
 
 

 

  

Abstract — The paper proposes new consensus protocols for 
the agreement problem in networks of agents with a discrete 
time model. A new class of consensus algorithms is introduced 
on the basis of the positive splitting of the standard iteration 
matrix. In the framework of non negative matrix theory, some 
results are proved to guarantee the convergence of the proposed 
algorithms. In addition, numerous numerical experiments show 
that the proposed iterative schemes enjoy good rate of 
convergence even in the cases in which the standard iterative 
algorithms do not guarantee good performances. 

I. INTRODUCTION 
HE research related to the topic of networked systems 
has widely increased during the last years attracting the 

attention of researchers from different fields such as 
mathematicians, computer scientists and engineers, [4], [5], 
[10], [14], [13]. This is due to the recent technological 
advances in communication and computation following the 
miniaturization of electronic components which have allowed 
the realization of large groups of embedded systems, such as 
sensors and robotic networks.  

More in detail, the cooperative control for multi-agent 
systems can be categorized as either formation control 
problems with applications to mobile robots, unmanned air 
vehicles, autonomous underwater vehicles, satellites, aircraft, 
spacecraft, and automated highway systems, or non formation 
cooperative control problems such as task assignment, 
payload transport, role assignment, air traffic control, timing, 
and search. [14] 

In networks of agents, “consensus” means to reach an 
agreement on the value of a certain quantity of interest that 
depends on the state of all agents. A consensus algorithm (or 
protocol) is an interaction rule that specifies the information 
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exchange between an agent and all of its neighbors on the 
network. [11]. By this definition, cooperation can be 
informally interpreted as “giving consent to providing one’s 
state and following a common protocol that serves the group 
objective” [11]. 

Moreover, such networks are intended to be large-scale, 
i.e., the number of connected devices can be large to be able 
to cover large surface areas. Hence, such networks need 
scalable algorithms, i.e., algorithms whose computational 
complexity grows moderately with respect to the number of 
network nodes, and decentralized algorithms able to solve 
problems addressing the topological communication network 
constraints. Some examples of the consensus algorithms are 
shown and discussed in [11]. The theoretical framework for 
posing and solving consensus problems for networked 
dynamic systems are introduced by Olfati-Saber and Murray 
[12] and Fax and Murray [2]. Moreover, Jadbabaie et al. in 
[8] study the alignment problem involving reaching an 
agreement and provide convergence results. In such papers as 
in the analysis performed in [17], the consensus protocols 
with fixed and switching topologies are proposed mainly 
using concepts and tools taken from algebraic graph theory. 
In particular, the network of agents is described by a directed 
or undirected graph and the associated graph Laplacian 
matrix L plays an important role in the convergence and 
alignment analysis [3], [9]. 

In this paper we consider a sensor network whose nominal 
state evolution is governed by a discrete time consensus 
equation. In particular, we start from the discrete time model 
of consensus networks defined by the equation x(k+1)=(I-
!L)x(k), where I is the identity matrix and !>0 is a parameter 
that is usually called step-size [11]. However, such standard 
protocols exhibit low speed of reaching a consensus for 
particular topologies of the digraph. In order to determine 
new and faster alignment protocols, we propose a class of 
consensus algorithms that are based on the positive splitting 
[15] of the matrix (I-!L). Moreover, in the framework of non-
negative matrix theory some results are proved in order to 
guarantee the convergence of the proposed algorithms. In 
addition, for each network topology we determine the 
positive splitting that allows reaching the group decision 
value. 

Finally, the convergence properties are studied by a set of 
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tests showing that the proposed new consensus protocols 
exhibit good convergence performances even in the cases in 
which the standard consensus algorithms converge slowly.  

The paper is organized as follows. Section II gives the 
background of the consensus problems and Section III 
describes the new class of consensus algorithms based on a 
positive splitting technique and proves their convergence. 
Moreover, Section IV compares and explains the benefits of 
the proposed algorithms by testing the convergence properties 
in different network topologies. Finally, Section V 
summarizes the conclusions. 

II. DEFINITION AND NOTATION OF THE CONSENSUS PROBLEM 

A. Background 
Consider a network of n autonomous agents labeled by an 

index i!V with V={1,2,..,n}. Let xi!" denote the state of the 
agent i that can represent a physical quantity, such as, for 
instance, altitude, position, temperature, voltage, and so on. 
The interaction topology of a network of agents is represented 
using a directed graph G=(V,E) where V={1,2,..,n} is the set 
of nodes and E#V$V is the set of edges. Moreover, matrix 
A=[aij] denotes the adjacency matrix and Ni={j!V: aij%0} the 
set of neighbors of agent i. More precisely, agent i 
communicates with agent j if j is a neighbor of i (hence aij%0). 
We say that the nodes of a network have reached a consensus 
if and only if (iff) xi=xj for all i,j!V. Whenever the agents of a 
network are all in agreement, the common value of all nodes 
is called the agreement state and can be expressed as x*="1, 
where 1=[1,1,…,1]Tand "   is a collective decision of the 
group of the agents. 

A well-known consensus algorithm that solves the 
agreement problem in a network of agents with discrete time 
model is the following [11]: 
 
( 1) ( ) ( ( ) ( ))

i

i i ij j i
j N

x k x k a x k x k!
"

+ = + #$                     (1) 

and the algorithm can be written as: 
 
( 1) ( )x k P x k!+ =                                                             (2) 

 
where matrix P! =(I-! L) is the iteration matrix, !  is the step-
size parameter, I is the identity matrix and L=[ ijl ] is the 
graph Laplacian induced by the graph G and defined as: 
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Denoting by #=maxi iil  the maximum node out-degree of 
graph G, P!  is a nonnegative and stochastic matrix for all 
!!(0, 1/ #). According to the definition of graph Laplacian in 

(5), all row-sums of L are zero because 
1

0
n
ij

j
l

=
=!  for 

i=1,…,n. 
Now, in order to study the convergence of algorithm (3), 

we recall the following properties about non-negative 
matrices. 

Definition 1. [15] A n$n non-negative matrix B=[bij] is 
irreducible if for every pair i, j of its index set, there exists a 
positive integer m (that depends on the indices i, j) such that 
m
ijb >0. An irreducible matrix is said to be cyclic (or periodic) 

with period d, if the period of any one (and so of each one) of 
its indices satisfies d>1, and is said to be acyclic (or 
aperiodic) if d=1. 

Note that the graph associated with an irreducible non 
negative matrix B is a strongly connected graph. Moreover, 
the graph associated with a cyclic matrix is said d-periodic 
[2] and has the prop erty that the set of all cycle lengths has a 
common divisor d>1.  

The convergence analysis of the discrete-time consensus 
algorithm relies on the following well-known lemma in 
matrix theory (Perron-Frobenius- [6]): 
Lemma 1 Let B be a primitive (an irreducible stochastic 
acyclic matrix with only one eigenvalue "=1) with left and 
right eigenvectors w and v, respectively, satisfying Bv=v, 

wTB=wT, and vTw=1. Then lim .k T
k B vw!" =  

 
The convergence and group decision properties of 

iterative consensus algorithms with row stochastic matrices is 
stated in the following result proved in [11].  
Theorem 1: Consider a network of agents 
( 1) ( ) ( )i i ix k x k u k+ = +  with topology G applying the 

distributed consensus algorithm (3) with 0<!<1/#. Let G be a 
strongly connected graph. Then: 

i) a consensus is asymptotically reached for all the 
initial states; 

ii) the group decision value is * (0)i i
i

x w x=!  with 

1i
i
w =! ; 

iii) if the graph is balanced (undirected), an average-
consensus is asymptotically reached and 
* (0) /i

i
x x n=! . 
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Moreover, in [11] it is shown that the decision value is 

lim ( ) ( (0))T
k x k v w x!" =  where v=1 is the right eigenvector 

of P! and w is the left eigenvector of P! associated with the 
eigenvalue "=1. 

B. Some comments on the convergence of the consensus 
algorithm 

In this section we analyze the convergence properties of 
the standard convergence algorithm (1) in relation with the 
choice of coefficient !  and the network topology. 
Proposition 1: Let G be a strongly connected graph. Setting 
!=1/# matrix P! =(I-!L) is cyclic  iff G is a periodic graph 
and each node of G has the same out-degree. 
Proof (if part): Let assume that G is a d-periodic graph and 
each node of G has the same out-degree. Hence, the 
adjacency matrix A is cyclic and matrix L has equal diagonal 
entries iil . If we choose !=1/#=1/ iil  then we obtain iip! =0 
for i=1,…,n and P! =!A. Since A is cyclic, then P!  is cyclic 
too. 
(Only if part): Let assume that matrix P!  is cyclic. 
Consequently, it holds iip! =0 for i=1,…, n and the diagonal 

entries of matrix L are iil =1/!=#   for i=1,…, n. Since 

1,

n
ii ij

k k j
l a

= !
= " , each node of G has the same outdegree. 

Moreover, by (5) it holds P! =!A. Hence, if P!  is cyclic, then 
the adjacency matrix A is cyclic too and G is a periodic graph.
                       ! 
 

By Lemma 1, if matrix P!  is cyclic, then the convergence 
of the iterative scheme (2) is not guaranteed. Hence, 
Proposition 1 justifies the well-known choice of ! !(0, 1/ #): 
the convergence of (1) is assured using ! =1/ # provided that 
the graph G is not periodic and each node of G has the same 
outdegree. Moreover, it is shown that in the cases in which 
the convergence is guaranteed, the maximum value ! =1/ # 
provides the maximum convergence speed of the iteration 
scheme (3) [17].  

III. A NEW CLASS OF CONSENSUS ALGORITHMS 
In this section we introduce new consensus algorithms 

that solve agreement problems in a network with fixed or 
switching topology and zero-communication time delay. 

We consider the consensus algorithm (1) and we split 
matrix P!  into two non negative square matrices R%0 and 
S%0 such that P! =R+S. Each splitting induces the following 
iterative scheme, [16]: 

 

( 1) ( 1) ( )x k Rx k Sx k+ = + +   k&0        (4) 
 
and  
 

1( 1) ( ) ( )x k I R Sx k!+ = !   k&0         (5) 
 

Matrix #= 1( )I R S!!  denotes the iteration matrix 
associated with the positive splitting P! =R+S. Since S%0, by 
the Perron-Frobenious theorem the spectral radius of R 
(denoted by $(R)) is less than one [15]. Therefore (I-R) is 
non-singular.  

A. Convergence properties of the iterative schemes 
The following results characterize the convergence 

properties of the obtained iteration schemes. In particular, we 
show that under some conditions on the positive splitting, the 
iterative algorithm (7) converges to the same group decision 
value * (0)i i

i
x w x=!  of Theorem 1. To this aim we prove 

the conditions to obtain a primitive iterative matrix #, so that 
the convergence of the consensus algorithm is assured. 

 
Lemma 2: Let R+S= P!  be a positive splitting of P! . If P!  is 

irreducible and stochastic, then matrix #= 1( )I R S!!  is 
stochastic too.  

Proof: The matrix 1( )I R S!!  is the sum of the 

series
0

k

k
R

!

=
" , that is convergent since matrix R is a positive 

matrix with spectral radius $(R)<1 by the Perron-Frobenious 
theorem [15]. Observing that both S and R are non-negative 

matrices, it immediately follows that 1( )I R !!  and # are 
non-negative too. 

Since P! 1=(R+S)1=1, it holds (I-R)1=S1 and 
1( )I R S!! 1=1. Then "=1 is the right eigenvector associated 

with the eigenvalue "=1 and # is a stochastic matrix.    ! 
 
Theorem 2: Let P!  be a stochastic irreducible matrix and let 
P! =R+S be a positive splitting of P! . Then, for matrix 

#= 1( )I R S!! , the following statements hold true:  
i) $(%)=1; 
ii) &1=1 is a simple eigenvalue of #. 

Proof: Statement i) is a direct consequence of Lemma 1. 
Statement (ii) follows from the fact that there is a unique 

right eigenvector "=1 corresponding to the dominant 
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eigenvalue &1=1 of the irreducible matrix P! . On the other 

hand, P! "=" implies and is implied by 1( )I R S!! "=". 

Hence matrices P! and 1( )I R S!!  have the same number of 
independent right eigenvectors associated with the eigenvalue 
&1=1. Therefore the geometric multiplicity of &1=1 is the 
same for both matrices and it equals one. Now, by Lemma 1 
the algebraic multiplicity of &1=1, as eigenvalue of #, equals 
its geometric multiplicity. Therefore, statement (ii) is proved. 
 ! 

The following results characterize the left eigenvector of 
#= 1( )I R S!!  associated with the eigenvalue "=1. 
Lemma 3: Let P!  be a stochastic irreducible matrix and w be 
the left eigenvector of P! associated with the eigenvalue "=1. 
Let R+S= P!  be a positive splitting of P! . The left 

eigenvector of matrix #= 1( )I R S!!  associated with the 
eigenvalue "=1 is w’T=wTS. 
Proof: We assume that vector w is the left eigenvector of P!  
associated with the eigenvalue "=1, i.e.: wT(R+S)=wT. We can 
write: 

 
wTS=wT(I-R)                 (6) 
 
and  
 
wT(I-R) 1( )I R S!! =wT(I-R)           (7) 
 
and by substituting (6) and (7) we infer 
 

wTS 1( )I R S!! =wTS.              (8) 

Hence wTS is the left eigenvector of 1( )I R S!!  associated 
with the eigenvalue "=1.               ! 

As it is shown in [7], given a state set and a stochastic 
matrix there exists a Markov Chain associated with them. 
Hence, let MC be the Markov Chain associated with the 
stochastic matrix 1( )I R S!! . By Theorem 2, # has only one 
eigenvalue equal to 1, consequently MC has only one 
recurrent class. The following lemmas introduce a sufficient 
condition assuring # primitive, i.e., # is irreducible with |"|<1 
for each eigenvalue |&|%1 of #. 
Lemma 4: Let P!  be a stochastic irreducible matrix and 
R+S= P!  be a positive splitting of P! . If matrix S has no zero 

columns, then matrix #= 1( )I R S!!  is irreducible. 

Proof: Let consider the vector  'Tw = Tw S  and let MC be the 
Markov Chain associated with #. Since w’T is the left 

eigenvector of matrix #= 1( )I R S!!  associated with the 
eigenvalue "=1, w’T is proportional to the steady state vector 
of MC. Now let observe that w>0 is the steady-state 
probability vector of the recurrent states of the Markov Chain 
associated with P! . Hence, the i-th entry of w’ is zero iff the 
i-th column of S has all zero entries. Remarking that only 
states in recurrent classes can occur with positive steady state 
probability, Lemma 4 is proved.           ! 
Lemma 5: Let P!  be a stochastic irreducible matrix. Let 
R+S= P!  be a positive splitting of P!  and let "%1 be an 

eigenvalue of #= 1( )I R S!! . If matrix S has no zero 
columns, then |"|<1. 
Proof: The proof is given by contradiction. Let us suppose 
that matrix S has no zero columns and there exists an 
eigenvalue "%1 of #= 1( )I R S!!  such that |"|=1. Since by 

Lemma 4 #= 1( )I R S!!  is irreducibile, matrix # is cyclic 
[15], and therefore it has all zero entries along the main 
diagonal. We write: 

 

#= 1( )I R S!! =(I+R+R2+…)S.           (9) 
 
Since R and S are non-negative matrices, it holds #&(I+R)S. 
Now all the entries along the main diagonal of (I+R) are non-
zero. Consequently, an entry of the main diagonal of # can 
equal zero iff the i-th column of S is zero: this contradicts the 
assumption and the lemma is proved.           ! 
 

The following theorem guarantees the convergence of the 
algorithm (5) that is induced by a positive splitting. 
 
Theorem 3: Let P!  be a stochastic irreducible matrix and w 
the left eigenvector of P!  associated with the eigenvalue "=1. 
Let R+S= P!  be a positive splitting of P!  and S has no zero 

columns. If there exists µ>0 such that T Tw S wµ= , i.e., Tw  
is the left eigenvector of S for an eigenvalue µ>0, then by 
algorithm (5) a consensus is asymptotically reached for all the 

initial states and the group decision value is x*= (0)Tvw x  for 
all the initial states. 
Proof: If R+S= P!  is a positive splitting of P!  and S has no 
zero columns, then by Theorem 2, Lemmas 3, 4 and 5, the 
matrix #= 1( )I R S!!  is primitive with right and left 

eigenvalues v’=1 and 'Tw = Tw S  (such that 'T w1 =1) 
associated with the eigenvalue "=1. Consequently, the 
iterative algorithm (5) converges and gives the decision value 
lim ( ) ( (0))T

k x k v w Sx!" =   
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Moreover, if there exists µ>0 such that T Tw S wµ= , then 

it holds lim ( ) (0)T
k x k vw xµ!" =  and by the normalizing 

condition it holds lim ( ) (0)T
k x k vw x!" =  This proves the 

theorem.                     ! 

B. The proposed consensus algorithms 
The algorithm described by equ. (5) is in general difficult 

to implement. In this subsection we consider the consensus 
algorithms based on the iterative schemes (4)-(5) that can be 
described by the following relations: 

1

1 1
(1 ) ( 1) ( 1) ( ) ( )

i n
ii i ij j ii i ij j

j j i
r x k p x k s x k p x k! !

"

= = +
" + = + + +# #  

with ii ii iis r p!+ = , for i=1,…,n.         (10) 
In other words, the iterative algorithm (10) establishes an 

order to update the values of each agent state. More precisely, 
to update the state at the time k+1, agent i-th uses the already 
determined values of the states ( 1)jx k +  for j=1,…,i-1. 
Hence, the iterative scheme (10) leads to the following set of 
positive splitting of matrix P! : 
Q(e)={ R%0, S%0 | R is a lower non negative triangular 
matrix, S is an upper non negative triangular matrix and 
R+S= P! =(I-!L) }. 

In order to obtain an upper triangular matrix S that 
satisfies the conditions of Theorem 3, the following set of 
linear constraints is defined:  

1

T

0 for 1,...,  

0  for 1,...,( , )         (11)

0
0

n
i ij j

i

ii ii

w s w j n

s p i nP w

S

µ

µ

=

!!

"
# = =$

$
$ % % =& = '
$

>$
$ >(

)

1

 

with ijs =0 for i>j, ijs = ijp!  for i<j, with i,j=1,…,n. 
We remark that (10) with any solution of (11) gives a 

consensus algorithm associated with the graph G describing 
the interaction topology of a network of agents. Moreover, if 
graph G changes, then the consensus can be reached by 
updating in the iterative scheme (10) the values of iis  and iir  
by solving (11). 

IV. ALGORITHM CONVERGENCE PROPERTIES 
In order to evaluate the convergence properties of the 

proposed algorithms, we consider a network of 20 agents 
with different topologies. More precisely, the entries of the 
adjacency matrices of the strongly connected aperiodic 
graphs describing the network topology are randomly 
generated equal to 0 or 1 with uniform probability. The 

asymptotic convergence properties and convergence times are 
evaluated on 1000 randomly generated adjacency matrices by 
applying four different consensus algorithms. For each 
system, the convergence time k* is considered to be the 
number of broadcasts such that the following condition is 
satisfied: 

k* : 2

2

*
0.01

(0) *
x(k*) x
x x

!
<

!
.          (12) 

where *x  is the group decision value. 
The results of the convergence study are reported in Table 

I where the first column shows the iterative matrix of the 
applied consensus algorithm. More precisely, the first 
iterative matrix is associated to the iterative algorithm (4) 
with !=0.5/#. The iterative scheme 1

1 (1 )! I D A! ! "= " +  is 
proposed in [8] where A is the adjacency matrix of graph G 
and D is the diagonal matrix whose i-th diagonal element is 
the valence of vertex i within the graph.  

The previous iterative schemes are compared with two 
algorithms based on the positive splitting of matrix P! :  

1
2 2 2( )! I R S!= !  where R2,S2!Q(0.5/#) and R2 is a strictly 

lower non negative triangular matrix. 
1

3 3 3( )! I R S!= !  where R3,S3!Q(0.5/#) and S3 satisfies the 
set of constraints $( P! ,w). 
 

TABLE I 
CONVERGENCE PROPERTIES OF THE CONSENSUS ALGORITHMS 
Consensus 
algorithm *k  s2 *x  E% 2!  

P!  %=0.5/# 11 4.98 0.382 0 0.787 

1!  4 0.14 0.384 -0.52% 0.265 

2!  11 4.88 0.373 2.35% 0.786 

3!  8 3.10 0.382 0 0.698 

 
The second and third columns of Table I show 

respectively the average value *k and the variance '2 of the 
convergence time, calculated on the 1000 randomly generated 
cases. Moreover, the fifth column of Table I reports the 
average percentage error E% of the consensus value obtained 
by the corresponding algorithm. In addition, the last column 
shows the average value 2!  of the second eigenvalue of the 
corresponding iterative matrix. Indeed, the average time 
depends on the largest eigenvalue of the stochastic matrix 
characterizing the consensus algorithm: the smaller the 
eigenvalue 2!  is, the faster the algorithm is [1]. 
The results show that the proposed algorithms exhibit good 
performances. In particular, the iterative schemes %2 gives the 
same average time of P!  with !=0.5/#, but the decision value 
exhibits an average error of the 2.35%. 
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TABLE II 

CONVERGENCE PROPERTIES OF THE CONSENSUS 
ALGORITHMS APPLIED TO PERIODIC DIGRAPHS 

Consensus 
algorithm 

 
d=2 d=3 d=4 d=6 d=12 

P!  %=0.5/# 

*k  10 8 10 20 72 

*x  0.39 0.39 0.39 0.39 0.39 

2!  0.93 0.85 0.73 0.87 0.97 

P!  %=0.8/# 

*k  9 7 18 38 135 

*x  0.39 0.39 0.39 0.39 0.39 

2!  0.89 0.76 0.82 0.92 0.98 

1!  

*k  8 8 11 25 72 

*x  0.39 0.39 0.39 0.39 0.39 

2!  0.91 0.80 0.74 0.88 0.97 

2!  

*k  9 8 8 8 17 

*x  0.39 0.40 0.40 0.40 0.39 

2!  0.92 0.82 0.68 0.67 0.83 

3!  

*k  8 7 6 6 15 

*x  0.39 0.39 0.39 0.39 0.39 

2!  0.88 0.76 0.57 0.54 0.81 

 
Moreover, the iterative schemes %3 improve the 

convergence obtained by the matrices P!  with !=0.5/#, since 

the average number of iterations decreases from *k =11 to 
*k =8. Moreover, an efficient numerical behaviour of the 

iteration process is given by %1, but it converges to a different 
group decision value (there is an error of -0.52%).  

In addition, we analyse a set of cases where the network 
topologies are described by periodic graphs of 12 nodes. 
More precisely, we consider 5 cases of periodic graphs with 
d=2, 3, 4, 6 and 12 and each node has the same outdegree. 
Table II reports the convergence time and properties: for each 
value of d the value of k* decreases using the new algorithm 
schemes %3. In particular the benefits in applying scheme %3 is 
evident for the case d=12 in which the standard convergence 
algorithms are slow. Hence, the performed tests show that the 
proposed consensus algorithm works very well in all cases, 
including the cases in which the standard algorithms exhibit 
low performances. 

V. CONCLUSIONS 
This paper investigates new and fast alignment protocols 

that can be applied to the discrete time model of consensus 
networks. To this aim we propose a class of consensus 
algorithms that are based on the positive splitting of the 
standard iteration matrix. The convergence of the proposed 
discrete-time consensus algorithms is proved in the 

framework of non-negative matrix theory. Central of our 
approach is the question of how to use effectively the 
splitting of the standard iteration matrix in order to improve 
the rate of the consensus convergence. A set of tests shows 
the advantages of the proposed protocols: the presented 
algorithms exhibit good performances even in the cases in 
which the standard consensus protocols converge slowly.  

Future research will focus on the following open important 
issues: i) determining the conditions under which the problem 
(13) admits a solution; ii) providing analytical results about 
the performance analysis of the proposed consensus protocols 
in relation with the network topology. 
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