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Abstract— In radio resource management for cellular net-
works a trade-off has to be made between the congestion
level, related to cell coverage and intercell interference, and
the Quality of Service (QoS) or data rates of the users. This is
implemented by using a fast inner power control loop and an
outer rate control algorithm, working on a slower time scale.

Due to the distributed nature of the network, both infor-
mation and control is distributed. Measurements of congestion
and QoS are used in the control loops and this introduces a
nonlinear feedback. Another complicating factor is that filter-
ing, computations and information exchange in the network
introduce time delays.

In this paper we propose a general high order model as
a cascade system with an outer and inner control loop. The
control algorithms use distributed information available in the
network. The full system model includes the nonlinear feedback
from congestion and QoS measurements, time delays and time
scale modelling. We provide sufficient conditions for stability
and convergence of the system. Our primary analysis tool is
input output theory.

I. INTRODUCTION

In wireless cellular networks there are several control

loops for maintaining the Quality of Service (QoS) of the

users and controlling congestion in the network. We consider

uplink in a CDMA cellular network, where the users transmit

on the same channel. This causes an important feedback

interconnection between the users for the control loops

regulating on congestion and QoS.

A fast distributed inner power control loop is used to

ensure that the QoS is maintained under rapidly changing

radio and interference conditions. The inner power control

loop tracks a reference value on the QoS by updating the

transmission powers of the users. The reference QoS signal

is set by a slower outer rate control loop, which makes sure

that the cell coverage is maintained by tracking a congestion

reference. The outer loop works on a slower time scale, but

the joint dynamics cannot be neglected.

An important motivation for using an outer control loop

is to prevent power rushes, where the transmission powers

of the users heavily increase. It is well known that if the

QoS reference value is set too high, there exist no positive

transmission powers, such that the target QoS is achieved.

The users will then compete with increasing transmission

powers. In e.g. [11], [9] and [10] it was also shown that

power rushes can be caused in the inner loop by too
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aggressive control algorithms in combination with delay. In

e.g. [7] it was shown that by using a Smith predictor it is

possible to compensate for delay. Typically there are delays

both in the inner and outer control loop, which motivates the

use of higher order control laws.

While the fast power control loop has been extensively

studied over the last two decades, the outer loop has drawn

less attention. Previous works concern mostly the aspect of

rate allocation and have often used an optimization approach,

see e.g. [3] and [8]. In [8] convergence of distributed algo-

rithms was studied, but only when assuming that the control

loops work on different time scales. Joint dynamics for a

type of outer loop algorithms were studied in [1] and [13].

Both considered a simplified linear system model, treating

the nonlinear effects of interference and congestion feedback

as additive disturbances.

The main focus of this paper is the modelling and analysis

of the joint dynamics. In Section II, the congestion measure

total load is defined. It will be the key concept for the outer

loop control, with a similar function as Signal to Interference

Ratio (SIR) in the inner control loop. The total load can

be derived directly from distributed measurements of the

Rise over Thermal (RoT). In a cellular network there are

constraints on the RoT related to coverage issues of the cell

and intercell interference. These constraints transfer directly

to the total load, and motivates controlling on it.

In Section III we derive the system model in a control

theoretic framework. Then, in Section IV we consider con-

ditions for feasibility of the joint system. In Section V we

perform a general stability analysis using input output tools.

Sufficient conditions are given for stability and convergence

of the system. Then we focus on local analysis in Section VI,

where the problem structure exploited. In particular we use

scaling multipliers to sharpen the results from the previous

section, which also reveal a similar structure of the inner and

outer loop feedback nonlinearities.

In Section VII we illustrate the gains of using an outer loop

by simulations and using the derived results. In particular

we show that power rushes can be prevented and we model

a realistic scenario of a WCDMA network with delays and

time scale difference. The paper is concluded in Section VIII.

Most proofs are omitted due to space restriction, but can be

found in [12].

II. SYSTEM MODEL AND DEFINITIONS

We consider uplink in a network with n mobiles, or

transmitters, and n corresponding base stations, or receivers.
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By considering the uplink as transmitter-receiver pairs, where

mobile i is connected to base station i, there is no difference

if, for example, there is one base station operating all users,

or if every mobile is operated by different base stations. Let

ḡij be the channel gain between transmitter j and receiver

i and define the channel gain matrix, Ḡ, by Ḡ = [ḡij ]
n
i,j=1.

We assume that ḡij ≥ 0,∀(i, j) and ḡii > 0,∀i.

Let p̄i ≥ 0 be the transmission power of user i and p̄ =
[p̄1, . . . , p̄n]T . We assume there is receiver noise, σ̄2

i > 0,

at receiver i and we let σ̄2 = [σ̄2
1 , . . . , σ̄2

n]T . The Signal to

Interference Ratio (SIR) of user i in receiver i is

γ̄i =
ḡiip̄i∑

j 6=i ḡij p̄j + σ̄2
i

,

where the numerator is the received signal power of user i
and the denominator is the sum over interfering powers and

receiver noise. The SIR of user i is related to its data rate

by the Shannon capacity formula W log(1 + γ̄i), where W
is the bandwidth of the channel.

The Rise Over Thermal (RoT) is a measurable quantity

in the base stations that relate to congestion. To ensure cell

coverage, there are constraints on the RoT-level. The total

load at receiver i, L̄i,tot, is defined as

L̄i,tot =

∑n
j=1 ḡij p̄j∑n

j=1 ḡij p̄j + σ̄2
i

,

and is related to RoT through the relation L̄i,tot = 1− 1
RoT i

,

see e.g. [8].

We use the notation diag(xi) or diag(x) to denote the

diagonal matrix with xi in the diagonal elements, and we let

M i denote the i:th row of a matrix M . We sometimes use

the matrix F̄ , which is defined componentwise by

F̄ij =

{
0, i = j,

ḡij , i 6= j.
(1)

We also use the matrix ∆̄ = diag(ḡii). Note that F̄ = Ḡ−∆̄.

III. INNER AND OUTER CONTROL ALGORITHMS

The parameters of a cellular system are constantly chang-

ing and subject to a high degree of disturbances and un-

certainties. This motivates the use of control strategies to

adapt to changing radio conditions and to ensure system

performance. In this section we model the control loops that

ensure that the congestion is limited and the QoS achieved.

The system model can be seen as a cascade control system

with an inner and outer control loop, see Figure 1.

The system model we derive includes high order dynam-

ics. This makes it possible to model time delays, filters and

high order control algorithms. Furthermore, in real appli-

cations of cellular systems there is a time scale difference

between the loops. With an example in Section VII we will

see that the time scale difference can be modelled by a high

order outer loop controller.

Outer loop Inner loop

FastSlow

SIR

RoT

RoT-target SIR-target

Channel

Power

Fig. 1. Scheme over functionality of outer and inner power control loops.
The outer loop controls congestion by setting the SIR target to the inner
loop. The inner loop controls the SIR-level by changes in the transmission
powers.

A. Inner loop

Power control algorithms for the inner power control loop

has been extensively studied, see e.g. [5], [7], [6], [14],

[9] or [11]. Foschini and Miljanic proposed the SIR-based

Distributed Power Control (DPC) algorithm, defined by

p̄i[t + 1]
∆
=

γ̄T
i

γ̄i[t]
p̄i[t], (2)

where γ̄T
i is the SIR target. Assuming that the base station

knows the actual transmission power of the mobile, the

DPC algorithm in (2) can be written as a linear system

and easily analysed. However, in many real networks the

feedback control is kept to a minimum. This means that

the information exchange in the network must be distributed

and the base station can typically only measure the received

power, ḡiip̄i(t), not the individual terms.

By introducing logarithmic variables we can rewrite (2)

so that the distributed nature of the information exchange is

clarified. Indeed, with pi[t] = ln(p̄i[t]) and γT
i = ln(γ̄T

i ),
we can rewrite (2) as

pi[t + 1] = pi[t] + (γT
i − γi[t]) (3)

where

γi[t] = ln(γ̄i[t]) = ln(ḡiip̄i[t]) − ln
( ∑

j 6=i

ḡij p̄j [t] + σ̄2
i

)
.

By using the time-shift operator defined by qpi[t] = pi[t +
1], we may rewrite (3) on input output form as pi[t] =
R(q)(γT

i − γi[t]), where R(q) = 1
q−1 .

A challenge in control of cellular networks is to maintain

robustness to delays. In e.g. [15] and [2] it has been shown

that the DPC algorithm converges for any transmission delay

of the interfering powers. However, in a cellular system

there are typically no large transmission delays, but there

are delays due to measuring, filtering, computations and

control signalling to the mobile user. These delays can be

modelled and are crucial for system stability. For example, a

computational delay of size one can be modelled by R(q) =
1

q(q−1) . The resulting system will then be of higher order and

the convergence results in [15] are no longer applicable. An

example of this can be found in e.g. [9]. We will consider
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Fig. 2. Outer and inner loop in block diagram.

high order inner power control algorithms of the general form

pi[t] = Ki,1(q)
(
γT

i − gii + ln
(∑

j 6=i

ḡij p̄j [t] + σ̄2
i

))
,

where gii = ln(ḡii), Ki,1(q) = Ri(q)
1+Ri(q)

, which we assume to

be stable, and Ri(q) =
bi,1(q)
ai,1(q)

, where ai,1(q) and bi,1(q) are

polynomials in q and ai,1(q) is a stable polynomial. For the

DPC algorithm in (3) we obtain the above form by using that

ln(ḡiip̄i[t]) = gii + pi[t] and by taking Ri(q) = 1
q−1 . The

distributed nature of the inner loop is illustrated within the

dotted lines in Figure 2, where gi = [ln(ḡ11), . . . , ln(ḡnn)]T

and γT = [ln(γ̄T
1 ), . . . , ln(γ̄T

n )]T .

Remark 1: Given that Ri(q) has an integrator, i.e. a term
1

q−1 , the experienced SIR will be equal to the target SIR in

the equilibrium. If there is no integrator, the equilibrium SIR

will be different from the reference value given by the outer

loop. The steady state properties will not be affected, since

we will require an integrator in the outer loop. However,

pole placement in the inner loop can be used to enhance

performance.

B. Outer loop

The outer loop controls on the total load as congestion

measure and dynamically sets the reference value to the inner

power control loop. When the inner loop has an integrator,

the reference value can be interpreted as the target SIR.

Therefore we use that notation in the following derivations.

We begin by defining a first order update algorithm, which

we later extend to include delays and higher order control

laws analogously to the inner loop model.

Define

L̄i,tar = 1 −
1

RoT i,tar

as the target total load. Now consider an update algorithm

for γ̄T
i in linear scale as

γ̄T
i [t + 1] =

L̄i,tar

L̄i,tot[t]
γ̄T

i [t],

i.e. similar to the DPC algorithm, but with the difference that

now the experienced total load is compared to the target total

load.

In logarithmic scale the update algorithm can be written

as

γT
i [t + 1] = γT

i [t] + Li,tar − Li,tot[t],

where Li,tar = ln(L̄i,tar) and

Li,tot[t] = ln
( n∑

j=1

ḡij p̄j [t]
)
− ln

( n∑

j=1

ḡij p̄j [t] + σ̄2
i

)
.

Similarly as for the inner power control loop, we consider

higher order control algorithms on the following general

form

γ̄T
i [t] = Ki,2(q)ei[t],

where Ki,2(q) =
bi,2(q)

(q−1)ai,2(q)
, and ai,2(q) and bi,2(q) are

polynomials in q, ai,2(q) assumed to be a stable polynomial,

and where ei[t] = Li,tar − Li,tot[t].
The intuitive idea of controlling on total load is that if

the powers increase, the total load will increase above the

reference value, which will decrease the target SIR, leading

to lower powers. Similarly, if the powers are low, higher

powers can be allowed, raising the target SIR and eventually

the powers.

The joint system model in logarithmic scale is illus-

trated in the block diagram in Figure 2, where Ltar =
[L1,tar, . . . , Ln,tar]

T . We note that filters for measured sig-

nals in both the inner and outer loop easily can be included

in this framework, but for clarity we omit this.

IV. EQUILIBRIUM POINT

The transmission powers of the users must always be non-

negative by physical constraints. Inspired by this we make

the following definition.

Definition 1: The joint system is feasible if there exist

finite positive powers corresponding to the target total load.

Proposition 1: Assume that Ki,2(q) contains an integrator

term for all i, L̄i,tar < 1,∀i, and that Ḡ−1 exists. Then the

unique equilibrium powers, p̄∗, are given by

p̄∗ = [(I − L̄tar)Ḡ]−1L̄tarσ̄
2, (4)

where L̄tar = diag(L̄i,tar). A condition for feasibility can

hence be stated as

Ḡ−1





L̄1,tar

1−L̄1,tar
σ̄2

1

...
L̄n,tar

1−L̄n,tar
σ̄2

n



 ≥ 0. (5)

Note that feasibility of the system implies that the SIRs of

all users are positive in the equilibrium. This follows since

the powers and all system parameters are positive. The choice

of total load will determine the equilibrium point, and hence

also the equilibrium SIR, Γ̄∗ = diag(γ̄∗
i ). Conversely we can

start with a desired equilibrium SIR and implicitly obtain a

target total load assignment. The following proposition states
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Fig. 3. Rewritten block diagram of joint outer and inner loop with an
artificial lower loop with gain C.

sufficient conditions for feasibility of the joint system when

starting from the SIR.

Proposition 2: Assume that ρ(Γ̄∗∆̄−1F̄ ) < 1. Then the

joint system is feasible and L̄i,tar < 1,∀i.

Note that there could be solutions to the equilibrium equation

in (4) where the power vector has negative components even

though L̄i,tar < 1,∀i.

V. STABILITY ANALYSIS

The stability analysis in this section is presented in a

general form, indicating that this framework is applicable for

a larger problem class than the application studied. Specific

problem structure will be exploited in Section VI.

We first rewrite the system to a more compact form. Then

we consider the resulting blocks as operators on a Banach

space. We apply input output analysis to obtain sufficient

conditions for stability and convergence of the system.

The analysis is made using logarithmic scale and is based

on the existence of equilibrium powers, p∗. We consider the

dynamics of deviations around the equilibrium point, z =
p − p∗, and disturbances δr.

The full system model, depicted as a block diagram in

Figure 2, can equivalently be rewritten to the system in

Figure 3, where an artificial lower and upper loop is added

with gain C, where C = diag(Ci). This results in Φout being

dependent of C. Note that this way of rewriting the system

is only for analysis purpose. We have used the following

notation.

Φout(z) = [Φ1,out(z), . . . ,Φn,out(z)]T

Φin(z) = [Φ1,in(z), . . . ,Φn,in(z)]T

Φi,out(z) = ln

(∑n
j=1 ḡije

p∗

j ezj + σ̄2
i∑n

j=1 ḡije
p∗

j ezj

)
+ Cizi + Li,tar

Φi,in(z) = ln
( n∑

j 6=i

ḡije
p∗

j ezj + σ̄2
i

)
− γT

i (p∗) + gii + p∗i

K1(q) = diag(Ri(q)/(1 + Ri(q))), K2(q) = diag(Ki,2).

δr

[Φin, Φout]
T

P

[H1, H2]
z + +

Fig. 4. Input output form of the joint system.

We now further rewrite the system to input output form,

see Figure 4, where

H1(q) = [I + K1(q)K2(q)C]−1K1(q)

H2(q) = [I + K1(q)K2(q)C]−1K1(q)K2(q).

The analysis will be performed in the following signal

spaces

(i) ln∞ = {z : N → Rn
∞ : ‖z‖∞ < ∞}

(ii) ln2,∞ = {z : N → Rn
∞ : ‖z‖2,∞ < ∞}

where the norms are defined as ‖z‖∞ = supk |z[k]|∞ and

‖z‖2,∞ = (
∑∞

k=0 |z[k]|2∞)1/2. The spatial dimension will

often be suppressed. It has previously been established that

use of the l2-space is not appropriate for this kind of analysis,

see e.g. [10] or [11] for a further discussion on choice of

signal spaces.

Let F be a nonlinear operator F : X → X such that

F (0) = 0 and X is a normed vector space. Then the global

Lipschitz constant is defined as

L[F ;X]
∆
= sup

z1,z2∈X,z1 6=z2

‖F (z1) − F (z2)‖X

‖z1 − z2‖X
,

where ‖ · ‖X denotes the norm on X . For us it will be

interesting to consider the Lipschitz constant on a subset BX

of X defined by how large deviations around the equilibrium

we consider. Define

L[F ;BX ]
∆
= sup

z1,z2∈BX ,z1 6=z2

‖F (z1) − F (z2)‖X

‖z1 − z2‖X
.

For linear operators the gain and Lipschitz constants

coincide. The l1-norm of a linear system Hi is defined as

‖Hi‖1
∆
=

∞∑

k=0

|hi[k]|,

where hi[k] is the impulse response at time k. For a diagonal

matrix H , H(q) = diag(Hi), the induced norms from l∞
and l2,∞ become (see e.g. [4])

‖H‖l∞→l∞ = ‖H‖1
∆
= max(‖H1‖1, . . . , ‖Hn‖1)

‖H‖l2,∞→l2,∞
≤ ‖H‖1,1

∆
=

∞∑

k=0

|h[k]|1,

where we used the matrix norm |M |1 = |M |Rn
∞

→Rn
∞

=
max1≤i≤n

∑n
j=1 |Mij |. Clearly ‖H‖1 ≤ ‖H‖1,1, and equal-

ity holds if Hi = Hj ,∀(i, j).
Let X be either of the spaces ln∞ or ln2,∞. Consider the

set B, defined componentwise by pmin,i ≤ pi ≤ pmax,i,∀i,
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where pmin,i, pmax,i are lower and upper bounds on the

transmission powers of the users. The induced sets for the

deviations around the equilibrium point, z, is then given by

B∗ = {z ∈ R
n
∞ : pmin,i − p∗i ≤ zi ≤ pmax,i − p∗i ,∀i} (6)

B∗
X = {z ∈ X : z[k] ∈ B∗,∀k}. (7)

For our analysis we need to consider the maximum interior

balls in B∗ and B∗
X , which are defined as

B∗(γ) = {z ∈ R∞ : |z|∞ ≤ γ},

B∗
X(γ) = {z ∈ X : z[k] ∈ B∗(γ), ∀k},

where γ = mini{min{p∗i − pmin,i, pmax,i − p∗i }}.

Proposition 3:

L[Φin;B∗
l∞(γ)] = L[Φin;B∗

l2,∞
(γ)] = L[Φin;B∗(γ)]

= max
z∈B∗(γ)

|∇Φin(z)|1

= max
i

F̄ iep∗+zmax

σ̄2
i + F̄ iep∗+zmax

< 1,

where ep∗+zmax = [ep∗

1+zmax,1 , . . . , ep∗

n+zmax,n ] and zmax,i =
pmax,i − p∗i ,∀i.

Proof: See [10] or [11].

Proposition 4:

L[Φout;B
∗
l∞(γ)] = L[Φout;B

∗
l2,∞

(γ)] = L[Φout;B
∗(γ)]

= max
z∈B∗(γ)

|∇Φout(z)|1

= max
i

max
z∈B∗(γ)

(
σ̄2

i F̄ iep∗+z

(Ḡiep∗+z + σ̄2
i )(Ḡiep∗+z)

+

∣∣∣∣Ci −
σ̄2

i ḡiie
p∗

i ezi

(Ḡiep∗+z + σ̄2
i )(Ḡiep∗+z)

∣∣∣∣

)

Proof: The proof follows the lines of Proposition 3.

Note that the Lipschitz constant depends on the value of the

parameter C.

We are know ready for our main theorem on stability.

Theorem 1: Assume that

‖H1‖1L[Φin;B∗(γ)] + ‖H2‖1L[Φout;B
∗(γ)] < 1,

then there exists a unique power trajectory z ∈ B∗
l∞

(γ) for

all

‖δr‖∞ ≤γ
(
1 − ‖H1‖1L[Φin;B∗(γ)]

− ‖H2‖1L[Φout;B
∗(γ)]

)
.

(8)

If it in addition holds that ‖δr‖l2,∞
< ∞ and that

‖H1‖l2,∞→l2,∞
L[Φin;B∗(γ)]

+ ‖H2‖l2,∞→l2,∞
L[Φout;B

∗(γ)] < 1,

then p[k] → p∗ as k → ∞.

Proof: The proof follows the lines of Theorem 1 in

[11].

Remark 2: In the analysis we rewrite the system by intro-

ducing the direct feedback with gain C to the dynamics part

of the block diagram, see Figure 3. This loop transformation

is needed, since the l1-norm of the integrator in K2 is infinite.

bδr

[
Φin

Φout

]

P

[H1, H2]
ẑ + +

D

»

D−1 0
0 D−1

–

Fig. 5. Input output form of the joint scaled system.

VI. SCALING MULTIPLIERS AND LOCAL ANALYSIS

Structure of the problem can be exploited by introducing

scaling multipliers, see Figure 5. This gives the transformed

but equivalent system where

Ĥ1(q)
∆
= D−1H1(q)D = H1(q)

Ĥ2(q)
∆
= D−1H2(q)D = H2(q)

Φ̂in(ẑ)
∆
= D−1Φin(Dẑ), Φ̂out(ẑ)

∆
= D−1Φout(Dẑ)

δ̂r
∆
= D−1δr, ẑ

∆
= D−1z

for any D ∈ D = {D = diag(d1, . . . , dn) : dk > 0}.

Proposition 5: The scaled nonlinearities Φ̂in : Rn
∞ →

Rn
∞ and Φ̂out : Rn

∞ → Rn
∞ are Lipschitz on D−1B∗ ⊂ Rn

∞

with

L[Φ̂in;D−1B∗] = max
z∈B∗

|D−1∇Φin(z)D|1
∆
= Lin

D

L[Φ̂out;D
−1B∗] = max

z∈B∗

|D−1∇Φout(z)D|1
∆
= Lout

D

Proof: The proof follows the lines of Proposition 4 and

Proposition 5 in [11].

To get to our stability result in the scaled signal space we

need to consider the Lipschitz constants for the signal spaces

previously defined. Define

γ̂ = min
i

{
min

{
1

di
(p∗i − pmin,i),

1

di
(pmax,i − p∗i )

}}
,

and the sets

C(γ̂) = {z ∈ R∞ : −diγ̂ ≤ zi ≤ diγ̂, ∀i}

CX(γ̂) = {z ∈ X : z[k] ∈ C(γ̂), ∀k}

Cδ,X(γ̂) =
{

δr ∈ X : |δri[k]| ≤ γ̂di

(
1 − ‖H1‖1L

in
D

− ‖H2‖1L
out
D

)
,∀(i, k)

}

Proposition 6: The scaled nonlinearities Φ̂in : X → X
and Φ̂out : X → X are Lipschitz on CX(γ̂) with

L[Φ̂in;Cl∞(γ̂)] = L[Φ̂in;Cl2,∞
(γ̂)] = L[Φ̂in;C(γ̂)]

≤ max
z∈B∗

|D−1∇Φin(z)D|1 = Lin
D

L[Φ̂out;Cl∞(γ̂)] = L[Φ̂out;Cl2,∞
(γ̂)] = L[Φ̂out;C(γ̂)]

≤ max
z∈B∗

|D−1∇Φout(z)D|1 = Lout
D

Proof: A proof can be found in [11].

We can now give conditions for stability.
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Corollary 1: If

‖H1‖1L
in
D + ‖H2‖1L

out
D < 1,

then there exists a unique power distribution z ∈ Cl∞(γ̂) for

all δr ∈ Cδ,l∞(γ̂).
If it in addition holds that ‖δr‖2,∞ < ∞ and

‖H1‖l2,∞→l2,∞
Lin

D + ‖H2‖l2,∞→l2,∞
Lout

D < 1,

then z[k] → 0 as k → ∞.

Proof: We study stability in the scaled signal space,

where ẑ = D−1z. z ∈ Cl∞(γ̂) implies that ẑ ∈ B∗
l∞

(γ̂) and

δr ∈ Cδ,l∞(γ̂) implies that

‖δ̂r‖∞ ≤ γ̂
(
1 − ‖H1‖1L

in
D − ‖H2‖1L

out
D

)
.

Theorem 1 then proves the statement.

We will now use more structure of the specific problem

by an analysis of the nonlinearities around the equilibrium

point. Note that

γ̄i(z) =
ḡiie

p∗

i +zi

σ̄2
i + F̄ iep∗+z

.

Proposition 7:

σ(∇Φin(z)) = σ(Γ̄(z)∆̄−1F̄ ),

where σ(·) denotes the spectrum of a matrix.

Remark 3: The result implies that in the equilibrium

point, the Jacobian of the inner power control loop has the

same eigenvalues as the matrix determining feasibility of the

inner loop.

Now consider ∇Φout in the equilibrium point, where z =
0, with the choice

Ci =
σ̄2

i ḡiie
p∗

i

(Ḡiep∗ + σ̄2
i )(Ḡiep∗)

, ∀i, (9)

which implies that the diagonal elements are cancelled.

Proposition 8:

σ(∇Φout(0)) = σ
(

diag

(
L̄i,tar − 1

L̄i,tar

)
diag

( γ̄∗
i

γ̄∗
i + 1

)
∆̄−1F̄

)

For clarity of notation, denote the scaled Lipschitz con-

stants around the equilibrium point, z = 0,

Lin
D (0)

∆
= L[Φ̂in;D−1B∗(0)]

Lout
D (0)

∆
= L[Φ̂out;D

−1B∗(0)].

We have

Lin
D (0) = inf

D∈D
|D−1∇Φin(0)D|1 = ρ(∇Φin(0))

Lout
D (0) = inf

D∈D
|D−1∇Φout(0)D|1 = ρ(|∇Φout(0)|)

where ρ(·) is the spectral radius and | · | means component-

wise absolute value.

Theorem 2: Let the scalings, D, be given by the eigen-

vector corresponding to ρ(∇Φin(0)), taken positive. Then a

sufficient condition for local stability is given by

(
‖H1‖1 + ‖H2‖1 max

i

∣∣∣∣
L̄i,tar − 1

L̄i,tar(γ̄∗
i + 1)

∣∣∣∣
)
ρ(Γ̄∗∆̄−1F̄ ) < 1.

(10)
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Fig. 6. The simulation illustrates that a power rush due to infeasibility of
the inner loop is stopped. In the upper plot we see a power rush of the inner
loop, where no outer loop is applied. In the middle and lower plot the outer
loop is applied. We can see that the transmission powers initially increase,
but, as the SIR-target is decreased, the powers also decrease and the system
is stabilized. The system converges to the equilibrium point determined by
the target total load.

Proof: The proof is based on Corollary 1, Proposition 7

and the fact that ∇Φout(0) can be written as a function of

∇Φin(0).
Remark 4: The choice of scalings in the theorem above

corresponds to the optimal scalings with respect to mini-

mization of Lin
D (0). A similar criterion can be made by

optimizing the scalings with respect to the outer loop.

However, for systems operating with high throughput, the

nonlinear feedback corresponding to the inner loop is high

and seems to be more critical for stability.

VII. PREVENTION OF POWER RUSHES

A cause of power rushes is when the SIR-target is set

too high and the users start competing with increasing

transmission powers. This problem is often avoided in the

literature by only considering feasible networks. Consider

the following example where

Ḡ =




1 0.025 0.01

0.015 1 0.01
0.03 0.01 1



 , σ̄2 =




0.05
0.05
0.05



 ,

and let the controllers be given by

R(q) =
β

q − 1
, K2(q) =

KI

q − 1
,

where β = 0.3 and KI = 0.07 for all users. The maximal

common feasible SIR target is given by the limit 1
ρ(∆̄−1F̄ )

≈

30.8, i.e. γT
i ≈ 3.4 in logarithmic scale. In the upper plot

of Figure 6 we see that the inner loop, with unchanged SIR-

target, leads to a power rush. When applying the outer loop

control to the system, initialized with the same SIR-target

and L̄i,tar = 0.65, ∀i, the system is stabilized, see the

middle and lower plot of Figure 6.

Using the stability condition in Theorem 2, the joint

system gain can be computed to 0.13 < 1, and local stability
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Fig. 7. Simulation of a WCDMA model with time delays and time scale
modelling. The same parameters as in Figure 6 were used. We can see that
the behaviour is similar, but on a much slower and larger scale.

can be verified. In this case local stability can be guaranteed

for L̄i,tar up to about 0.97.

Now consider the same example for a WCDMA network.

There are typically two time delays in the inner control loop

and 15 in the outer control loop. Furthermore there is a

timescale difference of about 15. We model this by a chain

of operations. First a low pass filter is applied to the error,

e[t] = Ltar −Ltot[t], to avoid aliasing. Then downsampling

is made by taking every 15:th sample. On this slower time

scale the outer loop controller is applied. The output of the

controller is then upsampled by keeping the output constant

for 15 time slots. The time domain operations correspond to

the following transfer function of the outer loop

K2(z) = K̂0(z
15)L̂(z)

(1 − z−15

1 − z−1

)
,

where K̂0(z) and L̂(z) are the z-transforms of the outer loop

controller and the low pass filter respectively. Replacing z
with q, applying K̂0(q) = KI

q−1 and the inner and outer loop

delays gives

K2(q) =
KI

q29(q − 1)
L̂(q), and R(q) =

β

q2(q − 1)
.

The simulations in Figure 7 shows a similar behaviour to the

previous example. Now, however, the system reacts slower,

which implies that the power rush is stopped later and the

powers reach higher values. As before we can use Theorem 2

to study local stability. For L̄i,tar = 0.65, ∀i, we have the

joint system gain 0.46 < 1, and hence the system is stable

around the equilibrium point. Now, however, the maximum

value of L̄i,tar for which local stability can be verified by

Theorem 2 is 0.88.

As illustrated by the examples above, infeasibility of the

inner loop leads to power rushes. This raises the question

what happens when the joint system is infeasible. Infeasibil-

ity implies that the total load targets cannot be fulfilled for all

users. This means that for at least one user, the experienced

total load is higher than the target total load. In the ideal

case, the outer loop controller will then continuously lower

the SIR, which will lead to decreasing transmission powers

of the user. This will eventually lead to that the user leaves

the system, making it in a sense self-regulating. This is an

interesting and desirable property.

VIII. CONCLUSIONS

In this paper we introduce a framework that can be used

to model control in a wireless cellular network. It is based

on distributed high order algorithms that use measurable

data for feedback. Modelling of filters, delays and time-

scale differences is straightforward to include. We perform

stability analysis of the nonlinear system and give sufficient

conditions for stability. The results are sharpened and struc-

ture of the problem revealed. Simulations indicate that the

model has advantageous properties.
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[11] A. Möller and U. T. Jönsson. Input output analysis of power control in
wireless networks. Technical Report TRITA-MAT-10-OS03, Dept. of
Mathematics, Royal Inst. of Technology, September 2010. A short
version appeared in Proceedings of the 49th IEEE Conference on
Decision and Control.
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