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Abstract— The main contribution of this paper is the de-
velopment of a nonlinear control technique for the control of
individual wind turbines in a wind farm. For this purpose,
a control scheme based on feedback linearization and gain
scheduled linear quadratic regulator (LQR) is applied to a
horizontal axis, variable speed, pitch regulated wind turbine.
As a result of the physical constraints of their components,
wind turbines operate at different control modes with different
control objectives. To capture this hybrid nature, a flexible
modeling framework based on the notion of hybrid systems
is introduced, and the developed controller is designed so as to
operate in all modes and over a wide range of wind speeds.
The performance and the efficiency of the proposed approach
is validated via simulations, and is compared with standard
LQR approaches.

I. INTRODUCTION

The high penetration of wind energy sources in the power

network highlighted the necessity of developing advanced

control techniques for the control of individual wind turbines,

so as to achieve maximal aerodynamical efficiency. Amongst

modern installations variable speed, pitch regulated wind

turbines are the predominant type. In most cases [1], [2],

wind turbines are represented by three-bladed, horizontal

axis turbine models, which can operate at variable speed

and drive a synchronous or induction generator. A gearbox

is normally used to step up the slow speed of the rotor

to higher values at the generator side, and then a power

converter is employed to fully or partially decouple the

generator from the power network. That way, variable speed

operation is possible, and hence higher efficiency and longer

lifetime, due to the reduced mechanical stresses, is achieved.

Since the control of power electronics is a separate research

topic and its time constant is much shorter than the other

turbine components, in this paper we will ignore the power

electronics control and an ideal performance will be assumed

[3], [4].

As a result of the stochastic nature of the wind that each

wind turbine is exposed to, and due to the physical con-

straints of its components, wind turbines operate at different

control modes. Following the typical characterization of [1],

[2], [3], [5], two regions with different control objectives

are distinguished (Fig. 1). Specifically, in Region I, for wind

speeds above the cut-in value but too low for rated power

generation, the main objective is to maximize the power

extracted from the wind. On the other hand, for high wind

Ralph Burkart, Kostas Margellos and John Lygeros are with the
Automatic Control Laboratory, Department of Electrical Engineering,
Swiss Federal Institute of Technology (ETH), Physikstrasse 3, ETL
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speeds (Region II), the power should be stabilized to its rated

value, so as to prevent the system from being overstressed

and ensure safe operation. The former is often referred to

as the power optimization mode, whereas the latter as the

power limitation mode. Details regarding these two control

modes will be given in Section III. Another control objective

is to reduce the fatigue of the turbine components (blades,

shaft, turbine tower), due to the mechanical loads. The trade

off between this objective and achieving maximum power

tracking was investigated in [6], where for Region II robust

control techniques were employed. From a different point of

view in [7] the level of mechanical stresses in wind turbines

due to various network disturbances, was quantified. In this

paper we will focus on the maximum power tracking objec-

tive for both regions of operation, whereas the limitation of

the mechanical fatigue will not be investigated further.

v

low

Region I Region II

high

Turbine speed

Generated power

vcut-in vcut-out

Fig. 1. Wind regions corresponding to different control modes and
objectives.

Most of the research on the development of wind turbine

controllers is mainly concentrated on linear control tech-

niques, such as standard PID and Linear Quadratic Regulator

(LQR) control [2], [8], [9], [10], [11]. These approaches

are hampered by the nonlinear behavior that wind turbines

exhibit, mainly due to the highly nonlinear dependency

of the generated power on the wind. To overcome this

drawback, gain scheduling or switching between multiple

linear controllers has been proposed. In [4], the authors

used a linearized version of the system and applied model

predictive control, whereas in [12], [13] training of neural

networks and fuzzy logic techniques were used. Even if in

some cases the performance of the system is satisfactory,

its response to large wind variations may be unpredictable,

since these methods are based on linearization and hence are

valid only locally. In [14] a multivariable controller using

H2 and H∞ control techniques was designed. More recent

contributions [3], [15] employ nonlinear control based on

feedback linearization [16], [17], [18], but are restricted to

the power limitation mode of operation. To the best of our

knowledge no work has used nonlinear control schemes for
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the entire operating envelope.

The work of this paper was inspired by [19], where a

hierarchical structure for wind turbine control was proposed,

consisting mainly of the turbine control and a higher level

of supervisory control, which includes the monitoring of the

system and determines the appropriate control mode. In this

work, we propose a modeling framework based on hybrid

automata to capture the interaction between continuous dy-

namics and discrete transitions forced by the power opti-

mization and power limitation mode of operation. Moreover,

a hybrid control scheme, as part of the supervisory control

level is designed so as to couple the individual controllers

of each region. This paper bridges the formulation and the

wind turbine principles of operation described in [2], with

the control scheme proposed by [3]. Specifically, for the

controller synthesis, the approach of [3], where feedback

linearization and LQR were combined, but only for Region

II, was extended so as to achieve maximum power tracking,

which is the objective of Region I.

The paper is organized as follows. Section II provides

details regarding the mathematical modeling, whereas in Sec-

tion III the control objectives and the resulting hybrid model

are presented. Section IV describes in detail the controller

synthesis based on feedback linearization and LQR, and

Section V illustrates the obtained simulation results. Finally,

in Section VI we provide some concluding remarks and

directions for future work.

II. MATHEMATICAL MODELING

A. Wind model

Although wind provides the energy that drives the wind

turbine, due to its intermittent nature it also acts as a

disturbance. Hence the effective wind v = vm + vs can

be thought of as a superposition of the mean wind speed

vm, which could be either constant or time varying as a

result of a sophisticated forecasting method, and a stochastic

component vs. Following [20], [3], the stochastic part vs
can be considered as the point wind after a second order

filter, which models the effect of the disc-shaped area swept

by the rotor blades. In the frequency domain the power

density spectrum Svs of vs can be written as Svs(f, vm) =
Sp(f)Sf (f, vm), where Sp(f) is the spectrum of the point

wind and Sf (f, vm) denotes the filter, which depends on

the mean wind speed. This nonlinear expression can be

then approximated by a linear second order transfer function

driven by a white noise process.

ẇ1 = w2, (1)

ẇ2 = −a1w1 − a2w2 + a3e, (2)

where w1 = vs, e ∈ N (0, 1), and a1, a2, a3 are parameters

depending on the mean wind speed.

B. Turbine model

The model of the turbine describes the conversion from

wind power to mechanical and in the end electrical power.

The power extracted from the wind is given by the nonlinear

Rotor side
Generator 

side

ωr
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Tg
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Ks

Jr

Jg

ωg

Fig. 2. Schematic diagram of the turbine mechanics.

expression Pr = 1
2ρπR

2v3cp(λ, θ), where ρ is the air

density, R is the radius of the blades, and cp(λ, θ) is the

so called efficiency coefficient. The latter depends on the tip

speed ratio λ = ωrR
v

and the pitch angle θ. The variable ωr

denotes the speed of the rotor, as shown in the schematic

diagram of Fig. 2. Typically, cp is given by numerical look-

up tables. However, in this paper a standard, nonlinear,

analytical approximation was used [1], [21].

The conversion from the mechanical energy stored in the

rotating blades (speed ωr, inertia Jr) to electrical power is

carried out via a drive train (spring constant Ks, damping

coefficient Ds) and a gearbox (gear ratio Ng), which is used

to step up the slow speed of the rotor to higher values

at the generator side (speed ωg , inertia Jg). In Fig. 2, Tr
and Tg represent the torque at the rotor and generator side

respectively. By applying the Newton’s laws on that model,

one can get the differential equations of ωr and ωg (see

equation (3)). The dynamics of the twist δ of the flexible

drive train are defined by δ̇ = ωr−
ωg

Ng
. Stress considerations

require the differences on the right-hand side of the previous

equation to be minimal.
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e. (3)

C. Overall Model

Combining the models for the wind and turbine dynamics,

described in the previous subsections, and augmenting the

system with first order models for the actuator dynamics

(time constants τθ,τT ), leads to the seventh order nonlinear

system (3). Let ẋ = f(x) + G1u + G2e denote the above

described system, with x = [ωr ωg δ θ Tg w1 w2]
T . The

control input u = [θr Tg,r]
T comprises of the reference

values for the pitch angle and the generator torque. The
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numerical values of the model parameters (based on [3]) are

given in Table I.

TABLE I

MODEL PARAMETERS.

Jr 90000 [kg·m2] Pg,nom 225 [kW]

Jg 10 [kg·m2] ωr,nom 4.29 [rad/s]

Ks 8 · 106 [Nm/rad] ωg,nom 105.534 [rad/s]

Ds 8 · 104 [kg·m2/(rad·s)] ωr,min 3.5 [rad/s]
Ng 24.6 [-] ωg,min 86.1 [rad/s]
R 14.5 [m] θmin 0 [deg]
τθ 0.15 [s] θmax 25 [deg]

τT 0.1 [s] |θ̇|max 10 [deg/s]

Fig. 3. Power efficiency coefficient cp(λ, θ) and reference trajectories.

III. WIND TURBINE CHARACTERISTICS AND CONTROL

OBJECTIVES

A. Modes of operation and switching conditions

1) Region I: Maximum power tracking is the main

control objective of Region I. Hence, we aim to maximize

the power extracted from the wind. The control inputs θr,

and Tg,r should be properly adjusted so as to maximize

cp. The red curve in Fig. 3 depicts the reference trajectory

that the simulated wind turbine should track in Region I.

Due to the physical constraints in the generator and rotor

speed [ωg,min, ωg,nom] = Ng[ωr,min, ωr,nom] (see Table I)

we distinguish the following parts [2]:

• A-B: For wind speeds above vcut−in, λ can be maxi-

mized by operating the turbine at ωr,min.

• B-C: As soon as cp reaches its maximum value, ωr

should be adjusted properly to operate the turbine at

maximum efficiency.

• C-D: In this region, due to high wind speeds, the speed

reaches its nominal value ωr,max. Note that although

the efficiency decreases the generated power still grows

with increasing wind speeds.

As shown in Fig. 3, it is obvious that the pitch angle should

be kept at its minimum θmin = 0◦ in order to achieve the

optimal cp in Region I. As a consequence, (3) reduces to a

single input system in this region. Based on this analysis, the

reference trajectories as a function of the mean wind speed

vm, are depicted in Fig. 4.

To define these characteristic curves only the mean wind

speed was taken into consideration. However, deviation of
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Fig. 4. Reference tracking trajectories: (a) Pr-vm , (b) Pg-ωg , (c) θr-vm,
(d) Tg,r-vm.

the reference values (indicated by arrows in Fig. 4(b)) is

expected due to the stochastic component vs of the wind.

In particular, the turbine dynamics are not fast enough to

track changes in the wind speed due to vs, since the high

rotor inertia Jr does not allow immediate adjustments of

the tip speed ratio λ. This in turn leads to deviation from

the reference trajectory. When the extracted power exceeds

the nominal value, the system should switch to the power

limitation operating mode.

2) Region II: As soon as the generated power Pg = ωgTg
reaches its nominal value Pg,nom the system must switch

mode (Region II), and the new objective is to stabilize Pg ,

and maintain ωr at their nominal values. To achieve this, θ

is included as an additional control input (see Fig. 3). When

the wind speed exceeds its cut-out value vcut−out, θ saturates

at its maximum θmax = 25◦, and in case of higher wind

speeds the turbine should be disconnected from the grid. In

the case where the pitch angle is fixed to its minimum value

(i.e. θ = θmin), and the power drops from its nominal value

(i.e. Pg < Pg,nom), a transition is enabled and the system

switches to the controller of Region I. More details regarding

implementation issues so as to achieve smooth transitions

and avoid chattering will be given in the next section.

B. Hybrid Model

The switching conditions defined above give rise to discrete

transitions, hence the overall model could be represented by

the hybrid automaton of Fig. 5. The two modes of operation,

denoted by Q = {RI , RII}, correspond to the discrete

states of the proposed automaton. The continuous evolution

is characterized by (3), where following [3], the dynamics

are augmented with two additional integrators, so as to avoid

steady state error in the power Pg and the rotational speed
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Fig. 5. Hybrid model of the wind turbine system with reset map and guard
conditions.

ωg . Let Pg,
∫ and ωg,

∫ denote the corresponding states.

For better switching performance, these states are reseted

after each transition. The switching conditions, or in other

words the guards, of the hybrid automaton follow from

the discussion of the previous section. The corresponding

numerical values can be found in Table I. Using the states

of the turbine rather than the wind in these conditions, allows

for smoother switching and hence undesired overshoots are

avoided. Furthermore, this is also an intuitive choice, since

accurate measurements of v are rarely provided.

IV. CONTROLLER DESIGN

Inspired by the hybrid model of Fig. 5, two different con-

trol strategies were developed. First, a gain scheduled LQR

controller was implemented, so as to serve as benchmark

for the nonlinear control scheme of Section IV.B, which is

the main contribution of the paper. The latter is based on

feedback linearization, and LQR is used for the control of

the resulting linear system.

A. Gain Scheduled LQR

Infinite horizon LQ control provides an efficient approach

for solving unconstrained optimization problems with linear

dynamics and quadratic cost functions. For the wind turbine

control problem and for each mode of operation i = 1, 2,

consider the cost Ji =
∫

∞

0
ψi(t)

TQiψi(t)+vi(t)
TRivi(t)dt,

that we seek to optimize, subject to the linear dynamics

ψ̇i(t) = Aiψi(t) + Bivi(t). The latter represents the lin-

earized version of the system dynamics (3) for each mode.

Variable ψi denotes the states of the resulting linear system,

vi consists the available control inputs at each region of

operation, whereas Qi and Ri are weight matrices. It can

be shown that vi(t) = −Kiψi(t) is a feedback control law

that minimizes Ji with respect to the linear dynamics. The

gains Ki are given by Ki = R−1
i (BT

i Pi + QT
i ), where Pi

is the solution to the continuous algebraic Riccati equation

AT
i Pi + PiAi +Qi − PiBiR

−1
i BT

i Pi = 0.

For the gain scheduling design, and based on the analysis

of Section III, vm appears to be a natural choice for the

scheduling parameter. The procedure followed can be sum-

marized in the next steps.

1) Linearize the nonlinear dynamics around a family

of set points that belong to the reference curves of

(Fig. 4).

2) Compute a set of gains Ki for each linearized system

by applying the LQR approach.

3) Interpolate the obtained sets of gains so as to achieve

continuous control ([18]).

Using the same weights Qi and Ri for all linearized systems

did not result in acceptable control performance as the

dynamics significantly change over the range of operating

wind speeds. Therefore, setpoint dependent weights Qi and

Ri were chosen instead. Although in Region I the most

significant weights are those of the speed related states,

Region II includes also the power related ones. Furthermore,

in both regions the off-diagonal elements in Qi are used to

penalize the additional quantities δ̇ and Pg . Numerical values

of Qi and Ri can be found in [22].

B. Feedback linearization

Feedback linearization provides a systematic procedure to

transform a nonlinear, input affine system to a linear one,

after a specific nonlinear change of coordinates and the ap-

plication of a certain feedback control law. In contrast to [3],

we use input-output linearization, which for the specific case

appears to be a more direct approach. Further improvement

over [3] is that feedback linearization is applied for both

regions of operation, and hence a nonlinear controller is

designed for the entire range of operating wind speeds.

Following the basic principles of feedback linearization

[16], we differentiate the output until the input appears.

Let Ti(x) : R
n → R

n be a diffeomorphic coordinate

transformation, for each mode of operation i, such that

(3)
Ti(x)
−→

{

ξ̇i = Aiξi +Bi[f
ξ
i (xi) + g

ξ
i (xi)ui],

η̇i = f0i (ξi, ηi, e),
(4)

where (Ai, Bi) is controllable and g
ξ
i is invertible. Variables

ξi and ηi form the new state vector, whereas ηi represent

the zero dynamics for each region. The feedback linearizing

control law ui(t) = (gξi (x))
−1[vi(t) − f

ξ
i (x)], renders the

ξi dynamics linear. A feedback controller vi(t) = −Kiξi(t),
based on the LQR analysis of the previous subsection, can be

then designed so as to achieve the desired control objectives.

Since the zero dynamics ηi do not depend on the input, one

should prove stability in order the feedback controller to lead

in a stable closed loop system.

1) For Region I, h1(x) = ωr was chosen as output,

yielding to ξ1 = [ωr ω̇r]
T and η1 = [δ w1 w2]

T .

Consequently, the original system has relative degree

γ = 2. In order to achieve disturbance rejection [16],

the comparably fast generator dynamics were neglected

in the controller design, and Tg was treated as control

input. Following (4), the dynamics of the system in the

new coordinates are given by

ξ̇1 =

[

0 1
0 0

]

ξ1 +

[

0
1

]

(L2
f̃
h1(x) + LG̃1

Lf̃h1(x)Tg),

η̇1 =





δ̇
ẇ1

ẇ2



 =





ωr −
q(ωr,ω̇r,δ,w1)

Ng

w2

−a1w1 − a2w2 + a3e



 ,
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where Lf̃ , LG̃1
denote the Lie derivative with respect

to f̃ and G̃1, and x = T−1
1 (ξ1). By f̃ and G̃1 we

denote the matrices resulting from (3) after neglecting

the generator dynamics. The function q is a nonlinear

function of ωr, ω̇r, δ and w1. To ensure stability, the

stability of the zero dynamics η should be also inves-

tigated. For this, a Lyapunov function was constructed

so as to guarantee asymptotic stability of η. This is a

nontrivial procedure in general, but this case exhibits a

specific structure, since the nonlinearity appears only

in the first state of the zero dynamics. For simplicity,

the integral states Pg,
∫ , ωg,

∫ were considered only

in the construction of vi(t) and not in the feedback

linearization procedure. Details regarding the stability

of the zero dynamics can be found in [22].

2) Fore the second mode of operation h1(x) = ωg and

h2(x) = Pg were chosen as outputs. In this case ξ2 =
[ωr ω̇r Tg]

T and η2 = [ωg δ w1 w2]
T . The resulting ξ

dynamics are given by

ξ̇2 =





0 1 0
0 0 0
0 0 0



 ξ2 +





0 0
1 0
0 1





(

[

L2
fh1(x)

Lfh2(x)

]

+

[

LG1,u1
Lfh1(x) 0
0 LG1,u2

h2(x)

] [

θr
Tg,r

]

)

,

where G1,u1
, G1,u2

represent the first and second

column of G1 respectively, and x = T−1
2 (ξ2). The

vector relative degree is γ = [2, 1]. Under this choice

of outputs the zero dynamics exhibit a linear behavior.

To investigate their stability, set e = 0 and consider

the error dynamics η̃2 = η2 − η∗2 , where η∗2 =
[

ωg,nom δnom 0 0
]T

denotes the equilibrium point of

the zero dynamics.

˙̃η2 =









−

Ds

N2
gJg

Ks

NgJg
0 0

−

1
Ng

0 0 0

0 0 0 1
0 0 −a1 −a2









η̃2.

By inspection of the above block diagonal structure,

and since all constant variables are positive, the eigen-

values will have negative real parts, and hence the zero

dynamics will be asymptotically stable.

Note that for both modes of operation δ belongs to the zero

dynamics, and hence cannot be directly controlled. In case

fatigue reduction of the wind turbine components is the main

control objective, δ should have been selected as output in

the feedback linearization procedure.

C. Hybrid controller

In the previous sections turbine controllers based on gain

scheduled LQR and feedback linearization were designed for

each mode of operation. Hybrid controllers as part of the

supervisory control [19] are necessary to ensure operation

over the entire range of operating wind speeds. The switching

conditions and the reset map of the hybrid model introduced
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Fig. 6. Comparison between gain scheduled LQR and feedback lineariza-
tion.

in Fig. 5 form the basis of the hybrid control scheme and

are used both for feedback linearization and gain scheduled

LQR. To further improve the performance of the hybrid

controller and minimize chattering, short “hold times” of

less than half a second are introduced in order to prevent the

system from repeatedly changing mode. Moreover, instead

of a discrete change of the gains between the two regions of

operation, linear interpolation is employed.

V. SIMULATION RESULTS

Simulations have been used to investigate and compare

the performance of the derived controllers. Fig. 6 shows

the response of the system from low to high wind speeds.

It can be seen that the references trajectories for speed

and power are tracked according to the objectives defined

in Section III. It should be noted that the pitch angle

actuator remains within the limits (±10 deg
s ) over the entire

simulation interval. Similarly, although no saturation is used,

all states remain within their constraint set.

Fig. 7 gives insight for the case where the controllers operates

in RI mode. Both controllers stabilize the speed according to

the mean wind speed (Fig. 7(a)). It is obvious that feedback

linearization exhibits superior performance compared to gain

scheduled LQR when considering only speed. Stabilizing the

speed, however, ensures implicitly that the reference power

curve is also tracked. In Fig. 7(b), the red arrow indicates

that the actual power deviates from the optimum. This is

always the case if v lies inside the wind interval B − C.
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Fig. 7. Detail A (a) and B (b) of Figure 6.

Furthermore, a closer view reveals that the power curve is

slightly shifted to the right when feedback linearization is

used, since in that case the generator dynamics (represented

by a first order transfer function), were neglected.
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Fig. 8. Detail C (a) and D (b) of Figure 6.

The performance of the control scheme in RII mode is

depicted in Fig. 8(a). Although gain scheduled LQR results

in some fluctuations around the reference values, feedback

linearization leads to accurate tracking. Fig. 8(b) shows a

detail where the two controllers change control mode several

times within a few seconds. This reveals the efficiency of

the proposed hybrid control scheme. It allows for fast and

accurate switching between changes of the control mode, and

exhibits a very good transient behavior. Chattering, which is

a common issue in such applications, was alleviated, and for

both controllers the overshoots were relatively low. Distur-

bance rejection, in the case where feedback linearization is

employed, leads to perfect tracking in RII , whereas in the

LQR case the system fluctuates around the reference values.

VI. CONCLUDING REMARKS

In this paper a hybrid controller, based on feedback

linearization, was designed for the control of a wind tur-

bine over the entire operating region. The performance of

the developed scheme was tested via simulations and was

compared with standard gain scheduled LQR techniques. The

feedback linearization based controller performed better in

all modes of operation, and was not restricted to a local

neighborhood of the operating point.

The main limitation of the proposed approach is that

physical constraints on the input and state of the system

are not taken into account in the control design process.

Current work concentrates on combining feedback lineariza-

tion with Model Predictive Control (MPC), which allows

one to solve constrained optimization problems with linear

dynamics. Moreover, further investigation is needed in order

to identify the robustness of the designed controllers to wind

and parameter uncertainty.
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