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Abstract— We present a hierarchical MPC approach for
large-scale systems based on dual decomposition. The proposed
scheme allows coupling in both dynamics and constraints
between the subsystems and generates a primal feasible solution
within a finite number of iterations, using primal averaging
and a constraint tightening approach. The primal update is
performed in a distributed way and does not require exact
solutions, while the dual problem uses an approximate sub-
gradient method. Stability of the scheme is established using
bounded suboptimality.

I. INTRODUCTION

Coordination and control of interacting subsystems is an

essential requirement for optimal operation and enforcement

of critical operational constraints in large-scale industrial

processes and infrastructure systems [1]. Model Predictive

Control (MPC) has become the method of choice when de-

signing control systems for such applications [2]–[4], due to

its ability to handle important process constraints explicitly.

MPC relies on solving finite-time optimal control problems

repeatedly online, which may become prohibitive for large-

scale systems due to the problem size or communication

constraints. Recent efforts have been focusing on how to

decompose the underlying optimization problem in order to

arrive at a distributed or hierarchical control system that

can be implemented under the prescribed computational and

communication limitations [5], [6]. One common way to

decompose an MPC problem with coupled dynamics or con-

straints is to use dual decomposition methods [7]–[9], which

typically lead to iterative algorithms (in either a distributed or

a hierarchical framework) that converge to feasible solutions

only asymptotically. Implementing such approaches within

each MPC update period can be problematic for some

applications.

Recently, we have presented a dual decomposition scheme

for solving large-scale MPC problems with coupling in both

dynamics and constraints, where primal feasible solutions

can be obtained even after a finite number of iterations [10].

In the current paper we present a novel method that is

motivated by the use of constraint tightening in robust

MPC [11], along with a primal averaging scheme and dis-

tributed Jacobi optimization. Since an exact optimum of the

Lagrangian is not assumed to be computable in finitely many

iterations, an approximate scheme is needed for solving the
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MPC optimization problem at each time step. We present a

solution approach that requires a nested two-layer iteration

structure and the sharing of a few crucial parameters in

a hierarchical fashion. The proposed framework guarantees

primal feasible solutions and MPC stability using a finite

number of iterations with bounded suboptimality.

The paper is organized as follows. In Section II, we

describe the MPC optimization problem and its tightened

version, which will be used to guarantee feasibility of the

original problem even with a suboptimal primal solution.

Section III describes the main elements of the algorithm

used to solve the dual version of the tightened optimiza-

tion problem: the approximate subgradient method and the

distributed Jacobi updates. In Section IV, we show that

the primal average solution generated by the approximate

subgradient algorithm is a feasible solution of the original

optimization problem, and that the cost function decreases

through the MPC updates. This allows it to be used as a

Lyapunov function for showing closed-loop MPC stability.

Section VI concludes the paper and outlines future research.

II. PROBLEM DESCRIPTION

A. MPC problem

We consider M interconnected subsystems with coupled

discrete-time linear time-invariant dynamics:

xi
k+1 =

M
∑

j=1

Aijx
j
k + Biju

j
k, i = 1, . . . , M (1)

and the corresponding centralized state-space model:

xk+1 = Axk + Buk (2)

with xk = [(x1
k)T (x2

k)T . . . (xM
k )T ]T , uk =

[(u1
k)T (u2

k)T . . . (uM
k )T ]T , A = [Aij ]i,j∈{1,...,M} and

B = [Bij ]i,j∈{1,...,M}.

The MPC problem at time step t is formed using a convex

cost function and convex constraints:

min
u,x

t+N−1
∑

k=t

(

xT
k Qxk + uT

k Ruk

)

+ xT
t+NPxt+N (3)

s.t. xi
k+1 =

∑

j∈N i

Aijx
j
k + Biju

j
k,

i = 1, . . . , M, k = t, . . . , t + N − 1 (4)

xk ∈ X , k = t + 1, . . . , t + N − 1 (5)
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xt+N ∈ Xf ⊂ X (6)

uk ∈ U , k = t, . . . , t + N − 1 (7)

ui
k ∈ Ωi, i = 1, . . . , M, k = t, . . . , t + N − 1 (8)

xt = x(t) ∈ X (9)

where u = [uT
t , . . . , uT

t+N−1]
T , x = [xT

t+1, . . . , x
T
t+N ]T ,

the matrices Q, P , and R are block-diagonal and positive

definite, the constraint sets U , X and Xf are polytopes and

have nonempty interiors, and each local constraint set Ωi is

a hyperbox. Each subsystem i is assigned a neighborhood,

denoted N i, containing subsystems that have direct dynami-

cal interactions with subsystem i, including itself. The initial

state xt is the current state at time step t.

As U , X and Xf are polytopes, the constraints (5) and

(6) are represented by linear inequalities. Moreover, the state

vector x is affinely dependent on u. Hence, we can eliminate

state variables xt+1, . . . , xt+N and transform the constraints

(4), (5), and (6) into linear inequalities of the input variable

u. Eliminating the state variables in (3)–(9) leads to an

optimization problem in the following form:

f∗
t = min

u
f(u, xt) (10)

s.t. g(u, xt) ≤ 0 (11)

u ∈ Ω (12)

where f and g = [g1, . . . , gm]T are convex functions, and

Ω =
∏M

i=1 Ωi with each Ωi =
∏N−1

k=0 Ωi is a hyperbox.

Note that f(u, xt) > 0, ∀u 6= 0, xt 6= 0, due to the positive

definiteness of Q, P , and R.

We will use (ut, xt) to denote a feasible solution gener-

ated by the controller for problem (3)–(9) at time step t.

This solution is required to be feasible but not necessarily

optimal.We will make use of the following assumptions:

Assumption 2.1: There exists a block-diagonal feedback

gain K such that the matrix A + BK is Schur (i.e., a

decentralized stabilizing control law for the unconstrained

aggregate system).

Assumption 2.2: The terminal constraint set Xf is posi-

tively invariant for the closed-loop xk+1 = (A + BK)xk

(x ∈ int(Xf) ⇒ (A + BK)x ∈ int(Xf)).
Assumption 2.3: The Slater condition holds for problem

(10)–(12), i.e., there exists a vector that satisfies strict in-

equality constraints [12]. It is also assumed that prior to each

time step t, a Slater vector ūt is available, such that

gj(ūt, xt) < 0, j = 1, . . . , m (13)

Remark 2.4: Since g(u, xt) ≤ 0 has a nonempty interior,

so do its components gj(u, xt) ≤ 0, j = 1, . . . , m. Hence,

there will always be a vector that satisfies the Slater condition

(13). In fact, we will only need to find the Slater vector ū0

for the first time step, which can be computed off-line. In

Section V-A we will show that a new Slater vector can then

be obtained for each t ≥ 1, using Assumption 2.2.

Assumption 2.5: At each time step t, the following holds

f(ut−1, xt−1) − f(ūt, xt) > xT
t−1Qxt−1 + uT

t−1Rut−1

(14)

For later reference, we define ∆t > 0 which can be

computed before time step t as follows:

∆t = xT
t−1Qxt−1 + uT

t−1Rut−1 (15)

Remark 2.6: Assumption 2.5 is often satisfied with an

appropriate terminal penalty matrix P . A method to construct

a block-diagonal P with a given decentralized stabilizing

control law is provided in [13].

Assumption 2.7: For each xt ∈ X , the Euclidean norm of

g(u, xt) is bounded:

Lt ≥ ‖g(u, xt)‖2, ∀u ∈ Ω (16)

Remark 2.8: In the first time step, with given x0, we

can find L0 by evaluating ‖g(u, x0)‖2 at the vertices of Ω,

the maximum will then satisfy (16) for t = 0, due to the

convexity of g and Ω. For the subsequent time steps, we

will present a simple method to update Lt in Section V-B.

B. The tightened problem

We will not solve problem (10)–(12) directly. Instead, we

will make use of an iterative algorithm based on a tightened

version of (10)–(12). Consider the tightened constraint:

g′(u, xt) , g(u, xt) + 1mct ≤ 0 (17)

with g′(u, xt) = [g′1, . . . , g
′
m]T , 0 < ct <

minj=1,...,m{−gj(ūt, xt)}, and 1m the column vector

with every entry equal to 1. Due to (13), we have

max
j=1,...,m

{g′j(ūt, xt)} = max
j=1,...,m

{gj(ūt, xt)} + ct < 0 (18)

Hence g′j(ūt, xt) < 0, j = 1, . . . , m. Moreover, using (16)

and the triangle inequality of the 2-norm, we will get L′
t =

Lt+ct as the norm bound for g′, i.e. L′
t ≥ ‖g′(u, xt)‖2, ∀u ∈

Ω. Note that L′
t implicitly depends on xt, as ūt and ct are

updated based on the current state xt.

Using the tightened constraint (17), we formulate the

tightened problem:

f ′
t

∗
= min

u
f(u, xt) (19)

s.t. g′(u, xt) ≤ 0 (20)

u ∈ Ω (21)

Remark 2.9: Only the coupled constraints (11) are tight-

ened, while the local input constraints (12) are unchanged.

The Slater condition also holds for the tightened problem

(19)–(21), with ūt being the Slater vector.

III. THE PROPOSED OPTIMIZATION ALGORITHM

Our objective is to calculate a feasible solution for problem

(3)–(9) using a method that is favorable for distributed

computation. The main idea is to use dual decomposition for

the tightened problem (19)–(21) instead of the original one,

such that after a finite number of iterations the constraint

violations in the tightened problem will be less than the

difference between the tightened and the original constraints.

Thus, even after a finite number of iterations, we will obtain

a primal feasible solution for the original MPC optimization

problem.
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A. The dual problem

We will tackle the dual problem of (19)–(21), in order to

deal with coupled constraint g′(u, xt) ≤ 0 in a distributed

way. In this section, we define the dual problem and its

subgradient. For simplicity, in this section the dependence

of functions on the initial condition xt is not indicated

explicitly.

The Lagrangian of problem (19)–(21) is defined as:

L′(u, µ) = f(u) + µT g′(u) (22)

in which u ∈ Ω, µ ∈ R
m
+ .

The dual function for (19)–(21):

q′(µ) = min
u∈Ω

L′(u, µ) (23)

is a concave function on R
m
+ , and it is non-smooth when f

and g′ are not strictly convex functions [12].

Given the assumption that Slater condition holds for (19)–

(21), duality theory [12] shows that:

q′t
∗

= f ′
t

∗
(24)

with q′t
∗ = maxµ∈Rm

+
q′(µ) and f ′

t
∗

the minimum of (19)–

(21).

Thanks to this result, instead of minimizing the primal

problem, we may maximize the dual problem, which is often

more amenable to decomposition due to simpler constraints.

Since we may not have the gradient of q′ in all points of

R
m
+ , we will use a method based on the subgradient.

Definition 3.1: A vector d is called a subgradient of a

convex function f over X at the point x ∈ X if:

f(y) ≥ f(x) + (y − x)T d, ∀y ∈ X (25)

The set of all subgradients of f at the point x is called

the subdifferential of f at x, denoted ∂f(x).
For each Lagrange multiplier µ̄ ∈ R

m
+ , first assume we

have u(µ̄) = arg minu∈Ω L′(u, µ̄). Then a subgradient of

the dual function is directly available, since [12]:

q′(µ) ≤ q′(µ̄) + (µ − µ̄)T g′(u(µ̄)), ∀µ ∈ R
m
+ (26)

In case an optimum of the Lagrangian is not attained due

to termination of the optimization algorithm after a finite

number of steps, a value ũ(µ̄) that satisfies

L′(ũ(µ̄), µ̄) ≤ min
u∈Ω

L′(u, µ̄) + δ (27)

will lead to the following inequality:

q′(µ) ≤ q′(µ̄) + δ + (µ − µ̄)T g′(ũ(µ̄)), ∀µ ∈ R
m
+ (28)

where g′(ũ(µ̄)) is called δ-subgradient of the dual function

q at the point µ̄. The set of all δ-subgradients of q at µ̄ is

called δ-subdifferential of q at µ̄.

This means we do not have to look for a subgradient (or

δ-subgradient) of the dual function, it is available by just

evaluating the constraint function at the primal value u(µ̄)
(or ũ(µ̄)).

B. The main algorithm

We organize our algorithm for solving (10)–(12) at time

step t in a nested iteration of an outer and inner loop. The

main procedure is described as follows:

Algorithm 3.2: Approximate subgradient method with

nested Jacobi iterations

1) Given a Slater vector ūt of (10)–(12), determine ct and

construct the tightened problem (19)–(21).

2) Determine step size αt and suboptimality εt, see later

in Section III-C.1.

3) Determine k̄t (the sufficient number of outer itera-

tions), see later in Section III-C.2.

4) Outer loop: Set µ(0) = 0 · 1m. For k = 0, . . . , k̄, find

u(k), µ(k+1) such that:

L′(u(k), µ(k)) ≤ min
u∈Ω

L′(u, µ(k)) + εt (29)

µ(k+1) = PR
m

+

{

µ(k) + αtd
(k)

}

(30)

where PR
m

+
denotes the projection onto the nonnegative

orthant, d(k) = g′
(

u(k), xt

)

.

Inner loop:

• Determine p̄k (the sufficient number of inner iter-

ations), see later in Section III-D.1.

• Solve problem (29) in a distributed way with

a Jacobi algorithm. For p = 0, . . . , p̄k, every

subsystem i computes:

ui(p + 1) = arg min
ui∈Ωi

L′(u1(p), . . . , ui−1(p), ui,

ui+1(p), . . . , uM (p), µ(k)) (31)

where Ωi is the local constraint set for control

variables of subsystem i.

• Define u(k) , [u1(p̄k)T , . . . , uM (p̄k)T ]T , which

is guaranteed to satisfy (29).

5) Compute û
(k̄t) = 1

k̄t

∑k̄t

l=0 u(l), take ut = û
(k̄t) as the

solution of (10)–(12).

Remark 3.3: Algorithm 3.2 is suitable for implementation

in a hierarchical fashion where the main computations occur

in the Jacobi iterations and are executed in parallel by local

controllers, while the updates of dual variables and common

parameters are carried out by a higher-level coordinating

controller. In the inner loop, each subsystem only needs to

communicate with its neighbors, which will be discussed in

Section IV-A. This algorithm is also amenable to implemen-

tation in distributed settings, where there are communication

links available to help determine and propagate the common

parameters αt, εt, k̄t, and p̄k.

In the following sections, we will describe in detail

how the computations are derived, and what the resulting

properties are.

C. Outer loop: Approximate subgradient method

The outer loop at iteration k uses an approximate sub-

gradient method. The primal average sequence û
(k) =

1
k

∑k

l=0 u(l) has the following properties:
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For k ≥ 1 :
∥

∥

∥

∥

[

g′
(

û
(k)

, xt

)]+
∥

∥

∥

∥

2

≤
1

kαt

(

3

γt

[f(ūt, xt) − q′t
∗
]

+
αtL

′
t
2

2γt

+ αtL
′
t

)

(32)

f
(

û
(k)

, xt

)

≤ f ′
t

∗
+

∥

∥µ(0)
∥

∥

2

2

2kαt

+
αtL

′
t
2

2
+ εt (33)

where g′
+

denotes the constraint violation, i.e. g′
+

=
max{g′, 0 · 1m}. The proof of (32) can be found in [14],

and the proof of (33) is given in [15].

1) Determining αt and εt: Using the lower bound of the

cost reduction (14) and the upper bound of the suboptimality

(33) for the tightened problem (19)–(21), we will choose αt

and εt such that f(ut, xt) < f(ut−1, xt−1).
The step size αt and suboptimality εt should satisfy:

αtL
′
t
2

2
+ εt ≤ ∆t (34)

where ∆t is defined in (15), and L′
t is the norm bound for

g′. This condition allows us to show the decreasing property

of the cost function in problem (3)–(9), which can then be

used as a Lyapunov function.

Note that a larger αt will lead to a smaller number of outer

iterations, while a larger εt will lead to a smaller number of

inner iterations. For the remainder of the paper we choose

their values according to

αt =
∆t

L′
t
2 (35)

εt =
∆t

2
(36)

2) Determining k̄t: Using the constraint violation bound

(32), we will choose k̄t such that at the end of the algorithm,

we will get a feasible solution for problem (10)–(12), which

is the average of primal iterates generated by (29):

û
(k̄t) =

1

k̄t

k̄t
∑

l=0

u(l) (37)

The subgradient iteration (29)–(30) is performed for k =
1, . . . , k̄t, with the integer

k̄t =

⌈

1

αtct

(

3

γt

f(ūt, xt) +
αtL

′
t
2

2γt

+ αtL
′
t

)⌉

(38)

defined a priori, where ⌈·⌉ is the ceiling operator which gives

the closest integer equal to or above a real value, γt =
minj=1,...,m{−g′j(ūt, xt)} = minj=1,...,m{−gj(ūt, xt)} −
ct, and ūt is the Slater vector of (19)–(21).

D. Inner loop: Jacobi method

The inner iteration (31) performs parallel local optimiza-

tions based on a standard Jacobi distributed optimization

method for a convex function L′(u, µ(k)) over a Cartesian

product, as described in [16, Section 3.3]. In order to find

the sufficient stopping condition of this Jacobi iteration, we

need to characterize the convergence rate of this algorithm. In

the following, we summarize the condition for convergence

of the Jacobi iteration, noting that L′(u, µ(k)) is a strongly

convex quadratic function with respect to u.

Proposition 3.4: Suppose the following condition holds:

λmin(Hii) >
∑

j 6=i

σ̄(Hij), ∀i (39)

where Hij with i, j ∈ {1, . . . , M} denotes a submatrix of

the Hessian H of L′ w.r.t. u, containing entries of H in

rows belonging to subsystem i and columns belonging to

subsystem j, λmin means the smalleast eigenvalue, and σ̄

denotes the maximum singular value.

Then ∃φ ∈ (0, 1) such that the aggregate solution of the

Jacobi iteration (31) satisfies:

‖u(p) − u∗‖2 ≤ Mφp max
i

‖ui(0) − ui∗‖2, ∀p ≥ 1 (40)

where u∗ = argminu∈Ω L′(u, µ(k)), and ui∗ is the compo-

nent of subsystem i in u∗.

We provide a proof for Proposition 3.4 in [15].

Remark 3.5: This proposition provides a linear conver-

gence rate of the Jacobi iteration, under the condition of

weak dynamical couplings between subsystems. For the sake

of illustrating condition (39), let all subsystems have the

same number of inputs. Consequently, Hij is a square and

symmetric matrix for each pair (i, j), hence the maximum

singular value σ̄(Hij) equals to the maximum eigenvalue.

Inequality (39) thus reads:

λmin(Hii) >
∑

j 6=i

λmax(Hij), ∀i

which implies that the couplings represented by H are small

in comparison with each local cost.

Remark 3.6: Note that the strong convexity of L′ and the

condition (39) are required only for the convergence rate

result of the Jacobi iteration in which L′ is a quadratic

function. Extensions to other types of systems, where the

Lagrangian can be solved with bounded suboptimality, are

immediate. In such cases we simply need to replace the

Jacobi iteration with the new algorithm in the inner loop,

while the outer loop will remain intact.

1) Determining p̄k: As L′(u, ·) is continuously differen-

tiable in a closed bounded set Ω, it is Lipschitz continuous.

Suppose we know the Lipschitz constant Λ of L′(u, ·) over

Ω, i.e. for any u1, u2 ∈ Ω the following inequality holds:

‖L′(u1, µ(k)) − L′(u2, µ(k))‖2 ≤ Λ‖u1 − u2‖2 (41)

Taking u1 = u(p̄k) and u2 = u∗ in (41), and combining

it with (40), we obtain:

‖L′(u(p̄k), µ(k))−min
u∈Ω

L′(u, µ(k))‖2 ≤ Λ‖u(p̄k) − u∗‖2

≤ ΛMφp̄k max
i

‖ui(0) − ui∗‖2 (42)
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For each i ∈ {1, . . . , M}, let Di denote the diameter of the

set Ωi w.r.t. the Euclidean norm, so we have ‖ui(0)−ui∗‖2 ≤
Di. Hence the relation (42) can be further simplified as

L′(u(p̄k), µ(k)) ≤ min
u∈Ω

L′(u, µ(k)) + ΛMφp̄k max
i

Di (43)

Based on (43), in order to use u(p̄k) as the solution u(k)

that satisfies (29), we choose the smallest integer p̄k such

that ΛMφp̄k maxi Di ≤ εt:

p̄k =

⌈

logφ

εt

ΛM maxi Di

⌉

(44)

IV. PROPERTIES OF THE ALGORITHM

A. Distributed Jacobi algorithm with guaranteed conver-

gence

The computations in the inner loop can be executed by

subsystems in parallel. Let us define an r-step extended

neighborhood of a subsystem i, denoted by N i
r , as the set

containing all subsystems that can influence subsystem i

within r successive time steps. N i
r is the union of subsystem

indices in the neighborhoods of all subsystems in N i
r−1:

N i
r =

⋃

j∈N i

r−1

N j (45)

where N i
1 = N i. We can see that in order to get update in-

formation in the Jacobi iterations, each subsystem i needs to

communicate only with subsystems in N i
N−1, where N is the

prediction horizon. This set includes all other subsystems that

couple with i in the problem (10)–(12) after eliminating the

state variables. This communication requirement indicates

that we will benefit from communication reduction when the

number of subsystems M is much larger than the horizon N ,

and the coupling structure is sparse.

Assume that the weak coupling condition (39) holds, then

after p̄k iterations as computed by (44), the Jacobi algorithm

generates a solution u(k) , u(p̄k) that satisfies (29) in the

outer loop.

B. Feasible primal solution

Proposition 4.1: Suppose Assumptions 2.1 and 2.3 hold.

Construct g′ as in (17), αt as in (35). Let the outer loop

(29)–(30) with µ(0) = 0 · 1m be iterated for k = 0, . . . , k̄t.

Then û
(k̄t) is a feasible solution of (10)–(12), where û

(k̄t) is

the primal average, computed by (37).

Proof: With a finite number of k̄t iterations (32) reads as
∥

∥

∥

∥

[

g′
(

û
(k̄t), xt

)]+
∥

∥

∥

∥

2

≤
1

k̄tαt

(

3

γt

[

f(ūt, xt) − q′t
∗]

+
αtL

′
t
2

2γt

+ αtL
′
t

)

(46)

Moreover, the dual function q′t is a concave function, there-

fore q′t
∗ ≥ q′(0, xt). Recall that f(u, xt) > 0, ∀u 6= 0, xt 6=

0, thus q′(0, xt) = minu∈Ω f(u, xt) + 0 · 1
T
mg′(u, xt) =

minu∈Ω f(u, xt) > 0, thus
∥

∥

∥

∥

[

g′
(

û
(k̄t), xt

)]+
∥

∥

∥

∥

2

<
1

k̄tαt

(

3

γt

f(ūt, xt)

+
αtL

′
t
2

2γt

+ αtL
′
t

)

(47)

Combining (47) with (38), and noticing that k̄t and ct are

all positive lead to

∥

∥

∥

∥

[

g′
(

û
(k̄t), xt

)]+
∥

∥

∥

∥

2

< ct (48)

⇒ g′j

(

û
(k̄t), xt

)

< ct, j = 1, . . . , m (49)

⇒ gj

(

û
(k̄t), xt

)

< 0, j = 1, . . . , m (50)

where the last inequality implies that û
(k̄t) is a fea-

sible solution of problem (10)–(12), due to ct <

minj=1,...,m{−gj(ūt, xt)}. �

C. Closed-loop stability

Proposition 4.2: Suppose Assumptions 2.3, 2.5, and 2.7

hold. Then the solution û
(k̄t) generated by Algorithm 3.2

satisfies the following inequality:

f(ut, xt) < f(ut−1, xt−1), ∀t ∈ Z+ (51)

Proof: Using (33) and (34), and noting that µ(0) = 0, we

obtain:

f
(

û
(k̄t), xt

)

≤ f ′
t

∗
+

‖µ(0)‖

2k̄tαt

+
αtL

′
t
2

2
+ εt ≤ f ′

t

∗
+ ∆t

(52)

Notice that ūt is also a feasible solution of (19)–(21)

(due to the way we construct the tightened problem: ūt

still belongs to the interior of the tightened constraint set),

while f ′
t
∗

is the optimal cost value of this problem. As a

consequence,

f ′
t

∗
≤ f(ūt, xt) (53)

Combining (52), (53), and (14), and noting that ut = û
(k̄t)

leads to:

f(ut, xt) < f(ut−1, xt−1), ∀t ∈ Z+ (54)

�

Note that besides the decreasing property of f(ut, xt), all

the other conditions for Lyapunov stability of MPC [17]

are satisfied. Therefore, Proposition 4.2 leads to closed-

loop MPC stability, where the cost function f(ut, xt) is a

Lyapunov candidate function.

V. REALIZATION OF THE ASSUMPTIONS

In this section, we discuss the method to update the Slater

vector and the constraint norm bound for each time step,

implying that Assumptions 2.3 and 2.7 are only necessary in

the first time step (t = 0).
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A. Updating the Slater vector

Lemma 5.1: Suppose Assumption 2.2 holds. Let ut be the

solution of the MPC problem (3)–(9) at time step t, computed

by Algorithm 3.2. Then ũt+1 constructed by shifting ut one

step ahead and adding ũt+N = Kxt+N , is a Slater vector

for constraint (11) at time step t + 1.

Proof: Note that based on Proposition 4.1, û
(k̄t) is a

feasible solution of problem (10)–(12). Moreover, the strict

inequality (50) means that û
(k̄t) is in the interior of the

constraint set of (3)–(9). This also yields:

xt+N ∈ int(Xf) (55)

Moreover, due to Assumption 2.2, we have (A +
BK)xt+N ∈ int(Xf). This means that if we use ũt+N =
Kxt+N , then the next state is also in the interior of the

terminal constraint set Xf . Note that U and X do not change

when problem (3)–(9) is shifted from t to t + 1, hence all

the inputs of ũt+1 and their subsequent states are in the

interior of the corresponding constraint sets. Therefore, ũt+1

as constructed at step 5 of Algorithm 3.2 is a Slater vector

for the constraint (11) at time step t + 1. �

This means we can use ūt+1 = ũt+1 as the qualifying

Slater vector for Assumption 2.3 at time step t + 1.

B. Updating the constraint norm bound

In our general problem setup, g(u, x) is composed of affine

functions over u and x, and thus can be written compactly

as

g(u, x) = Ξx + Θu + τ (56)

with constant matrices Ξ, Θ and vector τ . Then for each

xt−1, xt, and u ∈ Ω, the following holds:

g(u, xt) = g(u, xt−1) + Ξ(xt − xt−1)

⇒ ‖g(u, xt)‖2 ≤ ‖g(u, xt−1)‖2 + ‖Ξ(xt − xt−1)‖2 (57)

In order to find a bound Lt for g(u, xt) in each t ≥ 1
step, we assume to have the constraint norm bound available

from the previous step:

Lt−1 ≥ ‖g(u, xt−1)‖2, ∀u ∈ Ω (58)

Hence, combining the above inequalities a norm bound

update for g(u, xt) can be obtained as:

Lt = Lt−1 + ‖Ξ(xt − xt−1)‖2 (59)

VI. CONCLUSIONS

We have presented a constraint tightening approach for

solving an MPC optimization problem with guaranteed feasi-

bility and stability after a finite number of iterations. The new

method is applicable to large-scale systems with coupling

in dynamics and constraints, and the solution is based on

approximate subgradient and Jacobi iterative methods, which

facilitate implementation in a hierarchical or distributed way.

Future extensions of this scheme include a posteriori choice

of the solution by comparing the cost functions associated

with the Slater vector ūt and the primal average û
(k̄t) in a

distributed way.
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