
Bandit Problems in Networks: Asymptotically
Efficient Distributed Allocation Rules

Soummya Kar∗, H. Vincent Poor∗, and Shuguang Cui†

∗Dept. of Electrical Engineering, Princeton University, Princeton, NJ 08544, {skar,poor}@princeton.edu
†Dept. of Electrical and Computer Engineering, Texas A&M University, College Station, TX, 77843, cui@ece.tamu.edu

Abstract—This paper studies the multi-agent bandit problem
in a distributed networked setting. The setting considered as-
sumes only one bandit (the major bandit) has accessible reward
information from its samples, whereas the rest (the minor bandits)
have unobservable rewards. Under the assumption that the minor
bandits are aware of the sampling pattern of the major bandit
(but with no direct access to its rewards), a lower bound on
the expected average network regret is obtained. The lower
bound resembles the logarithmic optimal regret attained in single
(classical) bandit problems, but in addition is shown to scale
down with the number of agents. A collaborative and adaptive
distributed allocation rule DA is proposed and is shown to
achieve the lower bound on the expected average regret for a
connected inter-bandit communication network. In particular, it
is shown that under the DA allocation rule, the minor bandits
attain sub-logarithmic expected regrets as opposed to logarithmic
in the single agent setting.

Index Terms—Networked Bandit Problems; Distributed Al-
location Rules; Asymptotically Efficient; Partially Observable
Rewards.

I. INTRODUCTION

A. Background and Motivation

This paper studies a multi-agent bandit problem, in which
a network of bandits collaborate by distributed information
exchange to optimize the collective network regret. In partic-
ular, it is assumed that only one bandit (the major bandit)
has access to its reward sequence, whereas the rest (the
minor bandits) have unobservable rewards. In this situation,
the minor bandits in isolation have no information to aid their
decision making and may not attain the optimal logarithmic
regret as achieved in single-bandit scenarios with observable
rewards ([1], [2], [3]). Hence, the network needs to collaborate,
whereby each bandit exchanges one round of information
with its neighbors per sampling stage. We show that for such
distributed allocation rules there exists a lower bound on the
attainable expected average (over the network) regret. This
lower bound resembles the optimal attainable regret for single-
bandit problems with observable rewards, but scales down with
the number of network agents (specifically, it is 1/N -th of the
optimal single-bandit regret with observable rewards, N being
the number of network agents). We show that the attainment
of this lower bound requires that the minor bandits to achieve
sub-logarithmic rewards. Under the assumptions that the minor
bandits have access to the major bandit’s sampling patterns,
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i.e., its successive plays, but not the corresponding rewards,
and that the inter-bandit communication network is connected,
we present an asymptotically efficient distributed allocation
rule DA achieving the lower bound on the expected network
regret. The distributed information dissemination achieved by
the DA scheme in a sense quantifies the optimal trade-off
between distributed learning and control, the two fundamental
issues in collaborative networked environments.

We note that the collaborative distributed environment that
we consider is in contrast with some of the existing work on
networked bandits (see, for example, [4] and [5]). In these
studies the bandits mostly compete for a common set of
resources and rather than exchanging information with each
other, try to learn from collisions. On a different note, by
focusing on each network agent, our problem may be viewed
as an instance of single-bandit problems with side-information
(see [6], [7] and the references therein), in which the side-
information comes from the rest of the network. However, the
coupling between the different sets of side-information and
their collective evolution makes the problem interesting and
precludes direct application of existing results. On passing,
we envision that our framework will be applicable in practical
networked scenarios including cooperative channel sensing in
cognitive networks, resource allocation in distributed processor
environments etc., which often necessitate the absence of
centralized coordinators dictating the local actions of agents.

We briefly summarize the organization of the rest of the
paper. Section I-B sets notation to be used in the sequel. The
problem is formulated in Section II which also presents prelim-
inary results including a lower bound on the expected regret.
The distributed allocation rule DA is presented in Section III
and its asymptotic efficiency is shown in Section IV. Finally
Section V concludes the paper.

B. Notation

For completeness, this subsection sets notation and presents
preliminaries on algebraic graph theory and matrices to be
used in the sequel.

Preliminaries: We denote the m-dimensional Euclidean
space by Rm. The m × m identity matrix is denoted by
Im, while 1m and 0m denote respectively the column vector
of ones and zeros in Rm. For brevity of notation, often the
subscript m is dropped from the objects defined above, when
the dimensionality is clear from the context. For a generic
space X , the indicator function of a subset A is denoted by
I(x∈A), where x is a generic element of X . The notation ‖ · ‖
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denotes the Euclidean 2-norm for vectors and when applied to
matrices stands for the induced 2-norm which is equal to the
spectral radius for symmetric matrices.

Throughout t will denote discrete time. For functions
f(t) and g(t) of t, the notation f(t) = o(g(t) implies
limt→∞ f(t)/g(t) = 0. Also, f(t) ∼ g(t) stands for
limt→∞ f(t)/g(t) = 1.

Probability and expectation are denoted by Pθ [·] and Eθ [·],
respectively, the subscript denoting the parameter in force.
Also, all inequalities involving random variables are to be
interpreted a.s. (almost surely).

Spectral graph theory: We review elementary concepts
from spectral graph theory. For an undirected graph G =
(V,E), V = [1 · · ·N ] is the set of nodes or vertices with
|V | = N , and E is the set of edges with |E| = M , where | · |
denotes cardinality. The neighborhood of node n is

Ωn = {l ∈ V | (n, l) ∈ E} . (1)

Node n has degree dn = |Ωn| (i.e, the number of edges with n
as one end point). The structure of the graph can be described
by the symmetric N ×N adjacency matrix, A = [Anl] where
Anl = 1, if (n, l) ∈ E and Anl = 0, otherwise. Let the
degree matrix be the diagonal matrix D = diag (d1 · · · dN ).
The graph Laplacian matrix, L, is L = D−A. The Laplacian
is a positive semidefinite matrix; hence, its eigenvalues can be
ordered as

0 = λ1(L) ≤ λ2(L) ≤ · · · ≤ λN (L). (2)

For a connected graph, λ2(L) > 0. This second eigenvalue is
the algebraic connectivity or the Fiedler value of the network;
see [8] or [9] for detailed treatment of graphs and their spectral
theory.

II. PROBLEM FORMULATION

A. Setup

We consider a network of N multi-armed bandits (hence-
forth also referred to as agents). Each bandit sequentially
samples from k statistical populations Πj (j = 1, · · · , k). In
particular, at time t each bandit samples from one of the k
populations (more than one bandit may choose to sample from
the same population), the rewards being independent both over
time and space (bandits). The random reward obtained by sam-
pling population j is assumed to possess a univariate density
function f(x, θj) with respect to (w.r.t.) some σ-finite measure
ν, where f(·, ·) is known and the θj’s are unknown parameters
belonging to some set θ ∈ Θ. Further, it is assumed that the
rewards are integrable, i.e.,

∫
x∈R |x|f(x, θ)dν(x) <∞, for all

θ ∈ Θ.
In this paper, we consider a distributed but collaborative

setting, in which the bandits share information with their
neighbors to aid each other’s decision making processes. The
neighborhood is given by a connected undirected graph G
on the set of N bandits (vertices) and at each instant t,
the bandits exchange one round of information with their
(one-hop) neighbors for the next-stage decision making. We
consider a special setting in this work, in which only one

bandit has access to its instantaneous rewards, whereas the
rewards of the remaining N − 1 are unobservable. Without
loss of generality (w.l.o.g.) we assume that bandit 1 is the
one with accessible rewards. In addition, we assume that each
bandit at every instant has perfect knowledge of the fraction
of times bandit 1 samples a given population. However, the
reward sequence of bandit 1 is available only to itself and
may be shared with the network by communicating with its
neighbors, which in turn disseminate it to the rest of the
network by communicating with their neighbors and so on1.
The generic situation in which multiple bandits have access to
their instantaneous rewards and no bandit has direct knowledge
of the other’s sampling proportions will be pursued in the
journal version of this paper. For reasons to be clear soon,
bandit 1 is henceforth referred to as the major bandit and the
remaining N − 1 as minor bandits.

To formalize, for each n, let {ψnt } be the sequence of
random variables taking values in the set {1, · · · , k}, such
that, the event {ψnt = j} corresponds to the fact that bandit
n samples from population j at time t. Let {xnt } be the
corresponding reward sequence and Snt =

∑t
s=1 x

n
s be the

cumulative reward obtained by bandit n at the end of the t-th
stage. The goal of the network is to maximize the expected
average cumulative reward (or equivalently the expected sum
of cumulative rewards),

Savg
t =

1

N

N∑
n=1

Snt (3)

as t → ∞. Since, the θj’s of the sampling populations are
unknown, the bandit network needs to learn the parameters
in a collaborative fashion with as few as possible samples
from the inferior populations. To this end, in general, each
bandit should use its past sampling data and information from
neighbors to decide on its current sampling action. Denote
by ml,n

t the message or information sent by bandit l to its
neighbor n at the end of stage t (after all the samplings have
been performed). Define the filtrations {Fnt } for each n by

F1
t = σ

(
{ψ1

s , x
1
s}s≤t, {ml,1

s }l∈Ωn, s≤t
)

(4)

Fnt = σ
(
{ψns }s≤t, , {ps}s≤t, {ml,n

s }l∈Ωn, s≤t
)

(5)

where pt = [p1,t, · · · , pk,t]T denotes the vector of sampling
proportions of the major bandit from the different populations,
i.e.,

pj,t =
1

t

t∑
s=1

I(ψn
s =j). (6)

Note that under the current assumptions that the N − 1 minor

1One situation in which the N − 1 bandits have instantaneous knowledge
of the sampling proportions of bandit 1 is when the latter’s strategy is visible
to the others. This assumption could be reasonable in a collaborative network
setting. On the other hand, bandit 1 may not choose to make its instantaneous
rewards directly visible with a view to protecting the network’s privacy. In
the presence of an adversary it might be safer to exchange reward information
through more secure peer-to-peer links. From a communication overhead
perspective, even when bandit 1’s strategy is not visible, broadcasting its
sampling action requires a total of log2(k) bits, whereas, broadcasting the
real-valued reward is infeasible.
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bandits have unobservable rewards and know the sampling
proportions of the major bandit, Fnt corresponds to the largest
information set available at bandit n for deciding the sampling
action ψnt+1 at stage t+ 1. We also note that there is a one-to-
one correspondence between the sampling proportions (at all
times) and the actual sample sequence, i.e., by knowing the
sampling proportions of the major bandit at every instant, the
minor bandits can perfectly reconstruct the sampling sequence
of the major bandit (which population it samples at any given
time).

Accordingly, we call the sequences {ψnt } (1 ≤ n ≤ N ) a
distributed adaptive allocation rule if and only if for each n
the messages mn,l

t (l ∈ Ωn) that bandit n sends to its neighbors
and ψnt+1 and its sampling decision at stage t+1 belong to the
σ-algebra Fnt . Then denoting

∫
x∈R xf(x, θj)dν(x) by µ(θj)

for all j, for a given distributed allocation rule we have

E[Snt ] =

k∑
j=1

µ(θj)E[Tnt (j)], (7)

where Tnt (j) =
∑t
s=1 I(ψn

t =j) denotes the number of times
bandit n samples from the j-th population till time t. It can be
shown that for all t, n and j, Tnt (j) is a stopping time w.r.t.
the filtration {Fnt }. The goal of the network is to maximize
the expected average reward

E[Savg
t ] =

k∑
j=1

µ(θj)E

[
N∑
n=1

Tnt (j)

]
(8)

or equivalently minimize the (expected) average regret

R
avg
t = tµ∗−E[S

avg
t ] =

∑
j:µ(θj)<µ∗

(
(µ∗ − µ(θj))E

[
N∑
n=1

Tnt (j)

])
(9)

as t → ∞ over all distributed adaptive allocation rules.
Here µ∗ = max(µ(θ1), · · · , µ(θk)) = µ(θ∗) for some
θ∗ ∈ {θ1, · · · , θj}. In this paper we will provide a lower
bound on the average regret Ravg(t) over the class of all good
distributed allocation rules (to be defined soon) and provide
an explicit construction of a distributed allocation rule achiev-
ing this lower bound. Note that, by definition, the message
exchanges between bandits in a distributed allocation rule can
be arbitrary; however, for practical purposes it is desirable
to construct allocation rules with modest computation and
communication requirements, such that, the decision making
and message generation can be computed in a recursive
manner.

B. Preliminary results

We start by introducing some assumptions on the statistical
populations and establish a lower bound on the average regret
over a class of acceptable distributed allocation rules.

Following [2] and [3] for the single bandit case, we call a
distributed allocation rule {ψnt } good if for every fixed θ =
(θ1, · · · , θk), the average regret Ravg

t satisfies as t→∞

Ravg
t (θ) = o(tα) for every α > 0. (10)

Goodness as defined above is stronger than consistency, i.e.,
for a good distributed allocation rule,

lim
t→∞

1

t
Savg
t (θ) = µ∗. (11)

Before stating the lower bound on the expected regret for
the class of good distributed allocation rules, we introduce
some standard assumptions on the statistical populations (see,
for example, [2]):
(E.1) : Let I(θ, λ) denote the Kullback-Liebler divergence

I(θ, λ) =

∫
x∈R

[log (f(x, θ)/f(x, λ))] f(x, θ)dν(x).

(12)
We assume that 0 < I(θ, λ) <∞ whenever µ(λ) > µ(θ).
Also, ∀ε > 0 and ∀θ, λ, such that µ(λ) > µ(θ), there
exists δ = δ(ε, θ, λ) > 0 for which |I(θ, λ)−I(θ, λ́)| < ε
whenever µ(λ) ≤ µ(λ́) ≤ µ(λ) + δ.

(E.2) : The following denseness condition on Θ holds. For
all λ ∈ Θ and δ > 0, there exists λ́ ∈ Θ, such that,
µ(λ) < µ(λ́) < µ(λ) + δ.

We now establish a lower bound on the average regret
attained by all good distributed allocation rules.

Lemma 1 Let (E.1)-(E.2) hold and {ψnt } be a good distributed
allocation rule in the sense of (10). Then, for every θ =
[θ1, · · · , θk],

lim inf
t→∞

Ravg
t (θ)

log t
≥ 1

N

∑
j:µ(θj)<µ∗

(µ∗ − µ(θj))

I(θj , θ∗)
. (13)

Proof: Due to space limitations we only sketch the proof
here, which is a generalization of Theorem 1 in [2] for the
single bandit case. Fix a good distributed allocation rule {ψnt }.
Let us define the filtration {F t} by

F t = σ
(
{ψ1

s , x
1
s}s≤t

)
. (14)

In other words, F t represents the information set available at
the major bandit at the end of the t-th stage based on its own
past sampling actions and rewards. Also, define the filtration
{Gt} by

Gt = F t
∨
σ
(
ψ1

1 , ψ
2
1 , · · · , ψN1

)
(15)

where by Fa
∨
Fb we denote the smallest σ-algebra contain-

ing both the σ-algebras Fa and Fb. Recall the σ-algebras
Fnt , (4)-(5). We now claim that

Fnt ⊂ Gt, ∀t, n. (16)

In fact, recalling the measurability conditions on the random
objects ψnt and mn,l

t , straightforward recursive substitutions
show that for all t

ψnt ∈ Gt and mn,l
t ∈ Gt, ∀ n and (n, l) ∈ E. (17)

The claim in (16) then follows immediately.
Now, let us denote by R1

t (θ) the expected regret of the major
bandit for a given parameter vector θ. Since the distributed
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allocation scheme in consideration is good, we have

R1
t (θ) ≤ NRt(θ) = o(tα) for every α > 0. (18)

We now provide a lower bound on the expected regret R1
t . This

is achieved by relating the above distributed bandit problem
to a single bandit problem (with the major bandit as the
sole agent) and constructing a good adaptive allocation rule
{ψ̃t} for the new single bandit setting attaining the same
expected regret as the given distributed allocation rule {ψnt }
attains for the major bandit. To this end, we note that in
the current setting we may view the major bandit as an
isolated agent following the adaptive rule {ψ1

t } based on the
filtration {Gt}. We now note that the initial sampling choices
ψ2

1 , · · · , ψNt of the N−1 minor bandits contain no information
about the statistical populations as the corresponding rewards
x2

1, · · · , xN1 are unobservable. Since, ψ1
1 ∈ F t, it can be shown

that there exists an allocation rule {ψ̃t} for the major bandit,
such that, ψ̃t is measurable w.r.t. F t for every t and achieves
the same performance as the rule {ψ1

t } based on {Gt}. In
other words, denoting by R̃t(θ) the expected reward under
the allocation scheme {ψ̃t} and using (18), we obtain

R̃t(θ) = R1
t (θ) = o(tα) for every α > 0 (19)

for every parameter vector θ. Now, by construction, {ψ̃t}
corresponds to a good adaptive allocation rule for the major
bandit in isolation, i.e., based on the filtration F t which
consists of its own past sampling and reward information
only. Hence, by the lower bound on expected regrets for good
allocation rules in single bandit problems (Theorem 1 in [2]),
we note that

lim inf
t→∞

R̃t(θ)

log t
≥

∑
j:µ(θj)<µ∗

(µ∗ − µ(θj))

I(θj , θ∗)
(20)

for every θ. By (19) we then have

lim inf
t→∞

Ravg
t (θ)

log t
≥ 1

N
lim inf
t→∞

R1
t (θ)

log t

=
1

N
lim inf
t→∞

R̃t(θ)

log t

≥ 1

N

∑
j:µ(θj)<µ∗

(µ∗ − µ(θj))

I(θj , θ∗)
(21)

and the result follows.

Remark 2 We discuss the consequences of Lemma 1.
Lemma 1 identifies the optimal expected average regret that
can be attained by a distributed adaptive allocation rule.
Accordingly, any distributed adaptive allocation scheme whose
expected average regret coincides with the lower bound in (13)
will be called an asymptotically efficient distributed allocation
scheme. As a matter of fact, it is evident from the proof of
Lemma 1, that the lower bound on the expected average regret
not only holds for distributed allocation schemes, but even for

centralized strategies2 in the current setting, in which only the
reward sequence of the major bandit is observable. This is
due to the fact that the lower bound on the expected regret
of the major bandit was obtained by effectively assuming
that the entire network information is available to it. Thus,
even for centralized strategies, the lower bound in (20) on the
expected regret of the major bandit serves as a lower bound
for the overall network regret. In this paper, we will show the
existence of a asymptotically efficient distributed allocation
scheme. As will be shown the proposed strategy requires little
communication (message passing) between the bandits. More
importantly, it shows that the optimal regret attainable by
a centralized scheme may be achieved by a communication
efficient distributed allocation scheme.

Before proceeding to the next section, we comment briefly
on the lower bound in Lemma 1. It might appear from the
proof that the lower bound is very conservative, in that, it
almost ignores the contribution of the N − 1 minor bandits
towards the expected network average regret. Also, as evident
from the proof the (logarithmic) lower bound on the expected
regret of the major bandit in (20) holds no matter what the
decision making strategy is (centralized or distributed); any
asymptotically efficient distributed allocation strategy must
achieve sub-logarithmic expected rewards for the remaining
N − 1 minor bandits. This observation imposes some require-
ments on the information exchange between the bandits. In
particular, it shows that global information about the sampling
proportions pt, (6), of the major bandit is not sufficient for
asymptotic efficiency and the inter-bandit message exchanges
must contain non-trivial information about the statistics of
the different populations. This is because, even in the case
that the plays of the major bandit are completely visible to
the network, it can be argued that the best strategy for the
minor bandits in the absence of any message exchange is
to sequentially repeat the plays of the major bandit (with a
one-step delay), which leads to logarithmic expected regrets
for the minor bandits and hence, cannot be asymptotically
efficient. In particular, by repeating the strategy of the major
bandit, the minor bandits obtain the similar reward scaling
(see (20)) and the average network reward stays strictly above
the lower bound in Lemma 1 by a factor of 1/N . Hence,
inter-bandit message exchanges leading to reward information
dissemination across the entire network is required to achieve
efficiency.

III. AN ASYMPTOTICALLY EFFICIENT DISTRIBUTED
ALLOCATION RULE

In this section we present an asymptotically efficient dis-
tributed adaptive allocation rule achieving the lower bound on
the expected average regret. Intuitively, the only meaningful
information about the statistical populations is embedded in
the observable reward sequence of the major bandit. In the
adaptive allocation rule that we consider, the decision making

2By a centralized strategy in this context, we mean the existence of a
centralized decision maker for all the bandits having access to the entire
network information set

∨N
n=1 Fnt at all times t.
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of the major bandit is based on its own past sampling actions
and rewards, as if it were acting in isolation. This part of the
allocation rule mimics the single bandit strategy of [2] (based
on constructing statistics and upper confidence bounds) and
achieves the optimal logarithmic regret in (20) for the major
bandit. The interesting part is the allocation for the minor
bandits, who, in a sense, rely on the accumulated statistics of
the major bandit for their decision making. Since the reward
information of the major bandit is not directly available, we
invoke a distributed information dissemination protocol, in
which the statistical information acquired by the major bandit
over time disseminates into the entire network. Due to the
fact that the network communication links are not all-to-all
and could be quite sparse, the major bandit’s information is
not exactly recovered by the minor bandits. However, we show
that the information flow rate is sufficient, so that, in the long
term, the minor bandits learn sufficiently about the populations
to achieve the desired sub-logarithmic regret.

Before proceeding to the distributed adaptive allocation
scheme, we introduce some standard assumptions (see [2]) on
the existence of point estimators and upper confidence bounds
on the expectations of the statistical populations.
(E.3) : Let {Yt} be a sequence of independent and identically

distributed (i.i.d.) random variables with common density
f(y, θ) w.r.t. the measure ν where θ ∈ Θ denotes an
unknown parameter. We assume Eθ[(Y1)2] < ∞ for all
θ ∈ Θ. Let hi : Ri 7−→ R be the sample mean estimator
for µ(θ), i.e.,

hi(Y1, · · · , Yi) = (1/i)

i∑
s=1

Ys. (22)

Then, under the assumption of the existence of the
quadratic moment, we have for all ε > 0 and 0 < δ < 1
(see [2]),

Pθ
(

max
δt≤i≤t

|hi(Y1, · · · , Yi)− µ(θ)| > ε

)
= o(n−1)

(23)
for all θ ∈ Θ.

(E.4) : Let {Yt} be a sequence of i.i.d. random variables
with common density f(y, θ) w.r.t. the measure ν where
θ ∈ Θ denotes an unknown parameter. There exist Borel
functions gti : Ri 7−→ R (t ≥ 1 and 1 ≤ i ≤ t) such that
for every θ ∈ Θ,

Pθ (r ≤ gti(Y1, · · · , Yi) for all i ≤ t) = 1− o(n−1)
(24)

for every r < µ(θ). Also,

lim
ε↓0

(
lim sup
t→∞

t∑
i=1

Pθ (gti(Y1, · · · , Yi) ≥ µ(λ)− ε) / log t

)
≤ 1/I(θ, λ) for µ(λ) > µ(θ),

(25)

and gti is nondecreasing in t ≥ i for every fixed i and
hi ≤ gti for all t ≥ i.

We note that the existence of upper confidence bounds

gti satisfying the above holds for many practical reward
distribution families, including the Gaussian, Bernoulli and
Poisson.

DA: A Distributed Adaptive Allocation Rule:
The DA scheme leads to the following distributed adaptive

allocation rule {ψ̄nt } for the major and minor bandits:
Major bandit: Recall T 1

t (j) to be number of times the
major bandit samples from population j till (and including)
time t and let Yj,1, · · · , Yj,T 1

t (j) be the corresponding reward
sequence. Define the statistics

µ̄t(j) = hT 1
t (j)(Yj,1, · · · , Yj,T 1

t (j) ∀j, t (26)

and
Ut(j) = gt,T 1

t (j)(Yj,1, · · · , Yj,T 1
t (j) ∀j, t. (27)

We fix 0 < δ < 1/k. For the first k stages, the major bandit
samples the k populations consecutively such that ψ̄1

j = j
(1 ≤ j ≤ k). Now suppose that the major bandit has sampled
t ≥ k times; then there exists jt ∈ {1, · · · , k} such that

µ̄t(jt) = max(µ̄t(j) : T 1
t (j) ≥ δt). (28)

Then at stage t + 1 the major bandit samples from the
population Π(t+1) mod k only if Ut((t+1) mod k) ≥ µ̄t(jt);
otherwise it samples from the leader Πjt . Note that the above
allocation rule {ψ̄1

t } for the major bandit is based only on
its local information, namely that of its past sampling actions
{ψ̄1

s}s≤t and rewards {x1
s}s≤t.

We now define the allocation strategies for the minor
bandits.

Minor bandits: Note that the only meaningful informa-
tion directly available to the minor bandits is the sampling
proportions {pt} of the major bandit. Hence, they rely on
a distributed message passing scheme to learn about the
population statistics embedded in the reward sequence of the
major bandit. Each minor bandit is interested in obtaining an
estimate of the statistics µ̄t(j) (1 ≤ j ≤ k) of the major bandit
at all times t. To this end, for each j, each bandit n (including
the major bandit) stores a local variable µ̂nt (j) that is updated
in a distributed fashion only during the sampling instants of
the major player. To this end, define (s1(j), s2(j), · · · ) to be
stopping times w.r.t. the filtration {F1

t } of the major bandit,
such that the major bandit samples the population Πj for
the i-th time at instant si. We note that the above sampling
sequence becomes available to the minor bandits under the
assumption that they know the sampling proportions pt of the
major bandit at each time instant t. The local statistics are
updated as follows for all 1 ≤ j ≤ k:

µ̂1
t+1(j) = µ̂1

t (j)− α(i)
∑
l∈Ω1

(µ̂1
t (j)− µ̂lt(j))

+α(i)(Yj,i − µ̂1
t (j)) if (t+ 1) = si(j) for some i, (29)

µ̂1
t+1(j) = µ̂1

t (j) otherwise. (30)

For the minor bandits (2 ≤ n ≤ N )

µ̂nt+1(j) = µ̂nt (j)− α(i)
∑
l∈Ωn

(µ̂nt (j)− µ̂lt(j))

if (t+ 1) = si(j) for some i, (31)

1775



µ̂nt+1(j) = µ̂nt (j) otherwise. (32)

In the above the weight sequence {α(i)} is of the form

α(i) = a/i ∀i ≥ 1, (33)

with a > 0 being a constant. The initial conditions µ̂n0 (j)
could be arbitrary. Note that the major bandit participates in
the message exchange process by storing and updating a local
variable (for each j) µ̂1

t (j) that is different from its actual
statistic µ̄jt . It is readily seen that the above statistics update
process is distributed as each bandit exchanges information
with its neighbors only. In terms of our formalism for dis-
tributed adaptive allocation rules, the message exchanges are
given by

ml,n
t = µ̂lt(j)

if (n, l) ∈ E and si(j) = t for some i, j. (34)

Now recall δ in (28). Similarly to the major bandit, each minor
bandit n samples the k populations consecutively for the first
k stages, i.e., ψ̄nj = j (1 ≤ j ≤ k). For t ≥ k, based on
its local statistics µ̂nt and the sampling proportions pt of the
major bandit, the minor bandit n samples at stage t+ 1 from
the locally leading population Πjnt

, such that,

µ̂nt (j) = max(µ̂nt (j) : pt(j) ≥ δ). (35)

We now state the main result of the paper concerning the
asymptotic efficiency of the above DA distributed allocation
scheme.

Theorem 3 Let (E.1), (E.3)-(E.4) hold and the inter-bandit
communication network be connected. Assume that the DA
distributed allocation scheme {ψ̄nt } is in force.

(i) Then for every parameter vector θ = [θ1, · · · , θk]T and
j such that µ(θj) < µ∗,

Eθ[T 1
t (j)] ≤

(
1

I(θj , θ∗)
+ o(1)

)
log t (36)

where µ∗, θ∗ are defined as in (9).

(ii) Moreover, for every parameter vector θ = [θ1, · · · , θk]T

and j such that µ(θj) < µ∗,

Eθ[Tnt (j)] = o(log t) 2 ≤ n ≤ N. (37)

(iii) If in addition (E.2) is satisfied, the lower bound in
Lemma 1 holds and the allocation rule {ψ̄nt } achieves the
smallest expected network regret, i.e., for every parameter
vector θ,

R
avg
t (θ) ∼

 ∑
j:µ(θj)<µ∗

(µ∗ − µ(θj))/I(θj , θ
∗)

 log t. (38)

IV. PROOF OF THEOREM 3

This section is devoted to the proof of Theorem 3. The proof
is achieved in steps and involves several intermediate results.

The following result characterizes the deviation between the
estimate µ̂nt (j) of the minor bandit n and the statistic µ̄t(j) for
each j. The proof is lengthy and is provided in the appendix for

the case of Gaussian rewards. The proof for general rewards
will appear in the journal version of this paper.

Lemma 4 Let the hypotheses of Theorem 3 hold and define
the set J = {1 ≤ j ≤ k : µ(θj) = µ∗}. Let ε > 0 and c be
a positive integer. For every non-negative integer r define the
event

Dr =
⋂

1≤j≤k

⋂
2≤n≤N

{
max

cr≤t≤cr+1
|µ̂nt (j)− µ̄t(j)|I(T1

t (j)≥δt) ≤ ε
}

(39)
where 0 < δ < 1/k is the same constant used in the DA

allocation rule. Then for every parameter vector θ

Pθ
(
Dr

)
= o(c−r), (40)

where Dr denotes the complement of Dr.

Lemma 4 is the major ingredient in the proof of Theorem 3. It
essentially says that in the long term as the number of samples
collected from a population is sufficiently large, the deviation
between the sample mean statistic of the major bandit and
its estimates at the minor bandits become arbitrarily small
with high probability. This is one of the key places where
the network connectivity plays a role and Lemma 4 quantifies
the rate of information flow in the network, the latter being
fast enough so that the major and minor bandits eventually
learn about the populations at the same rate.

The next result is essentially a generalization of Lemma 1
in [2].

Lemma 5 Let the hypotheses of Theorem 3 hold and define
the set J = {1 ≤ j ≤ k : µ(θj) = µ∗}. Let

0 < ε <

(
µ∗ −max

j /∈J
µ(θj)

)
/4 (41)

and c be a positive integer. For every non-negative integer r,
define the events (following [2])

Ar =
⋂

1≤j≤k

{
max

δcr−1≤t≤cr
|ht(Yj,1, · · · , Yj,t)− µ(θj)| ≤ ε

}
,

(42)

Br =
⋂
j∈J

{gti(Yj1, · · · , Yjt) ≥ µ∗ − ε

for all1 ≤ i ≤ δt and cr−1 ≤ t ≤ cr+1
}

(43)

where 0 < δ < 1/k is the same constant used in the DA
allocation rule. Then for every parameter vector θ

(i)

Pθ
(
Ar
)

= o(c−r) and Pθ
(
Br
)

= o(c−r). (44)

(ii) If in addition c > (1 − kδ)−1 and r ≥ r0 sufficiently
large, then for all 2 ≤ n ≤ N

on Ar ∩Br ∩Dr, jnt ∈ J for all cr ≤ t ≤ cr+1. (45)

(iii) Hence, for all 2 ≤ n ≤ N ,

Eθ [# {1 ≤ s ≤ t : jns /∈ J}] =

t∑
s=1

Pθ (jnt /∈ J) = o(log t).

(46)
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Before proceeding to the proof we note the difference between
Lemma 5 and Lemma 1 of [2]. The latter considers a single
bandit problem (the major bandit in our case) and shows that
for the allocation rule {ψ̄1

t } (restricted to the major bandit
only) on the event Ar∩Br, the leading population jt belongs to
the set of superior populations J for cr ≤ t ≤ cr+1. Lemma 5
shows that under the distributed information dissemination
scheme DA, the leading population jnt for each minor bandit
n also belongs to the superior population set J .

Proof: Note that under the DA allocation rule, the major
bandit’s strategy is the same as the adaptive allocation rule
considered in [2] for the single bandit problem.

The events Ar and Br are not coupled with the distributed
allocation rule for the minor bandits and hence, assertion (i)
of Lemma 5 follows from Lemma 1 in [2].

For assertion (ii), we note that for c > (1 − kδ)−1 and
r ≥ r0 sufficiently large, by Lemma 1 of [2], on the event
Ar ∩Br

max
j∈J

T 1
t (j) > δt for all cr ≤ t ≤ cr+1. (47)

By definition of the set Ar and the statistics µ̄t(j) of the major
bandit we then have on Ar ∩Br for cr ≤ t ≤ cr+1

max
(
µ̄t(j) : T 1

t ≥ δt and j /∈ J
)
≤ max

j /∈J
µ(θj) + ε (48)

and
min

(
µ̄t(j) : T 1

t ≥ δt and j ∈ J
)
≥ µ∗ − ε, (49)

where the set on the left hand side of (49) is non-empty
by (47). We now fix 2 ≤ n ≤ N . Then, by the construction
of Dr on Ar ∩Br ∩Dr for cr ≤ t ≤ cr+1

max
(
µ̂nt (j) : T 1

t ≥ δt and j /∈ J
)

≤ max
(
µ̄t(j) : T 1

t ≥ δt and j /∈ J
)

+ ε

≤ max
j /∈J

µ(θj) + 2ε (50)

and

min
(
µ̂nt (j) : T 1

t ≥ δt and j ∈ J
)

≥ min
(
µ̄t(j) : T 1

t ≥ δt and j ∈ J
)
− ε

≥ µ∗ − 2ε. (51)

By the above and the choice of ε it follows that

max
j /∈J

µ(θj) + 2ε < µ∗ − 2ε, (52)

which leads to

max
(
µ̂nt (j) : T 1

t ≥ δt and j /∈ J
)

< min
(
µ̂nt (j) : T 1

t ≥ δt and j ∈ J
)

(53)

and hence we conclude that jnt ∈ J on Ar ∩ Br ∩ Dr for
cr ≤ t ≤ cr+1 for the above choice of c and r ≥ r0. This
establishes the second assertion.

For the third assertion of Lemma 5 we note that by
assertions (i) and (ii) for r ≥ r0 and cr ≤ t ≤ cr+1

Pθ(jnt /∈ J) ≤ Pθ(Ar) + Pθ(Br) + Pθ(Dr) = o(c−r). (54)

Standard arguments such as those used in the proof of Lemma
1 of [2] then lead to assertion (iii).

Final steps in the proof of Theorem 3
Note that under DA the allocation rule {ψ̄1

t } for the
major bandit based on its own sample and reward information
coincides with that of the single bandit considered in [2].
Hence, the first assertion of Theorem 3 is immediate from
Theorem 3 in [2].

Now consider a minor bandit n (2 ≤ n ≤ N ). By the DA
allocation rule, the event that bandit n samples at time t from
an inferior arm j is a subset of the event {jnt /∈ J}, where J
is the set of superior populations. By Lemma 5 assertion (iii)
we then have

Eθ[Tnt (j)] ≤ Eθ [# {1 ≤ s ≤ t : jns /∈ J}] = o(log t), (55)

thus establishing assertion (ii). The final assertion of The-
orem 3 follows by straightforward algebraic manipulations
given that the lower bound on the expected average regret
holds by Lemma 1 under the additional assumption (E.2).

V. CONCLUSIONS

In this paper we have considered a networked bandit
problem, in which only one bandit has access to its reward
information. Under the assumption that the minor bandits have
access to the sampling patterns of the major bandit (but not
its reward sequence), we have established a lower bound on
the expected network average regret that can be achieved by
the class of good distributed allocation schemes. We have
proposed a collaborative distributed allocation scheme DA, in
which the bandits collaborate by information exchange with
their neighbors. For connected inter-bandit communication
networks, the scheme DA is shown to be asymptotically
efficient, in that it yields the optimal expected average regret.
Cases where the minor bandits have no access to the major
bandit’s sampling pattern and the existence of more than
one bandit with accessible rewards are interesting research
directions and will be pursued in the journal version of this
paper.

VI. APPENDIX

As noted earlier, in this paper we prove Lemma 4 only for
the case of Gaussian rewards, the generic case being treated in
the journal version of this paper. Also, throughout we assume
that the inter-bandit communication network is connected.

A. Some intermediate results

We define auxiliary random processes to characterize the
deviation between the µ̄t(j) and the estimates µ̂nt (j) obtained
by the minor bandits (2 ≤ n ≤ N ) for each j ∈ {1, · · · , k}.

Now fix j. Recall (Yj1, Yj2, · · · ) to be the i.i.d. reward se-
quence that may be obtained by the major bandit by successive
sampling from the population Πj . For each 1 ≤ n ≤ N and j
define the sequence {ĥni (j)} updated at bandit n as follows:

ĥ1
i+1(j) = ĥ1

i (j)− α(i)
∑
l∈Ω1

(ĥ1
i (j)− ĥli(j))

+α(i)(Yj,i − ĥ1
r(i)) (56)
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and for the minor bandits (2 ≤ n ≤ N )

ĥni+1(j) = ĥni (j)− α(i)
∑
l∈Ωn

(ĥni (j)− ĥli(j)), (57)

where {α(i)} is same as in (33). Note that by (29)-(32) the
following connection exists between these auxiliary sequences
and the bandit statistics:

µ̂nt (j) = ĥnT1
t (j)(j) 1 ≤ n ≤ N and 1 ≤ j ≤ k. (58)

We now establish the following approximation result for the
auxiliary sequences:

Lemma 6 For each n and j, the sequence {ĥni (j)} is asymp-
totically normal as an estimate of the parameter θj , i.e., there
exists vn(j) > 0 such that

√
i
(
ĥni (j)− µ(θj)

)
=⇒ N (0, vn(j)), (59)

where =⇒ denotes weak convergence.

Proof: Define the N × N diagonal matrix D̂ by D̂ =
diag(1, 0, · · · , 0). Now fix a j and note that the recursions for
the auxiliary sequences may be written in compact form as

ĥi+1(j) =
(
IN − α(i)[L+ D̂]

)
ĥi(j) + α(i)D̂1NYj,i (60)

where L denotes the Laplacian matrix of the inter-bandit
communication network and

ĥi(j) = [ĥ1
i (j), · · · , ĥNi (j)]T . (61)

Noting that the matrix (L+ D̂) is symmetric positive definite
(see Lemma 3 of [10] for general arguments of this type), the
update in (60) reduces to a specific scalar case of distributed
parameter estimation algorithms studied in [10]. Under the
assumption that the rewards are square integrable, we then
have by Theorem 8 of [10]

√
i
(
ĥi(j)− µ(θj)1N

)
=⇒ N (0, V ) (62)

where V is the positive definite asymptotic covariance matrix.
The claim in (59) follows immediately by interpreting (62)
component-wise.

Remark 7 Note that so far we have not used the Gaussianity of
the reward process, i.e., the asymptotic normality in Lemma 6
holds as long as the rewards are square integrable. In the
following we will assume that the reward process is Gaussian
to characterize large deviation estimates of the error probabil-
ities. In the general non-Gaussian case, further approximation
results are required to obtain these probability estimates from
Lemma 6 which will be pursued in the journal version of this
paper.

Lemma 8 Fix 2 ≤ n ≤ N and 1 ≤ j ≤ k. Then for any ε > 0
the following holds:

Pθ
(

max
δt≤i≤t

|ĥni (j)− µ(θj)| > ε

)
= o(t−1). (63)

Proof: Since the rewards are Gaussian and the update rule
for the auxiliary sequences linear, all the quantities of interest
are Gaussian. It then follows from the asymptotic normality

in Lemma 6 that there exists positive constants c1 and c2
depending on vn(j) and ε only, such that,

Pθ
(
|ĥni (j)− µ(θj)| > ε

)
≤ c1e−c2i ∀i. (64)

Hence,

Pθ
(

max
δt≤i≤t

|ĥni (j)− µ(θj)| > ε

)
≤

t∑
i=δt

Pθ
(
|ĥni (j)− µ(θj)| > ε

)
≤ c1(1− δ)te−c2δ.t = o(t−1) (65)

Proof of Lemma 4: : Consider ε > 0 as in the hypothesis
of Lemma 4. By (58) we note that

Pθ(Dr)

≤
k∑
j=1

N∑
n=2

Pθ
(

max
cr≤t≤cr+1

|µ̂nt (j)− µ̄t(j)|I(T1
t (j)≥δt) > ε

)

≤
k∑
j=1

N∑
n=2

Pθ
(

max
δcr≤i≤cr+1

|ĥni (j)− hi(Yj,1, · · · , Yj,i)| > ε

)

≤
k∑
j=1

N∑
n=2

[
Pθ
(

max
δcr≤i≤cr+1

|ĥni (j)− µ(θj)| > ε/2

)
+Pθ

(
max

δcr≤i≤cr+1
|hi(Yj,1, · · · , Yj,i)− µ(θj)| > ε/2

)]
= o(c−r) + o(c−r) = o(c−r), (66)

where the last step follows from Lemma 8 and the fact that
hi corresponds to the sample mean estimator.
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