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Abstract— Searching a surveillance area for an unknown
number of targets by making observations with small fields
of view relative to the surveillance area is a task performed
in settings such as search and rescue, area patrol, and recon-
naissance. Based on observations, locations of possible target
existence within the surveillance area can be estimated through
time. This estimation can then be used to determine search
paths. Typically this is done by optimization directly over
the target estimation. Due to complicating factors such as
the number of targets being unknown, this approach is not
taken. Instead, time-evolving characteristic regions within the
surveillance area are learned and paths are planned based on
these regions. Based on the target estimation, three types of
regions can be identified. These types are 1) regions of possible
target existence, 2) regions of almost certain target existence,
and 3) regions of almost certainly no targets. According to
these regions, the surveillance area can then be partitioned
into areas characteristic of required search or tracking and
resource needed to perform the search or tracking. In order to
accomplish this partitioning, a set of features is determined and
used for classification. Once the surveillance area is partitioned,
path planning is performed over the partitions. Because several
partitions have been constructed, they can be allocated as tasks
to a team of autonomous agents. The path planning is then
separated into two levels. The first level is agent route planning
over the partitions. The second level is agent path planning by
optimization over partition level target estimation. Results are
presented for a team of autonomous aerial vehicles searching
for an unknown number of targets.

I. INTRODUCTION

The task of searching a large area to find an unknown

number of targets is challenging especially when the field of

view of one observation is much smaller than the entire area.

Because the observation field of view is small relative to the

surveillance area, it is necessary to maintain an estimate of

target locations and area coverage as the search progresses

over time and use this estimate to optimize the evolving

search path [1]. As knowledge of the search area changes

with new observations, decisions must be made on how to

adjust the search strategy. The purpose of this paper is to

present an approach toward planning paths for a team of

agents searching for an unknown number of targets. Fig. 1

shows an overview of this approach. In Fig.1 block (1),

observations update an estimate of target density over the

search area. Based on the target density estimate, regions

in the surveillance area are classified into partitions, Fig. 1

Jared Wood is a Ph.D. candidate in the Vehicle Dynamics
Lab, Mechanical Engineering Department, UC Berkeley
jwood@vehicle.berkeley.edu

J. Karl Hedrick is the James Marshal Wells Professor and head of the
Vehicle Dynamics Lab, Mechanical Engineering Department, UC Berkeley
khedrick@me.berkeley.edu

block (2). After classication, the partitions are passed to a

path planning algorithm, Fig. 1 in block (3). Path planning

is separated into two levels as depicted in Fig. 2. First, the

partitions are viewed as tasks and agents are allocated to

them. Algorithms already developed for task allocation [2],

[3] can then be utilized to accomplish this step. Second, agent

paths are chosen by optimizing directly over partition level

target density distributions. Approaches developed for path

planning by direct probability distribution optimization [4],

[5], [6], [7] can then be extended to accomplish this step of

path planning. Buidling on these approaches, their extension

to partition level target density distributions is presented in

this paper.

To motivate the path planning approach taken in this paper,

three types of search are now considered. The types of search

are 1) there is only one target, 2) there is a known number

of multiple targets, and 3) there is an unknown number

of multiple targets. For each search type, some applicable

existing path planning approaches will be mentioned.

For the first case, a single probability distribution can

be used to estimate the target position, so implementations

of standard recursive Bayesian estimation work well. Since

there’s a single probability distribution, paths can be opti-

(1)

Target Density

Estimation

(2)

Search Area

Dynamic Partitioning

(3)

Path Planning over

Search Area Partitions

Sensor

Observations

Target Density

Distribution

Partitions

Paths

Fig. 1. Structure of search planning decomposition into dynamic partition
classification and path planning over the partitions.
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Fig. 2. Structure of path planning separated into task allocation over search
partitions and path planning by optimizing directly over the target density
distribution.

mized directly over it [5], [6]. And there are several infor-

mation metrics that can be used for the path optimization,

such as probability of detection [5], entropy gain [8], mutual

information [4], [9], Kullback-Leibler divergence [10], and

other generalizations of information [11], [12]. Due to these

many well-defined metrics, many path planning strategies

have been developed for this case. The path an agent chooses

to follow for each of these methods ultimately is determined

by optimization over a probability distribution. At this point

either single or multiple-step finite horizon path optimization

determines the path for the agent to follow. However, there

are performance limitations with finite-horizon optimization.

Ways to get around these limitations were proposed in [13],

[7].

For the second case, variations on Bayesian estimation

have been developed, such as multiple hypothesis tracking

[14]. The most naive approach is to maintain an independent

probability distribution for each target and assume that the

target association of observations is given. In reality the

target association must be addressed and methods for this

case cease to be purely Bayesian because track tables are

maintained [14], [15]. Yet in most of these methods a set

of distributions are constructed (one for each target) and

the path planning optimization strategies developed for the

first case can be extended to account for optimization over

multiple probability distributions [16], [17].

For the third case, the complexity of maintaining a proba-

bility distribution for each target (including unknown targets)

becomes difficult. This difficulty inspired development of

a generalization of the standard recursive Bayesian estima-

tion framework from random variables to random sets that

provides a target density distribution over the surveillance

area [15]. For this method there’s one distribution over the

surveillance area that combines all targets. Path planning

strategies developed for the first two cases are then no longer

applicable without modification. One possible approach for

path planning based on a target density distribution has been

developed [18]. This approach chooses paths by maximizing

the expected number of targets. However, analysis of the

target density distribution can be done to classify the surveil-

lance area into a set of time-evolving partitions characteristic

of particular target search or tracking. Methods have been

developed to perform this analysis [19]. Building upon this

type of analysis, the search plan can then consist of two

layers. The first layer can be task allocation of the partitions

to the team of agents. The second layer can be partition level

target density distribution path optimization.

In this paper the target density distribution will be defined

and methods for analyzing target density distributions to

dynamically partition the surveillance area will be presented.

More details of these methods can be found in [19]. Then

methods for path planning over a set of partitions will be

presented. The planning consists of two layers. The first

layer views the search partitions as tasks and allocates them

to the team of agents. Existing vehicle routing algorithms

[2], [3] can be implemented here. The second layer chooses

agent paths by optimizing over partition level target density

distributions. In order to accomplish this, existing methods

for path optimization directly over probability distributions

are generalized and extended.

II. DYNAMIC PARTITIONING FROM TARGET

DENSITY DISTRIBUTION

A. Target Density Distribution

The work presented in this paper relies on target positions

being estimated by a target density distribution. Consider

the surveillance area S and some subarea A ⊂ S. A target

density distribution f(x) is defined over the surveillance area

as

ENA =

∫

x∈A⊂S

f (x) dµ(x) (1)

where NA is the expected number of targets in the subarea

A. Notice that the target density distribution provides the

estimated number of targets within regions of the surveillance

area. This means that the expected number of targets within

a region can be evaluated simply by integrating the target

density distribution over the region. The ability to quickly

evaluate the number of expected targets within a region

by integrating over a target density distribution is used

frequently in the dynamic partitioning classification [19] that

will be presented in this paper.

Target density distribution estimation is outside the scope

of this paper. However, recursive estimation of target density

distributions has been developed [18]. So the estimation

problem can be treated similarly to the case of single target

estimation, in which a probability distribution is recursively

estimated.

B. Dynamic Partitions Classification

The surveillance area is dynamically partitioned into

characteristic regions. The partitions are composed of one

partition for exploration and a set of ordered partitions for

search and tracking, following the approach presented in

[19]. Fig. 3 presents the structure of dyanamic partitioning
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classification. Observing this figure, note that the classifica-

tion is accomplished by a cascade of classifiers. The levels

of the cascade classify points in the surveillance area into

1) One partition for exploration and one for searching

(block (1) in Fig. 3).

2) Search and tracking partitions based on local expected

number of targets (block (2) in Fig. 3).

3) Search and tracking partitions accounting for level of

search and tracking required (block (4) in Fig. 3).
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Fig. 3. Cascade of classifiers for partitioning the surveillance area into an
exploration partition and an ordered set of search and partitions.

To partition the surveillance area, the shape of the target

density distribution must be analyzed. To do this, features

are computed over local areas [19] as defined by

Sr(x0) := {x ∈ S : d(x, x0) < r} (2)

where d(x, x0) is some measure of distance. The features

used in the classification are local entropy Hr, local expected

number of targets Ir, and normalized position. These features

were defined in [19].

In the first cascade level (Fig. 3 block (1)), the search

map Ssearch is computed. Ssearch is a classification of points

in the surveillance area into either an exploration partition

or a partition for informed search and tracking. In order

to determine Ssearch, 1) the set of points with high local

entropy SHE and 2) the set of points with no information

SNI must first be determined. SHE is defined as

SHE := {x ∈ S :| Hr(x)− Hmax |< ǫ} (3)

where Hmax is the maximum local entropy possible [19].

SNI is defined as

SNI := {x ∈ S : Ir(x) < U + ǫ} (4)

where U is the local expected number of targets corre-

sponding with unbiased points in the surveillance area. The

selection of ǫ in Eq. 3 and Eq. 4 is tuned according to

resulting simulation sensitivity. The search map is then

Ssearch := S \ (SHE ∩ SNI) (5)

Most of the computation involved in dynamic partitioning

classification is done by block (2) of Fig. 3. In this level

of the cascade, partitions are dynamically constructed and

points in the surveillance area are classified. The features

used for this classification are local expected number of

targets and normalized position. When the search task ini-

tiates, partition features for this classifier are intialized by

a K-means algorithm [20]. In subsequent time instances a

Gaussian Mixture Model [20] is used for classification. The

partition features at time t are then initialized by the previous

partition features at time step t− 1.

The final layer of the cascade (Fig. 3 blocks (3) and

(4)) determines if some partitions need to be further sub-

partitioned to account for the required level of search and

tracking for each partition. To accomplish this, the classifier

first orders the partitions according to partition density ρPi

[19], where Pi is the ith partition. The classifier then iter-

ates through the partitions in descending order of partition

density. If a partition has an expected number of targets NPi

such that

NPi
= ceil

(
∫

x∈Pi

f(x)dµ(x)

)

> 1 (6)

then the partition Pi is subpartitioned. This classifier con-

tinues until a specified maximum number of partitions is

reached.

III. PATH PLANNING

Recall Fig. 1. After estimating a target density distribution

(block (1) in Fig. 1), the target density distribution is ana-

lyzed and the surveillance area is partitioned into a partition

for exploration and an ordered set of partitions for search

and tracking (block (2) of Fig. 1). Once the partitions are

computed, agent path planning is then performed (block (3)

of Fig. 1). Path planning is accomplished by separating the

planning into two layers as depicted in Fig. 2. The layers of

the planning are

1) Partitions are considered tasks and allocated to the

team of agents (block (1) of Fig. 2).

2) Partition level target density distribution path optimiza-

tion (block (2) of Fig. 2).

A. Partition Task Allocation

The partitions generated by the classifier define areas

over which subsets of the target density distribution can be

extracted. This suggests the application of some kind of task

allocation algorithm that takes each of the partitioned search
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areas as tasks with varying level of certainty or priority. The

exact method of task allocation is beyond the scope of this

paper. However, there are methods that have been developed

[3], [2] and are applicable to the type of task allocation

required for the planning structure presented in this paper. In

particular, task allocation algorithms have been developed for

projects at the Center for Collaborative Control of Unmanned

Vehicles [2].

B. Partition Level Path Optimization

As agents are allocated to partitions, their paths within

the partitions are determined by optimizing directly over the

partition level target density distribution. In order to optimize

over a target density distribution, the utitlity of points in

the surveillance area must be defined. To do this, consider

an agent’s observation coverage fC(x, x0) about a point x0

in the surveillance area. An agent’s observation coverage

is determined by the properties of the agent’s sensor. For

example, if an agent can make observations perfectly within

a radius r, then the observation coverage is

fC(x, x0) =

{

1, if ‖x− x0‖ < r

0, otherwise
(7)

However, in general the observation coverage is determined

by the sensor’s capable field of view as well as the resolu-

tion of observable points within the field of view, and the

probability of missed detection [21].

To motivate derivation of utility, consider a zero horizon

path. The observation coverage is used to define the utility

of a point x0 as

V0(x0) :=

∫

x∈S

f(x)fC(x, x0)dµ(x) (8)

where f(x) is the target density distribution. Extending

this to finite horizon planning, define the H-step horizon

observation coverage over the path x0:H = (x0, ..., xH) as

fC(x, x0:H ) := 1−
∏

t=0:H

(1− fC(x, xt)) (9)

The utility of a point x0 ∈ S is then defined as

VH(x0) := max
xi∈R(xi−1)
i=1,...,H

∫

x∈S

f(x)fC(x, x0:H )dµ(x) (10)

where R(x) is the set of all points within the reach set of

x [13]. Intuitively, Eq. 10 represents the expected number

of targets within the sensor coverage over a H-step path

originating from the point x0. Maximizing Eq. 10 then cor-

responds to choosing the point x⋆
0 that yields the maximum

expected number of targets within the observation coverage

of a path originating from x⋆
0.

To extend utility as defined in Eq. 10 to optimization

over partition level target density distributions, let the set

of partitions defined over the surveillance area be P =
{P1, ..., Pn}. The partition level target density distribution

fPi
(x) for the partition Pi ∈ P is defined as

fPi
(x) :=

{

f(x) if x ∈ Pi

0 otherwise
(11)

The partition level utility is then defined as

V Pi

H (x0) := max
xi∈R(xi−1)
i=1,...,H

∫

x∈S

fPi
(x)fC(x, x0:H)dµ(x) (12)

With Eq. 12 the paths of the agents are computed. Yet,

depending on sensor dynamics, the point in the surveillance

area chosen for observation may still have to be chosen. By

choosing agent paths that optimize observation coverage, the

sensor’s point of observation can be chosen by optimizing

over the area local to an agent’s predicted position xt at the

next observation time t. The optimal observation point can

be determined by computing the expected number of targets

by observing particular points local to the agent’s predicted

position. To do this, first determine the sensor’s no-detection

observation likelihood function L(x; z = ¬D, xobs, xt) [21],

where z = ¬D specifies that no target is detected, and

xobs is the point in the surveillance area to observe local

to xt. Define the observation specific sensor coverage as

fxobs

C (x, xt) := 1 − L(x; z = ¬D, xobs, xt). The optimal

observation point x⋆
obs is then the xobs that maximizes

Vobs(xobs) =

∫

x∈Sr(xt)

fxobs

C (x, xt)f(x)dµ(x) (13)

where Sr(xt) was defined in Eq. 2.

IV. RESULTS

The performance of the approach presented in this paper to

autonomously plan search paths to find an unknown number

of targets was tested by construcing a simulation environ-

ment. In this environment the team of agents consisted of

six autonomous aircraft equipped with visual spectrum gim-

balled camera sensors. The capabilities of these agents were

designed to closely represent behaviors observed in flight

experiments [22]. The camera characteristics were designed

to represent a field of view resulting from a 0.9273 rad view

angle. Effects of resolution were included by limiting the

distance of observations to 250 m. The agents were designed

to fly at 25 m/s and 100 m altitude with a maximum turn rate

of 0.2 rad/s. There were six targets, but this was unknown

to the search planning. The targets were allowed to move

according to a transition model defined by

xT,t = xT,t−1 + r

[

cos(θ)
sin(θ)

]

(14)

where r and θ were distributed as

r ∼ Gaussian
(

µ, σ2
)

θ ∼ Uniform([0, 2π)) (15)

with µ = 2 m in one second and σ2 = 10 m2. The time

interval of each simulation iteration was 4 seconds.

Several simulation samples were performed with various

initial target and agent positions as well as various prior

density distributions. The performance of the search planning

is dependent on not only the path planning (Fig. 2) but

also the dynamic partitioning classification (Fig. 1 block (2))

which is represented in Fig. 3.
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The performance of the dynamic partitioning classification

is affected by the quality and diversity of observations made

over the surveillance area. Dynamic partitioning classifica-

tion should perform well according to the observations it

receives. Dynamic partitioning classiciation performance is

analyzed over simulation time by measuring the

• Number of targets in search and tracking partitions.

• Number of search and tracking partitions.

• Average search and tracking partition size.

• Average size of search and tracking partitions contain-

ing targets.

Recall the types of partitions generated by the classification

represented in Fig. 3. The exploration partition contains

points in the surveillance area that either 1) still need to

be explored or 2) belong to large regions that have been

repeatedly observed without any target detections. The other

partitions are an ordered set of search and tracking partitions.

As an immediate check to see if the surveillance area is being

partitioned to capture the targets, the sample mean number

of targets within search and tracking partitions is plotted in

Fig. 4. From Fig. 4, observe that all targets are eventually

within search and tracking partitions.
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Fig. 4. Sample mean number of targets within search and tracking partitions
over simulation time. Error bars represent sample standard deviation.

To further analyze the search and tracking partitions,

consider their quantity and average size over simulation time.

The sample mean number of search and tracking partitions

are plotted in Fig. 5. Observe that the number of search

and tracking partitions gradually increases but appears to

level out. To make sense of this gradual increase in number

of partitions, the sample mean average size of the search

and tracking partitions is plotted in Fig. 6. From Fig. 6 it

is observed that the average partition size tends to remain

constant. The only way for the number of paritions to

increase and the average size of the partitions to remain

constant is for the additional partitions to be small tracking

partitions and to have the average size of the search partitions

increase. This is confirmed by observing the sample mean

average partition size of partitions in which targets exist,

plotted in Fig. 7. In these simulations, there were six agents

and six targets. Consequently, once six targets are localized

within tracking partitions and are being tracked by six agents,

the remaining search partitions will persist unless additional

agents come to assist.
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Fig. 5. Sample mean number of search and tracking partitions over
simulation time. Error bars represent sample standard deviation.
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Fig. 6. Sample mean average search and tracking partition size over
simulation time. Error bars represent sample standard deviation.

Path planning is affected by the performance of dynamic

partitioning classification. Agent paths are determined by

task allocation over the partitions and then path optimization

directly over partition level target density distributions. The

performance of path planning is analyzed by observing

statistics of the number of localized targets over simulation

time. Fig. 8 shows the sample mean number of localized

targets over simulation time. As observed in Fig. 8 the

general trend was to approach localization of all targets by

the end of the simulation. This result suggests path planning

based on dynamic partitioning classification performs well

to search for an unknown number of targets.

V. CONCLUSIONS

The main objective of this paper was to present an au-

tonomous search planning structure in which the vast amount
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Fig. 7. Sample mean average partition size of partitions containing targets
over simulation time. Error bars represent sample standard deviation.
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Fig. 8. Sample mean number of targets localized over simulation time.
Error bars represent sample standard deviation.

of already developed path planning methods can be extended

to the case of searching for an unknown number of targets.

Additionally, extensions of these path planning methods to

partition level target density distributions was presented. An

overview of the planning structure developed to accomplish

this is shown in Fig. 1. According to this planning structure,

a target density distribution is used to estimate the expected

number of targets over the surveillance area. The target

density distribution is analyzed to dynamically partition the

surveillance area into one partition for exploration and an

ordered set of partitions for search or tracking, as represented

by Fig. 3. Path planning is separated into two layers as

depicted in Fig. 2. The first layer of path planning views

the partitions as tasks and allocates them to the team of

agents. This layer of path planning utilizes the work that has

already been developed for task allocation among a team of

autonomous agents. The second layer of the path planning

determines agent search paths by optimizing directly over

partition level target density distributions. This layer of path

planning required an approach that generalizes and extends

path planning approaches based on direct probability distri-

bution optimization. Results suggest the planning structure

of this paper performs well to dynamically partition the

surveillance area, plan paths for autonomous agents, and

localize an initially unknown number targets.
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