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Abstract— The, so-called, adaptive super-twist controller is
considered here. It contains the adaptive gain-parameter which
adjusts the level of a scalar control action on-line based on direct
measurements the "equivalent control" obtained by a first-
order low-pass filter. It is shown that the problems of the finite
time convergence and keeping a small chattering amplitude can
be handled simultaneously if the gain magnitude is reduced to
a minimal admissible level defined by the conditions for sliding
mode to exist. The suggested methodology is compared nu-
merically with another schemes of a gain-adaptation (including
σ-adaptation) showing a high effectiveness under a significant
level of uncertainties and external disturbances.

I. INTRODUCTION

A. Brief survey

The basic idea of Adaptive Control Approach consists in

designing the systems exhibiting the same dynamic prop-

erties under uncertainty conditions based on utilization of

current information. It involves modifying the control law

used by a controller to cope with the fact that the parameters

of the system being controlled are slowly time-varying or

uncertain. Even more, adaptive control implies improving

dynamic characteristics while properties of a controlled plant

or environment are varying [1], [20]. Without adaptation

the original Sliding Mode Control (SMC) demonstrate

robustness properties with respect to parameter variations

and disturbances [22]. The first attempts to apply ideas of

adaptation in SMC were made in the 60’s [6], [7] and

[8]: the control efficiency was improved by changing the

position or equation of the discontinuity surfaces without any

information on a plant parameters. The design idea might

be formulated as follows: if sliding mode exists, then the

coefficients of switching plane can be varied to improve the

system dynamics. However those early publications did not

take in to account the main obstacle for SMC application

- the chattering phenomenon which is inherent in sliding

motions (see, for example, [2], [3] and [4]). The phenomenon

is well-known from literature on power converters and re-

ferred to as “ripple” [16]. Then the efforts of the researchers

were oriented to the application of adaptivity principles

to reduce the effect of chattering. Since the amplitude

of chattering is proportional to discontinuity magnitude in

control, one of possible adaptation methods is related to

reducing this magnitude to the minimum admissible value

dictated by the conditions for SM to exist. So, in [17] the
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control gain depended on the distance of system state to a

discontinuity surface. The tracks of adaptivity can be found

in the first publications about variable structure systems with

SM (see [22], [23]) with the control gain proportional the

system state. Similar ideas were developed later in [11]

with different algorithms of tuning a control gain. There

exist also adaptive SMC (ASMC) algorithms that allow

adjusting dynamically the control gains without knowledge

of uncertainties/perturbations bounds. In particular, several

adaptive fuzzy SMC algorithms were proposed. However,

they do not guarantee the tracking performance (see [15],

[19] or overestimate the switching control gains as in [10]).

Of course, another efficient tool to suppress chattering is the

application of state observers [5], but for this method the

plant parameters are assumed to be known.

B. Motivation and the design idea

In [17] and [21] the adaptation process with the varying

magnitude of the control gain terminates at the moment when

the sliding mode starts. In [11] the authors tried to con-

tinue the adaptation process during sliding mode estimating

equivalent control. However, none of the above algorithms

resulted in minimum possible value of the discontinuous con-

trol. Finding the solution of this problem under uncertainty

conditions is the objective of this paper. This leads to the

minimization of chattering effect.

C. Primitive example

We start with a simple example. It is evident that for the

first-order system

ẋ (t) = a+ u
u = −ksign (x (t)) , k > 0 (1)

with known range only 0 < |a| ≤ a+ of a constant parameter

a. If the value of a is unknown, the magnitude of control

is selected such that sliding mode exists for the all values

of unknown parameter k > a+. However if parameter a is

varying, the gain k can be decreased and as a result chattering

amplitude can be reduced. The objective of adaptation is

decreasing k to the minimal value preserving sliding mode,

if parameter a is unknown.

If the condition k > a+ holds, then sliding mode with

x (t) ≡ 0 occurs and control in (1) should be replaced by the,

so-called, equivalent control [22] ueq for which the right-

hand side in (1) is equal to zero, namely,

ẋ (t) = 0 = a+ ueq (2)

that leads to

k [sign (x (t))]eq = a (3)
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If k < a, the set x (t) ≡ 0 is of zero measure in

time and can be disregarded. The function [sign (x (t))]eq
is an average value, or a slow component of discontinuous

function sign (x (t)) switching at high frequency and can be

easily obtained by a low pass filter filtering out the high

frequency component [22]. Of course, the average value is

in the range (−1, 1). The design idea of adaptation looks

transparent: after sliding mode occurs the control parameter

[sign (x (t))]eq should be decreased until becomes close to

1 . Further decreasing will lead to ceasing sliding mode.

As a result, the minimal possible value of discontinuity

magnitude is found for the current value of parameter a to

reduce the amplitude of chattering. For that purpose select

the adaptation algorithm in the form

k̇ (t) = k(t)sign (δ (t))−M [k(t)− k+]
+
+M [µ− k(t)]

+

δ (t) :=
∣∣∣[sign (x (t))]eq

∣∣∣− α, α ∈ (0, 1) , M > k+ > a+

[z]
+
:=

{
z if z ≥ 0
0 if z < 0

(4)

The gain k can vary in the range [µ, k+], µ is a preselected

minimal value of k. For the adaptation algorithm (4) sliding

mode will occur after a finite time interval. Indeed, if it does

not exist, then ∣∣∣[sign (x (t))]eq
∣∣∣ = 1

that leads to δ > 0, and the increasing gain k (t) will reach

the value k+ which is sufficient for enforcing sliding mode

for any value of parameter a.

Show that in sliding mode the adaptation process (4) is

over δ (t) = 0 after a finite time tf . To do that calculate the

time derivative of the Lyapunov function V (δ) = δ2/2. First,

assume that during the adaptation process k (t) ∈ [µ, k+]
which means that |a| /α > µ. Then

V̇ (δ (t)) = δ (t) δ̇ (t) = δ (t)
d

dt

∣∣∣[sign (x (t))]eq
∣∣∣ =

δ (t)
d

dt
(|a| /k) = − |a| δ (t) k−2k̇ =

- |a| δ (t) k−1sign
(
δ (t) -M [k(t)− k+]

+
+M [µ− k(t)]

+

)

= − |a| δ (t) k−1sign (δ (t)) = − |a| k−1 |δ (t)|
≤ −

√
2
|a|
k+

√
V (δ (t))

(5)

It is evident from the solution

0 ≤
√
V (δ (t)) ≤

√
V (δ (0))− |a|√

2k+
t

of the differential inequality (5) that
√
V (δ (t)) = 0 at least

after

tf =
k+

|a|
√
2V (δ (0)) =

k+

|a| |δ (0)|

and, as a result, δ (t) becomes equal to zero identically after

the finite time tf .

After the adaptation process is over (t > tf ) we have

∣∣∣[sign (x (t))]eq
∣∣∣ =

|a|
k
= α

so, k = |a| /α. If |a| /α < µ, then the gain k decreases until

k = µ and then, as it follows from (4), it is maintained at

this level.

Remark 1: The function [sign (x (t))]eq is needed here for

the implementation of the adaptation algorithm (4). As it

was mentioned above, it can be derived by filtering out

a high frequency component of the discontinuous function

sign (x (t)) by a low pass filter

τ ż + z = sign (x (t)) , z (0) = 0

with a small time constant τ > 0 and the output z (t) which

is, in fact, an estimate of [sign (x (t))]eq satisfying

∣∣∣z (t)− [sign (x (t))]eq
∣∣∣ ≤ O (τ) →

τ→0
0

Then the convergence analysis of (4)-(5) with δ (t) = z (t)−
α is valid beyond the domain |δ (t)| ≤ O (τ). This inequality

defines the accuracy of adaptation. The switching frequencies

of the modern power converters are of order dozens of kHz,

and very small time constant τ can be selected to get a high

accuracy of adaptation.

Remark 2: The adaptation algorithms

k̇ (t) = ρk(t)sign (δ (t))−M
[
k(t)− k+

]
+
+M [µ− k(t)]

+

with ρ > 0 works as well, if the parameter a is time

varying (a = a(t)) with bounded time derivative, namely,∣∣∣∣
d

dt
|a(t)|

∣∣∣∣ ≤ da = const. Indeed, again assuming that

k (t) ∈ [µ, k+] or, equivalently, a/α > µ, we have

V̇ (δ (t)) = δ (t) δ̇ (t) = δ (t)
d

dt

∣∣∣[sign (x (t))]eq
∣∣∣ =

δ (t)
d

dt
(|a| /k) = − |a| δ (t) k−2k̇ + δ (t) k−1 d

dt
|a(t)| ≤

− |a| ρδ (t) k−1sign (δ (t)) + |δ (t)| k−1da ≤
− |δ (t)| |a| ρk−1 + |δ (t)| daµ−1 ≤ −ρ |δ (t)|µα/k+
+ |δ (t)| daµ−1 = − |δ (t)| (ρµα/k+ − da/µ) =

−ρ0
√
2V (δ (t)), ρ0 = ρµα/k

+ − da/µ

If ρ > dak
+/
(
αµ2

)
it follows that ρ0 > 0, and similarly to

the analysis for a = const it can be shown that δ (t) ≡ 0

after the finite time tf =
ρ0√
2
|δ (0)|. If in the course of the

motion the gain k(t) decreases and becomes equal to µ, then

it will be maintained at this level. Since the gain a (t) is time

varying its increase can result in |a| /µ = α and δ = 0 at

some time tµ. As it follows from the above analysis, for the

further motion in the domain k (t) ∈ (µ, k+] with the initial

condition δ (tµ) = 0 the time function δ (t) will be equal to

zero identically with |a| /k = α.

Certainly, we have described the idea only. The general-

ization of the adaptive procedure (4) for the, so-called, super-

twist controller (with a high-order sliding mode) constitutes

the main result of this paper.

II. MAIN PROPERTIES OF THE STANDARD SUPER TWIST

WITHOUT ADAPTATION

Consider the simple two dimensional nonlinear system

containing discontinuous nolinearities in the right-hand sides
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of both components of the corresponding ODE:





ẋ(t) = y(t)− ᾱ
√
|x(t)|sign(x(t))

ẏ(t) = φ(t) + u(t)
u(t) := −β̄sign(x(t))

(6)

referred below to as the "super-twist" controller [12], [13]

and [14]. In (6) there is supposed that

ᾱ > 0 and |φ(t)| ≤ φ0 < β̄ (7)

a) The both state variable are sign-varying, therefore the

initial conditions can be selected as follows

x(0) = −x0, x0 > 0, y(0) = 0

In our case ẋ(0) > 0 and, hence, x(t) is increasing. Denote

t∗1 := inf {t > 0 : x(t∗1) = 0, x(t) < 0 for t ∈ [0, t∗1)}

Next, compare two ODE’s:

ẋ(t) = y(t)− ᾱ x(t)
√
|x(t)|

, x(0) = −x0 < 0 (8)

where

y(t) =

t∫

τ=0

[
β̄ + φ(τ)

]
dτ

satisfying

y(t) ≥
t∫

τ=0

[
β̄ − φ0

]
dτ = m · t, m := β̄ − φ0 > 0

y(t) ≤
t∫

τ=0

[
β̄ + φ0

]
dτ =Mt, M := β̄ + φ0

(9)

and

ż(t) = m · t− ᾱ z(t)√
x0
, z(0) = x(0) = −x0 < 0 (10)

Obviously that the ODE (8) is equivalent to (6). Since |x(t)|
is decreasing it follows that

1
√
|x(t)|

>
1√
x0
:= k0 for t > 0

For any t ∈ [0, t∗1) we have x(t) < 0 and z(t) < 0 which

implies ẋ(t) > ż(t) and, as the result, x(t) > z(t). So that

t∗1 < t
′ := inf {t > 0 : z(t) = 0}

The solution to (10) is

z(t) =
m

ᾱk0

(
t− 1

ᾱk0

)
+

[
m

(ᾱk0)
2
− x0

]

e−ᾱk0t

and, in view of this, one can conclude that

t′ = (k0)
−1
O

(
1

ᾱ

)
=
√
x0O

(
1

αᾱ

)
< t∗1

and by (9) it follows that y(t) ≤Mt and hence

y(t∗1) ≤Mt∗1 ≤Mt′ =M
√
x0O

(
1

ᾱ

)

b) For t > t∗1 we already have that x (t) > 0 and y(t) is

a decaying function since

ẏ(t) = φ(t)− β̄sign(x(t)) = φ(t)− β̄ ≤ 0
that implies

y(t) ≤ y(t∗1)−m · t (11)

For the instant t∗∗1

t∗∗1 := inf {t > t∗1 : y(t) = 0}
we have

t∗∗1 ≤ t∗1 + y(t∗1)/m = t∗1 +
M

m

√
x0O

(
1

ᾱ

)

=

(
1 +

M

m

)
√
x0O

(
1

ᾱ

) (12)

So, by (6) and (11)

x(t∗∗1 ) =
t∗∗
1∫

τ=t∗
1

[
y(τ)− ᾱ

√
|x(τ)|sign(x(τ))

]
dτ

=
t∗∗
1∫

τ=t∗
1

[
y(τ)− ᾱ

√
|x(τ)|

]
dτ ≤

t∗∗
1∫

τ=t∗
1

y(t∗1)dτ =

y(t∗1) (t
∗∗
1 − t∗1) ≤ y2(t∗1)/m ≤ γx0

(13)

where

γ :=
M2

m

[
O

(
1

ᾱ

)]2
(14)

Selecting α large enough we may conclude that γ ∈ (0, 1)
and

x(t∗∗1 ) ≤ γx0
Here x(t∗∗1 ) is an initial value of (6) for the second interval

∆t2 := t
∗∗
2 − t∗∗1 where

t∗∗2 := inf {t > t∗∗1 : y(t) = 0}
Similarly to (13)

|x(t∗∗2 )| ≤ γx(t∗∗1 ) ≤ γ2x0 (15)

c) Iterating this process we may conclude that

|x(t∗∗i )| ≤ γ
∣∣x(t∗∗i−1)

∣∣ ≤ · · · ≤ γix0 (16)

and

∆ti := t
∗∗
i − t∗∗i−1 ≤

√∣∣x(t∗∗i−1)
∣∣
(
1 +

M

m

)
O

(
1

ᾱ

)

≤ γi/2√x0
(
1 +

M

m

)
O

(
1

ᾱ

)

(17)

Last two inequalities permit to formulate the following

result.

Proposition 1: If |φ(t)| ≤ φ0 < β, then for any initial

value x(0) from bounded domain there exist large enough

ᾱ > 0, such that the super-twist procedure (6) has a finite

time convergence or reaching time proceeding , the following

properties holds:

1) for large enough ᾱ we may guarantee that

γ :=
M2

m

[
O

(
1

ᾱ

)]2
< 1
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2) as the result,

|x(t)| ≃ O
(
γt/2

)
→
t→∞

0

Proposition 2: The reaching time

treach := inf
t̄≥0
{t̄ : x(t) = 0 for all t ≥ t̄}

is estimated by

treach ≤
∞∑

i=1

∆ti ≤
√
x0

(
1 +

M

m

)
O

(
1

ᾱ

)
∞∑

i=1

γi/2

≤
√
γ

1−√γ
√
x0

(
1 +

M

m

)
O

(
1

ᾱ

)

(18)

The important comments can be done:

• the reaching time tends to zero with gain ᾱ→∞;
• a finite-time convergence takes place for any smallm :=
β̄ − φ0 > 0;

• the sufficient convergence conditions, derived in pre-

vious publications(see, for example, [13], [18]) led to

upper estimate of admissible disturbance less than 0.5β̄.

Note that the system is not even asymptotically stable

for L ≥ β̄. As it follows from (6) in this case y (t) is

constant or diverging, if the disturbance φ is such that

|φ (t)| ≥ β̄, and has sign opposite to control u (t).
• the upper bound (18) for the reaching time treach is

proportional to the root of the initial state, namely,√
|x0| and inverse-proportinal to the parameter ᾱ, i.e.,

O

(
1

ᾱ

)
.

A. Numerical simulations of the super-twist control without

adaptation

The figure 1 illustrates the dynamics of the super-twist

controller with the following parameters:

ᾱ = 4, β̄ = 1, φ0 = 0.1 and x(0) =
[
0.1 −0.2

]⊺

One can see a finite-time convergence to zero (approximately

in 0.3 sec.) of the first state variable x (t) and the correspond-

ing discontinuous control of the amplitude β̄ = 1.

III. SUPER-TWIST CONTROL WITH ADAPTATION

Denoting

x1 = x, x2 = y, k := β̄

the system (6) can be represented as






ẋ1 = x2 − ᾱ
√
|x1|sign(x1)

ẋ2 = φ(t) + u
u := −ksign(x1)

or, in the vector format

ẋ = f (t, x) + b(t, x)u

with

f (t, x) :=

(
x2 − ᾱ

√
|x1|sign(x1)
φ(t)

)
, b(t, x) :=

(
0
1

)

Taking

σ(x) = x1
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Fig. 1. The states and the control signal for the super-twist controller
without adaptation of the gain parameter β.

and permitting for the gain parameter to be time-varying,

i.e., k (t) = β (t), we may apply the following adaptation

procedure:

k̇(t) =






[γ0 + γ1 ‖x‖] k(t)sign (δ (t))
if 0 < µ ≤ k (t) ≤ k+

0 otherwise

(19)

where1

δ(t) := z(t)/k(t)− α, α ∈ (0, 1) , λ > 0

z(t) :=






k(t)
∣∣∣[sign (σ (x))]eq

∣∣∣

if

∣∣∣k(t) [sign (σ (x))]eq
∣∣∣ ≥ µ > 0

µ otherwise

(20)

A. The σ−adaptation

Here, following to [17], we apply the adaptation law given

by

u(t) = −k(t)sign(x1(t))
k̇(t)=

{
k(t) |σ(x(t))| sign(|σ(x(t)| − ε) if k(t) > µ̄

µ̄ if k(t) ≤ µ̄
(21)

referred to as "σ−adaptation". In (21) k(0) = 1, ε = 0.01
and µ̄ = 0.001. The specific feature of this procedure

is that the adaptation process practically stops after the

reaching time treach when σ(x(t)) = x1(t) = 0 for any

t ≥ treach, and, as the result, the gain parameter k(t) = β(t),
defining the size of the discontinuous control (or a chattering

amplitude) may be still too far from the disturbance level

|φ(t)| ≤ φ0 which is minimal possible one guarantying

the finite-time convergence. This effect is clearly seen in

the figure 2: the reaching time treach ≃ 0.2 sec., but the

1The condition k̇(t) = 0 and z(t) = µ can be fulfilled by addition the
discontinuous terms as in (4).
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gain parameter (the chattering amplitude) remains around the

initial level 1.0 which is too high comparing with φ0 = 0.1.
So, the adaptation period is to short to decrease significantly

the gain parameter k(t) = β̄(t), and in sliding mode regime

there is no adaptation.
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Fig. 2. The states and the control signal for the super-twist controller with
σ-adaptation of the gain parameter β.

B. Adaptation based on the "equivalent control"

The adaptation procedure (19)-(20) suggested here is

applied to minimize the magnitude of discontinuous input

β̄sign(x(t)) in (6). In sliding mode y(t) ≡ 0 therefore

[sign (σ (x (t)))]eq = φ(t)/β̄(t) = φ(t)/k(t)

and the algorithm (19)-(20) with λ = γ2 = 0 can be used

directly for this case if time derivative of |φ(t)| is bounded,

namely, if
d

dt
|φ(t)| ≤ L. Indeed, let us fulfill the following

steps a)-e).

Step a).Following to (20)

δ :=
(
χ
∣∣∣[sign (σ (x))]eq

∣∣∣+ (1− χ)µ/k
)
− α

(22)

and hence for V (δ) = δ2/2 we have

V̇ (δ (t)) = δ (t) δ̇ (t) =

δ (t)

[
χ
d

dt

(∣∣∣[sign (σ (x))]eq
∣∣∣
)

+ (1-χ)
d

dt
(µ/k)

]

Here, according to (20),

χ=

{
k(t)

∣∣∣[sign (σ (x))]eq
∣∣∣= |φ| if |φ| ≥ µ > 0

µ if |φ| < µ

Step b).If |φ(t)| is differentiable then

d

dt

(∣∣∣[sign (σ (x))]eq
∣∣∣
)
=
1

k

d

dt
|φ| − |φ|

k2
k̇

Step c).

V̇ (δ (t)) =

δ (t)

[
χ

(
1

k

d

dt
|φ| − |φ|

k2
k̇

)
− (1− χ) µ

k2
k̇

]

= δ (t)

[
χ
1

k

d

dt
|φ| − |φ|χ+ (1− χ)µ

k2
k̇

]

(23)

Step d).

k̇ = k (γ0 + γ1 ‖x‖) sign (δ (t)) (24)

Step e).If

∣∣∣∣
d

dt
|φ|
∣∣∣∣ ≤ L, then substitution (24) in (23) and

using the estimate

|φ|χ+ (1− χ)µ ≥ µ
imply

V̇ (δ (t)) = δ (t)χ
1

k

d

dt
|φ|

−δ (t) |φ|χ+ (1− χ)µ
k2

k (γ0 + γ1 ‖x‖) sign (δ (t))

≤ |δ (t)|χφ0
k
− |δ (t)| µ

k
(γ0 + γ1 ‖x‖)

≤ |δ (t)| (L− µγ0) /k
Taking γ0 > L/µ and denoting κ := µγ0−L from

the last inequality we get

V̇ (δ (t)) ≤ − |δ (t)|κ/k+ = −κ/k+
√
2V (δ (t))

which proofs the finite convergence before tf =
|δ (0)| k+/κ. So, the following statement can be

formulated.

Theorem 1 (on adaptive super-twist): The system

(6) with disturbances φ(t) having a bounded

derivative
d

dt
|φ(t)| ≤ L and with the parameter β̄(t) = k(t)

adapted on-line according to the adaptation law

k̇ (t) = k (t) (γ0 + γ1 ‖x (t)‖) sign (δ (t))
0 < µ ≤ k (t) ≤ k+, γ0 > L/µ

δ (t) is defined by (22)

converges in the finite time tf = |δ (0)| k+/ (µγ0 − L) to

the sliding mode regime σ(x) = x1 = 0 maintaining within

the relation

φ(t)/k(t) = α = 1− ε
for small enough ε > 0.

To demonstrate the properties of the adaptation procedure

(19)-(20), simulation was performed for the case σ(x) = x1
with the following parameters:

γ0 = 1, γ1 = 1, γ2 = 1, λ = 2
µ = 0.001, α = 0.95, k+ = 10 , k(0) = 1

we obtain the following dynamics (see the figure 3):

Here is clearly seen from Fig. 3 that gain parameter

k(t) = β(t), defining the chattering amplitude in the sliding

mode (after the reaching time treach ≃ 0.2 sec .), continues

to decrease attaining after 2.5 sec .the minimal possible level

0.11 which is 9 times less than under the "σ−adaptation"

(see Fig. 2) and 10 times less than without any adaptation

(see Fig. 1).
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Fig. 3. The states and the control signal (with the zoom) for the super-twist
controller with adaptation of the gain parameter β based on the "equivalent
control" signal.

C. Conclusions

In this paper an adaptation methodology is developed to

find the control gain of a sliding-mode control providing a

minimum value of discontinuity resulting in minimization of

the chattering effect. The application of this methodology

to the super - twist control enables reducing of the control

action magnitude to minimum possible value along with

a finite-time convergence. The numerical examples clearly

illustrate the positive effect of the gain coefficient adaptation

being applied to the high-order sliding mode controllers (in

particularly, to the super-twist controller).

.
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