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Abstract— The present study extends and encompasses a
previous work on the control of thrust-propelled vehicles which
focused on vehicles subjected to environmental reaction forces
that are reduced to their drag component, as in the case of
spherical bodies. Lift forces associated with other body shapes,
like winged aerial vehicles, modifies and complicates the control
problem significantly. This paper shows the existence of a
generic set of drag-and-lift models for which it is possible to
recast the initial control problem into the one of controlling
a spherical body, thus allowing for the application of control
design methods and analyses developed previously. Beside the
obtention of more general nonlinear control solutions that apply
to a larger class of vehicles and for which (semi) global stability
results can be proved, we view this extension as a step to the
automatic monitoring of flight transitions between hovering and
high-velocity cruising for convertible aerial vehicles.

I. INTRODUCTION

Feedback control of aerial vehicles in order to achieve

some degree of autonomy remains an active research domain

after decades of studies on the subject. The complexity of

aerodynamic effects and the diversity of flying vehicles partly

account for this continued interest. Lately, the emergence of

small vehicles for robotic applications (helicopters, quad-

rotors, etc) has also renewed the interest of the control

community for these systems. This paper aims at improving

and extending existing feedback control techniques by taking

into account aerodynamic effects in the control design.

Most of aerial vehicles belong either to the class of

fixed-wing vehicles, or to that of rotary-wing vehicles. The

first class is mainly composed of airplanes. In this case,

weight is compensated for by lift forces acting essentially

on the wings, and propulsion is used to counteract drag

forces associated with large air velocities. The second class

contains several types of systems, like helicopters, ducted

fans, quad-rotors, etc. In this case, lift forces are usually

not preponderant and the thrust force, produced by one or

several propellers, has also to compensate for the vehicle’s

weight. These vehicles are usually referred to as Vertical

Take-Off and Landing vehicles (VTOLs) because they can

perform stationary flight (hovering). On the other hand, en-

ergy consumption is high due to small lift-to-drag ratios. By

contrast, airplanes cannot (usually) perform stationary flight,

but they are much more efficient energetically than VTOLs

in cruising mode. Control design techniques for airplanes

and VTOLs have developed along different directions and

suffer from specific limitations. Feedback control of airplanes

explicitly takes into account lift forces via linearized models

at low angles of attack. Based on these models, stabilization

is usually achieved through linear control techniques [1]. As

a consequence, the obtained stability is local and difficult to

quantify. Linear techniques are used for VTOLs too, but sev-

eral nonlinear feedback methods have also been proposed in

the last decade to obtain (semi) global stability [2] [3] [4] [5].

These methods, however, are based on oversimplified aerody-

namic models that neglect aerodynamic forces. In fact, even

drag effects are but seldom taken into account [6]. Therefore,

these methods are not relevant to the control of airplanes or

any other aerial vehicle subjected to significant lift forces.

Another drawback of the independent development of control

methods for airplanes and VTOLs is the lack of tools for

flying vehicles that belong to both classes. These are usually

referred to as convertible as they can both perform stationary

flight and benefit from lift properties at high airspeed via

optimized aerodynamic profiles. This versatility explains the

growing interest in the design and control of such systems

in recent years [7] [8] [9] [10]. The control literature on

this topic, however, is scarce. This can be explained by the

difficulty to operate transitions between stationary flight and

cruising modes, in relation to strong variations of drag and

lift forces during these transitions.

In view of these observations, we believe that there is a

strong potential benefit in bringing control techniques for

airplanes and VTOLs closer. The present work is a step in

this direction. A major difficulty for the control of winged

systems is the dependence of aerodynamic forces upon the

so-called angle of attack. Under some assumptions, we show

that part of these forces can be compensated for via a

change of thrust control input so that the dynamics of the

transformed system does not depend on the angle of attack.

The control design is then much simplified, and can be

addressed with techniques recently proposed in the litera-

ture [6]. In particular, semi-global stability and robustness

to unmodelled dynamics can be achieved. Application of

the proposed control strategy to NACA profiles of aircraft

wings [11] illustrates the pertinence of the approach. For

simplicity the method and analysis are here exposed for a

vehicle moving in the vertical plane (PVTOL case) solely.

The paper is organized as follows. After specifying the

notation used in the paper, general dynamics equations and

standard knowledge concerning the modeling of aerodynamic

forces are recalled in Section II. The main result concerning
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the existence of simple generic drag-and-lift models which

simplify the design of nonlinear controllers is presented in

Section III, together with stabilizing feedback laws. Applica-

tion to NACA airfoils is addressed in Section IV. Simulation

results for a controlled wing-shaped body are reported in

Section V. Remarks and perspectives conclude the paper.

II. BACKGROUND

A. Notation

We assume that the controlled vehicle can be modeled in

the first approximation by a single actuated body immersed

in a fluid which exerts motion reaction forces on it.

~0

~ı0

~
~ı

~T

G

O
θ

~Fe

Fig. 1. Body subjected to external reaction forces

The following notation is used.

• G is the body’s center of mass and m is the mass of the

vehicle, assumed to be constant.

• I = {0;~ı0, ~0} is a fixed inertial frame with respect to

(w.r.t.) which the vehicle’s absolute pose is measured. B =
{G;~ı,~} is a frame attached to the body. The vector ~ı is

parallel to the thrust force axis. This leaves two possible

and opposite directions for this vector. The direction here

chosen (~ı pointing downward nominally) is consistent with

the convention used for VTOL vehicles.

• The vector of coordinates of G in the basis of the

fixed frame I is denoted as x = (x1, x2)
T . Therefore,

~OG = x1~ı0 + x2~0. We also write this relation in a more

concise way as ~OG = (~ı0 , ~0)x. The vehicle’s orientation

is characterized by the angle θ between ~ı0 and ~ı. The vector

of coordinates associated with the linear velocity of G w.r.t.

I is denoted as ẋ = (ẋ1, ẋ1)
T , and as v = (v1, v2)

T when

expressed in the basis of B, i.e. ~v = d
dt

~OG = (~ı0, ~0)ẋ =
(~ı,~)v.

• The wind velocity w.r.t. I is denoted as ~vw =
(~ı0, ~0)ẋw = (~ı,~)vw. The airspeed ~va of the body is the

difference between the velocity of G and ~vw. Thus, ~va =
(~ı0, ~0)ẋa = (~ı,~)va, with ẋa = ẋ − ẋw and va = v − vw.

• The rotation matrix of an angle θ in the plane is R(θ).
• {e1, e2} denotes the canonical basis in R

2. S = R(π/2)
is a unitary skew-symmetric matrix, and I = R(0) is the

(2 × 2) identity matrix.

• Given a vector of coordinates v, its ith component is

denoted as vi. Given a smooth function f : R → R, its first

and second derivative are denoted as f ′ and f ′′ respectively.

Given a function f of several variables, the partial derivative

of f w.r.t. one of them, say x, is denoted as ∂xf = ∂f
∂x

.

B. System modeling

The equations of motion of the vehicle in the vertical

plane are derived by considering two control inputs. The

first one is a thrust force ~T along the body fixed direction

~ı whose main role is to produce longitudinal motion. It is

assumed that this force ~T = −T~ı applies at a point lying

on, or close to, the axis {G;~ı}, so that it does not create

an important torque at G. The second control input is a

torque actuation, typically created via secondary propellers,

rudders or flaps, control moment gyros, etc. For the sake of

simplification, we assume here that any desired torque can

be produced so that the vehicle’s angular velocity ω can be

modified at will and used as a control variable (see [6] for

complementary explanations concerning this assumption).

The external forces ~Fe acting on the body are composed

of the gravity m~g and the aerodynamic forces denoted by
~Fa. Thus, ~Fe = m~g + ~Fa and the resultant force applied to

the vehicle is ~F = −T~ı + m~g + ~Fa.

Applying the fundamental theorem of mechanics, one

obtains the following equations of motion:

mẍ = − TR(θ)e1 + mge1 + Fa(ẋa, θ), (1)

θ̇ = ω, (2)

with g the gravity constant and Fa the aerodynamic forces

expressed in the inertial frame, i.e. ~Fa = (~ı0 , ~0)Fa.

C. Aerodynamic forces

Interactions between a solid body and the surrounding

fluid are governed by Navier−Stokes equations. These equa-

tions are complex since they consist of a set of nonlinear par-

tial differential equations involving several scalar functions

of the position x like viscosity, compressibility, and density

of the fluid. Moreover, even when these functions can be

considered constant in the first approximation, solving the

equations requires spatial integration over the shape of the

body which typically does not yield closed-form expressions.

The complexity of the problem can be reduced when the

airspeed ẋa belongs to the subsonic range, condition for

which the Mach number M , defined as the ratio of |ẋa|
to the speed of sound, is significantly smaller than one. In

this case, the expression of the aerodynamic forces Fa can be

approximated by a function that depends only on the constant

air density ρ, the Reynolds number1 Re , the characteristic

length of the vehicle’s body Σ, the airspeed ẋa, and the

angle of attack α. This latter variable is the angle between

the body-fixed zero-lift line, along which the airspeed does

not produce perpendicular forces, and the airspeed vector ~va.

By denoting the (constant) angle between the zero-lift line

and the thrust direction ~ı as µ, and the angle of the airspeed

w.r.t. the fixed vertical direction ~ı0 as ξ(ẋa), one has (see

Fig. 2):

ξ(ẋa) = atan2(ẋa2
, ẋa1

), (3)

and

α(ẋa, θ, µ) = π + θ − ξ(ẋa) − µ. (4)

1Re gives a measure of the ratio of inertial forces to viscous forces.
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The aerodynamic force vector ~Fa is typically decomposed in

two components: the lift force, perpendicular to the airspeed,

and the drag force, parallel to the airspeed. For a single body

moving within the subsonic range, and for a fixed Reynolds

number, a common approximation of the function Fa is of

the form [1]:

Fa(ẋa, θ, µ) = ka|ẋa|
[
cL(·)S − cD(·)I

]
∣∣α(ẋa,θ,µ)

ẋa, (5)

where ka := 1
2ρΣ, cL(α) is the lift coefficient and cD(α) > 0

is the drag coefficient. The functions cL and cD are called

aerodynamic characteristics of the body.

~0

~ı0

~~ı

~T

G

O

Zero–lift

ξ

α

µ
~FD

~FL

θ

~va

line

Fig. 2. Thrust-propelled body subjected to aerodynamic effects

The control design is much simplified when Fa does not

depend on the vehicle’s attitude θ. For example, a constant

velocity flight is achieved by aligning the thrust direction

R(θ)e1 in (1) with the external force (mge1 + Fa), via the

angular velocity control ω, and by setting T = |mge1 + Fa|
(modulo correction terms needed to compensate for tracking

errors w.r.t. a given reference trajectory). Enforcing this

strategy when Fa depends on θ is far from obvious because

any change of the vehicle’s thrust direction (i.e. the vehicle’s

orientation) affects the external force as well. However,

we show in the next section that, for a specific class of

aerodynamic characteristics, this latter case can essentially

be recast into the former case.

III. MAIN RESULTS

Proposition 1 Assume that the resultant of the aerodynamic

forces is of the form (5).

(i) If the aerodynamic characteristics are given by

{
cD(α) = c1 + 2c2 sin2(α),

cL(α) = c2 sin(2α),
(6)

with c1 and c2 denoting two constant real-numbers, then

the change of thrust control input

T −→ Tp = T + 2c2ka|ẋa|
2 cos(α − µ), (7)

transforms the system’s equation (1) into:

mẍ = −TpR(θ)e1 + mge1 + Fp(ẋa, µ), (8)

with

Fp(ẋa, µ) = ka|ẋa|
[
cL(µ)S − cD(µ)I

]
ẋa (9a)

cD(µ) = c1 + 2c2 cos2(µ), (9b)

cL(µ) = −c2 sin(2µ). (9c)

(ii) If the aerodynamic characteristics cD and cL are re-

spectively even and odd functions (as in the case of

symmetric bodies), i.e.
{

cD(α) = cD(−α),

cL(α) = − cL(−α),
(10)

then (6) is the only family of aerodynamic characteris-

tics for which there exists a function Fp independent of

θ such that (8) holds true for any µ ∈ S
1.

This proposition points out the modeling functions (6) for

the aerodynamic characteristics used in the remainder of this

paper and the fact that, in the case of symmetric bodies, they

are the only functions which allow for the transformation of

the system’s equation (1) into (8) with Fp independent of

the attitude θ.

Given (3), (4), (5), (6), (7) and (9), it is possible to prove

the item i) of the proposition by verifying via direct calcula-

tions that −TRe1+Fa(ẋa, θ, µ) = −TpRe1+Fp(ẋa, µ). As

a matter of fact, Proposition 1 is a corollary of a more general

result stated below. It addresses the problem of transforming

System (1) into the form (8), when Fa is given by (5)

without the symmetry constraints (10) being imposed upon

the aerodynamic characteristics.

Theorem 1 Assume that the resultant of the aerodynamic

forces is given by (5). Then,

(i) System (1) can be transformed into the form (8) with

Fp independent of θ if and only if the aerodynamic

characteristics cL(α) and cD(α) satisfy the following

differential equation:

(c′′D − 2c′L) sin(α + µ)+(c′′L + 2c′D) cos(α + µ) = 0. (11)

(ii) If (11) holds true, the vector valued function Fp de-

pending only on ẋa and µ, and the scalar function Tp

such that (8) holds true are respectively given by:

Fp(ẋa, µ) = ka|ẋa|
[
cL(µ)S − cD(µ)I

]
ẋa (12)

with
{

cD(µ) = cD(0) + c′L(0) cos 2(µ)+c′D(0) sin(µ) cos(µ),

cL(µ) = cL(0) − c′D(0) sin 2(µ)−c′L(0) sin(µ) cos(µ),

and

Tp = T + ka|ẋa|ẋ
T
a R(θ)

[
−c′L(α)
c′D(α)

]
. (13)

The proof of this theorem is given in the paper’s appendix.

Note that condition (11) is satisfied for any value of µ
only if {

c′′D − 2c′L = 0 ∀α,

c′′L + 2c′D = 0 ∀α.
(14)
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The general solution to the linear differential system (14) is:

{
cD(α) = b0 + b1 sin(2α) − b2 cos(2α),

cL(α) = b3 + b1 cos(2α) + b2 sin(2α),

with bj denoting constants numbers. When the shape of the

body is symmetric, the above functions must also satisfy

the conditions (10). This implies that b1 and b3 are equal

to zero. Using the fact that cos(2α) = 1 − 2 sin2(α), one

obtains (6) with c1 = b0 − b2 and b2 = c2. As for relation

(7), it results from (13) and (6), using the fact that ẋT
a R(θ) =

vT
a = |ẋa|(− cos(α + µ), sin(α + µ)).

Once System (1), with Fa given by (5) and (6), is

transformed into the form (8), with the “apparent external

force” mge1 + Fp no longer depending on the attitude θ,

the control design can be addressed by adapting the method

developed for the class of systems subjected to drag forces

only (see below for a possibility based on [6]). As for the

model (6) of the aerodynamic characteristics, we show in the

next section that it can provide a good approximation of the

“low-frequency part” of the physical coefficients measured

for several symmetric profiles. To illustrate the application of

Proposition 1 to the control of aerial vehicles, a stabilizing

feedback law for the tracking of a pre-determined reference

trajectory xr(t) for System (8) is proposed next. This control

solution is based on [6, Sec. III.D] and is here recalled for

the sake of completeness. It is also of interest to pinpoint

a few complementary issues attached to the extension here

considered.

In view of (8) the tracking error dynamics are governed

by:

˙̃x = R(θ)ṽ, (15a)

˙̃v = −ωSṽ − ue1 + R(θ)T γv, (15b)

θ̇ = ω, (15c)

where u := Tp/m, γp := Fp/m, γv := ge1 + γp(ẋa, µ) −
ẍr, x̃ := x − xr is the position tracking error, and ṽ :=
RT (θ)(ẋ − ẋr) is the velocity error expressed in the body-

fixed frame.

To compensate for almost constant unmodeled additive

perturbations, integral correction terms are introduced in the

control law. A nonlinear “bounded integral” of the position

error x̃ is, for instance, the output z of the following second-

order nonlinear system:

z̈ = −2kz ż − k2
z [z − sat∆(z)] + kzhz(|x̃|

2)x̃, (16)

kz > 0, z(0) = 0, ż(0) = 0,

where hz is a smooth bounded strictly positive function

defined on [0, +∞) satisfying the following properties ([6,

Sec. III.C]) for some positive constant numbers ηz, βz ,

∀s ∈ R, |hz(s
2)s| < ηz and 0 <

∂

∂s
(hz(s

2)s) < βz .

sat∆ is the classical saturation function, i.e. sat∆(z) =

z min(1, ∆/|z|). Let F̂p denote an estimation of Fp and

define γ̂p := F̂p/m. Let

y := x̃ + z, (17)

v := ṽ + RT (θ)ż, (18)

γ := ge1 + γ̂p − ẍr(t) + h(|y|2)y + z̈, (19)

with h a smooth bounded positive function satisfying the

same above properties as hz for some positive constant

numbers η, β. Nonlinear controllers endowed with provable

stabilizing properties in a large domain of operation are

recalled next.

Proposition 2 [6] Assume that the following regularity con-

ditions are satisfied:

(i) Fp is continuously differentiable and its partial deriva-

tives are bounded uniformly w.r.t. ẋa in compact sets,

(ii) the vectors ẋw, ẍw,
...
xw, ẋr , ẍr and

...
xr are bounded in

norm on R+.

Let k1, k2 and k3 denote strictly positive constants. Let σ :
R → R denote a strictly increasing smooth function such that

σ(0) = 0 and σ(s) > −1/k1, ∀s ∈ R. Apply the following

control law

u = |γ| + k1|γ|σ(v1) (> 0), (20a)

ω = k2|γ|

(
v2 −

v1γ2

|γ| + γ1

)
+

k3|γ|γ2

(|γ| + γ1)
2
−

γT Sγ̇

|γ|2
,

(20b)

to System (15) with γ := RT (θ)γ and y, v, γ defined by

Eqs. (17)-(19). Suppose that:

(i) there exists a constant δ > 0 such that |γ| > δ ∀t ∈ R
+,

(ii) the modeling error c := γp − γ̂p is constant,

(iii) lim
s→+∞

h(s2)s > |c|.

(iv) ∆ > |z∗|, where z∗ denotes the unique solution to the

equation h(|z∗|2)z∗ = c and ∆ is the positive constant

intervening in the function sat∆.

Then, for the tracking error system (15) comple-

mented with (16), the equilibrium point (z, ż, x̃, ṽ, θ̃) =
(z∗, 0, 0, 0, 0) of the controlled system is asymptotically

stable, with the domain of attraction equal to R
2 × R

2 ×
R

2 × R
2 × (−π, π).

Remarks: 1) The feedforward term γ̇ in (20b) depends on ẍa

via the time-derivative of γ̂p, and the estimation of this term

in practice is not simple. For this reason it is tempting to

set it equal to zero in the control calculation. Simulations

indicate that doing so does not significantly degrade the

tracking performance in a large range of flight conditions.

2) Although the control law (20a) ensures the positivity of the

variable u, the positivity of the thrust T , which is calculated

from Tp = mu via (7), is not guaranteed. In particular, the

thrust control value may become negative when |ẋa| is large

or when the control has to comply with important reference

decelerations. This issue thus deserves to be more thoroughly

studied.
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IV. APPLICATION TO NACA 00XX PROFILES

A class of bodies well referenced in the literature is

given by the NACA airfoils. These bodies are airfoil shapes

for aircraft wings described by a series of digits following

the word ”NACA“. We focus here on symmetric bodies

identified by the string ”NACA 00XX“. In order to obtain

a good adequacy between the aerodynamic characteristics

of the model (6) and those measured experimentally, the

following cost function is introduced:

E(c1, c2)=
N∑

i=1

[cLR
(αi)−cL(αi)]

2 + [cDR
(αi)−cD(αi)]

2,

where α1, . . . , αN denote values of the angle of attack for

which measurements cLR
(αi) and cDR

(αi) are available.

Assuming that the drag coefficient at zero-angle of attack

cD(0) is known, so that c1 = cD(0), the minimizing value

of c2 is given by:

c2 =

N∑

i=1

[
cLR

(αi) sin(2αi) + 2(cDR
(αi) − c1) sin2(αi)

]

4

N∑

i=1

sin2(αi)

.

Figure 3 shows a typical approximation result for the lift

and drag characteristics when considering angles of attack

over [0, 2π). The measurements, in blue, were obtained from

the experimental data presented in [11] and elaborated by

[12] for the profile NACA0021. The approximation result,

in red, is good almost everywhere, except for small angles

of attack (modulo π), before the stall zone around ±20◦.

Clearly, results would be significantly different if only small

angles of attack were considered. For instance, the coefficient

c2 characterizing the increase of lift with the angle of attack

would be much larger. This indicates that the non-linearity

of the stall phenomenon cannot be approximated by a model

as simple as (6) and also suggests that a switching policy

between several set of coefficients depending on the flight

conditions could be of interest. This possibility could be

explored in future studies. As for spherical bodies, for which

no lift force is produced, the aerodynamic characteristics are

well modeled everywhere by setting c2 = 0. Then Tp = T
and Fp(ẋa) = Fa(ẋa) = −kac1|ẋa|ẋa.

V. SIMULATION: FROM HOVERING TO CRUISING FLIGHT

We illustrate through a simulation of a classical PVTOL

maneuver the performance and robustness of the proposed

approach for the NACA 0021 airfoil model. The system’s

equations of motion are defined by Eqs. (1-2), with Fa

given by (5) and the numerical data of cL and cD ob-

tained by interpolation of the experimental data reported

in [12] (see Figure 3). The physical parameters are: ρ =
1.292

[
Kg/m3

]
, m = 300 [Kg], Σ = 5 [m]. Other values

are used for the calculation of the control in Proposition

2 in order to test the control robustness w.r.t. parametric

errors. They are chosen as follows : ρ̂ = 1.4
[
Kg/m3

]
,

m̂ = 270 [Kg], Σ̂ = 4.9 [m]. The angle µ is set equal

−1.5
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i
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t
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Fig. 3. Aerodynamic characteristics of the NACA0021 airfoil. Top: lift
coefficients. Bottom: drag coefficients.

to zero (thrust direction aligned with zero-lift line) so that

γ̂p = − (c1+2c2)̂ka

m̂
|ẋa|ẋa, with k̂a = 1

2 ρ̂Σ̂. The coefficients

c1 = 0.0139 and c2 = 0.9430 are determined by applying the

estimation procedure described in Section IV. The term ẍa

in the expression of the feedforward term γ̇ is kept equal to

zero, thus providing another element to test the robustness of

the controller. The thrust control input T applied to System

(1-2) is calculated from u = Tp/m according to (7) with m
and ka replaced by their estimated values. Also, the second

term in the right hand side of equation (7) is set equal to zero

when the airspeed |ẋa| is smaller than some threshold here

chosen equal to 2 [m/s]. Doing so avoids the ill-conditioned

problem of evaluation of α for small airspeeds. The values

for the other control parameters are:

• k1 = 0.1529, k2 = 0.0234, k3 = 6;

• h(s) = β
/√

1 + β2

η2 s with β = 0.5 and η = 10;

• kz = 0.5, hz(s) = βz

/√
1 +

β2
z

η2
z

s with βz = 0.5 and

ηz = 0.5;

• sat∆(z) = z min
(
1, ∆

|z|

)
with ∆ = 100,

• σ(s) = (0.4/k1) tanh(k1s/0.4).

The gains k1, k2, k3, kz , h(0) and hz(0) are determined

via a pole placement procedure performed on the linear

approximation of the system (15-16) in hovering flight (see

[13] for details).

The reference trajectory xr(t) used to simulate the afore-

mentioned PVTOL maneuver is defined by:

ẋr(t) =





(0, 0)T 0 ≤t < 60,

(0, 2(t− 60))T 60 ≤t < 80,

(0, 40)T t ≥ 80.

(21)

with xr(0) = (−50, 50)T . Therefore, it consists of: i)

a stationary point on the time interval [0, 60) [s]; ii) an

horizontal velocity ramp on the time interval [60, 80) [s]; iii)

cruising with constant horizontal velocity of 40 [m/s] for

t ≥ 80 [s]. The applied thrust force is saturated as follows:
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Fig. 4. From top to bottom: reference velocity ẋr2
, position errors x̃,

orientation θ, angle of attack α, thrust T and desired angular velocity ω.

0 < T < 2mg. The initial position, velocity, and attitude are

x(0) = [0, 0], ẋ(0) = [0, 0], and θ(0) = 0, respectively.

From top to bottom, Figure 4 depicts the evolution of the

desired horizontal velocity, the position errors, the vehicle’s

attitude, the angle of attack, the thrust force and the de-

sired angular velocity. No wind is blowing. On the interval

[18, 61] [s], the angle of attack is essentially undefined due

to an airspeed smaller than 2 [m/s], the vehicle’s attitude

converges towards zero (vertical configuration), and the

thrust tends to oppose the body’s weight. When t > 60 [s],
the horizontal velocity of the vehicle increases and the angle

of attack starts decreasing. On the time interval [76, 80] [s]
the angle of attack crosses the stall zone and the norm of the

tracking error x̃ augments up to 2 [m] before it decreases

again to zero. The thrust force rapidly decreases when α
converges to the final cruising angle of attack equal to 6.26◦.

VI. CONCLUSION AND FUTURE WORK

This paper extends a previous work on the 2D-control of

underactuated thrust-propelled vehicles subjected to environ-

mental forces that are independent of the vehicle’s attitude,

as in the case of spherical bodies subjected to drag forces. In

general, lift forces that depend on the vehicle’s attitude also

arise. They may even be essential to the vehicle’s motion

and control, as in the case of airplanes. The paper’s main

contribution is to point out a set of simple drag-and-lift

models, commonly used in the literature, which simplify

and unify the control design because they allow for the

transformation –via a change of thrust intensity– of the

original dynamical equations of the system into these of

a vehicle subjected to drag forces only. At this stage, this

unification paradigm is still mostly conceptual. Eventhough

preliminary validation by simulation is encouraging, much

has to be done to complement the study and work out a

general nonlinear control design methodology for thrust-

propelled vehicles. Among the many issues to be addressed

or further explored, let us mention the monitoring of the

transitions between hovering and cruising for convertible

airplanes subjected to highly nonlinear stall phenomena.

Taking into account actuators’ limitations, such as saturations

and the impossibility of generating a negative thrust for a

number of vehicles, has to be studied. On the theoretical

side, a particularly important issue concerns the possibility

of extending the approach to the 3D-case. As for the appli-

cability of the approach in practice, control implementation

aspects related to available sensory data and vehicle’s state-

estimation, including the estimation of the critically sensitive

angle of attack, need also to be addressed.
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APPENDIX

A. Proof of Theorem 1

Most functions’ arguments are purposefully omitted to

lighten the notation. Throughout the proof, it is assumed that

Fa is given by (5). Note that, using the relations

{
va1

= − |va| cos(α + µ)

va2
= + |va| sin(α + µ)

(22)

and ẋa = Rva, Fa can also be written as:

Fa = −ka|ẋa|
2RAµ(α) (23)
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with

Aµ(α) :=

(
cL(α) sin(α + µ) − cD(α) cos(α + µ)
cL(α) cos(α + µ) + cD(α) sin(α + µ)

)
(24)

Proof of (i): First, remark that (1) can be written as (8) if

and only if

−TRe1 + Fa ≡ −TpRe1 + Fp (25)

Assuming that this relation holds with Fp independent of θ,

let us show that (11) is satisfied. It follows from (25) that

eT
2 RT (Fa − Fp) ≡ 0, (26)

This equality can also be written as

Fp2
cos(θ) − Fp1

sin(θ) = Fa2
cos(θ) − Fa1

sin(θ). (27)

Differentiating w.r.t. θ and using the assumption according

to which Fp does not depend upon θ yields

Fp2
sin(θ) + Fp1

cos(θ) = − ∂θFa2
cos(θ) + ∂θFa1

sin(θ)

+ Fa2
sin(θ) + Fa1

cos(θ). (28)

Relations (27) and (28) can be regrouped and written as:

RT Fp = RT Fa +

[
sin(θ)∂θFa1

− cos(θ)∂θFa2

0

]
.

Multiplying both members of this equality by R yields

Fp ≡ Fa + Λ∂θFa, (29)

with

Λ(θ) := R(θ)

(
sin(θ) − cos(θ)

0 0

)
, (30)

Using (23), it follows that

Fp = −ka|ẋa|
2R

(
−A′

µ,2(α)
Aµ,2(α)

)
(31)

with Aµ,2 denoting the second row of Aµ. Now, the non-

dependence of Fp upon θ implies that ∂θFp = 0. In view of

the expression (31) of Fp, this yields

SR

(
−A′

µ,2

Aµ,2

)
+ R

(
−A′′

µ,2

A′
µ,2

)
= 0. (32)

Pre-multiplying the left-hand side of this equality by RT ,

one obtains A′′
µ,2 + Aµ,2 = 0. This relation, combined with

(24), yields (11).

Conversely, assuming that (11) is satisfied, let us show

the existence of Fp, independent of θ, and of Tp for which

(25) is true. Consider the candidate function given by (31).

Using (11) one verifies that ∂θFp = 0. Therefore, this

function is independent of θ. Using (23) and (31) it is also

straightforward to verify that eT
2 RT (Fa − Fp) = 0. This

readily implies the existence of Tp such that (25) is satisfied,

i.e.

Tp = T + eT
1 RT (Fp − Fa). (33)

This concludes the proof of (i).

Proof of (ii): Let us assume that (11) is satisfied so that,

as shown above, (8) holds true with Fp, independent of θ,

given by (31).

Let us now establish (12). Using (24), (22), and RT ẋa =
va in (31) yields

Fp = −ka|ẋa|R

(
c′L + cD cL − c′D
−cL cD

) ∣∣∣∣∣
α

RT ẋa.

Since Fp does not depend on θ, one can use any value of

θ in this expression. Take, for instance, θ = ξ(ẋa) − π + µ.

Then, in view of (4), α = 0 and the above expression of Fp

becomes

Fp = − ka|ẋa|R(ξ + µ)CRT (ξ + µ)ẋa, (34)

with

C =

(
c′L(0) + cD(0) cL(0) − c′D(0)

−cL(0) cD(0)

)

= cD(0)I − cL(0)S +

(
c′L(0) −c′D(0)

0 0

)
. (35)

Using (35) in (34) with RT (ξ)ẋa = |ẋa|e1 and |ẋa|R(ξ) =
(ẋa, Sẋa) yields (12).

Finally, since Fp satisfies (29) and ∂θFa = ∂αFa, (33)

becomes

Tp = T + eT
1 RT Λ∂αFa. (36)

From the expression (5) of Fa, a direct calculation of the

right-hand term of (36) gives (13).
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