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DI SS HF TC DC BEST
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Experiment 4

Fig. 1. Box-plots of the fits for the method of minimizing the MSE (46).
The plots show left to right the results for the kernels DI,SS, HF, TC, DC
and the best choice. Each box plot shows the fit for all the 1000 systems in
the corresponding experiment. Fits smaller than 0 (called outliers) are not
shown, but the number of such outliers are indicated.

D. The findings

Not surprisingly, the FIR model obtained using the ideal

regularized LS with the optimal regularization matrix (22)

works very well for all 4 experiments. The figures reported

in the first table are actually the theoretical upper bounds

that can be achieved for the FIR model obtained using the

regularized LS estimate (14).

The second table shows the theoretical limits for what

can be achieved with regularization confined to the particular

matrix structures in Section V. It reveals that the constraint

in choice of Z causes the fit to drop by 5 to 30 %. Still, quite

good fits are obtainable by such regularized LS FIR modeling

for a large variatey of systems. The data and systems in

Experiment 3 are more difficult.

It is quite remarkable that the empirical Bayes method

achieves fits that most of the time are just a few percent

units below the theoretical best fit for the kernel in question.

VIII. CONCLUSIONS

We have in this paper studied the choice of kernels, or

regularization matrices, from a classical, frequentist, per-

spective. We have explored the boundaries for what can be

achieved at all with such kernel methods, if no constraints

are placed on the structure of the kernel (see section VII-

C.1) showing that very good fits can be achieved for all the

systems.

With the constraints of the kernel imposed by the differ-

ent structures in Section V, the theoretically achievable fit

becomes worse, especially for Experiment 3, (see section

VII-C.2).

Then the question arises how well these theoretical perfor-

mance limits can be achieved by algorithms that do not use
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7 outliers 45 outliers 4 outliers 9 outliers 3 outliers 1 outliers
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Fig. 2. Box-plots of the fits for the Empirical Bayes method (49). Same
legend as in Figure 1.

knowledge of the true system. The empirical Bayes method

does very well in that, especially for the kernels SS and DC.

It is actually quite thought-provoking that the empirical

Bayes method, which is based on ML estimation of the

hyper-parameters comes so close to the theoretical optimal

performance for the corresponding regularization kernels.

The links between the optimization problems (46) and (49)

should be studied more closely.
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