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Abstract— In this paper we propose a cooperative distributed
economic model predictive control strategy for linear systems
which consist of finite number of subsystems. The suggested
control strategy is generating control feedback which converges
to the centralized optimal solution and drives the subsystems to
the Pareto optimum provided infinite iterations are allowed at
each sampling time. Moreover, the control for each subsystem
is computed in itself without coordination layer except for
a synchronization requirement between subsystems. We first
introduce distributed linear systems with 2 subsystems and
economic model predictive control, then show the convergence
and stability properties of a suboptimal model predictive control
strategy for the system.

I. INTRODUCTION

Model predictive control (MPC) is a feedback design tech-

nique which computes control actions by taking into account

the current state of a plant and all sorts of constraints between

input and output variables that need to be fulfilled. Typically,

a cost functional is available or is suitably designed so as to

find the most appropriate control action by means of real-

time optimization. At the same time the control action should

steer the plant’s operation to a desired operating condition

within reasonable amount of time. Recently, as an application

for systems which consist of multiple subsystems and/or

large-scale systems, distributed MPC has been investigated.

See [9] for a recent survey on the subject. The present note

further develops the so called cooperative Model Predictive

Control; this is a particular variant of MPC in which it is

assumed that individual subsystems may cooperate towards

a common objective. In [5] a solution for cooperative game

for distributed systems as suboptimal MPC was suggested.

The contribution of this article is to extend the techniques

of [5] to the case of economic Model Predictive Control

[8]. This is a variant of standard MPC which aims at

achieving both transient and steady-state costs minimization

simultaneously. In particular, the MPC control layer directly

uses the true economic cost in devising the optimal control

action; this entails that cost need not be minimal at the best

steady-state and may affect overall stability.

Recently, average performance and stability issues as well

as Lyapunov-based analysis techniques were proposed in [7]

and [6] respectively.

In this paper we propose a distributed economic MPC

problem for linear systems with economic cost function, and

also suggest its solution.

II. DISTRIBUTED LINEAR MODEL

We assume a system that consists of two discrete-time

linear subsystems. All arguments can be extended to the case

of M subsystems, we limit ourselves to this case to keep

notation simpler. Each subsystem has authority over its own

input signals which, in turn, also affects the state of other

subsystems. Therefore, subsystems are coupled through their

inputs. Subsystem 1 is defined as follows

x+
1 = A1x1 + B11u1 + B12u2, (1)

in which x1 ∈ R
n1 , u1 ∈ R

m1 A1 ∈ R
n1×n1 , B11 ∈

R
n1×m1 , B12 ∈ R

n1×m2 . Similarly we define a model of

subsystem 2, so that the overall plantwide system is

[

x1

x2

]+

=

[

A1 0
0 A2

] [

x1

x2

]

+

[

B11

B21

]

u1 +

[

B12

B22

]

u2.

(2)

For the sake of simplicity we denote it as

x+ = Ax + B1u1 + B2u2 (3)

in which x =

[

x1

x2

]

, A =

[

A1 0
0 A2

]

, B1 =

[

B11

B21

]

,

B2 =

[

B12

B22

]

, or even

x+ = Ax + Bu (4)

where B =
[

B1 B2

]

and u =

[

u1

u2

]

.

III. ECONOMIC MODEL PREDICTIVE CONTROL

For a system as in (4), we introduce pointwise in time

state and input constraints, that is we define a discrete-time

constrained dynamic system with x(k) and u(k) the state

and input at time k, for which the following set of equations

and inequalities should hold:

x(k + 1) = Ax(k) + Bu(k), g(x(k), u(k)) ≤ 0 (5)

at any instant k ∈ I≥0. The function g : R
n1+n2 ×

R
m1+m2 → R is convex so that its sublevel sets are also

convex sets.

For this system we assume a convex stage cost function

ℓ(x, u) : R
n1+n2 ×R

m1+m2 → R and we would like to find

a feedback control law u(k) = ue(x(k)) so that the system

remains feasible and minimizes the cost

∑

k

ℓ (x(k), u(k)). (6)
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Given convexity of ℓ and linearity of (5), it is meaningful to

operate, at least asymptotically, in proximity of the best ad-

missible steady-state. The steady-state optimization problem

is defined as

min
x,u

ℓ(x, u) s.t x − (Ax + Bu) = 0, g(x, u) ≤ 0, (7)

and, for the sake of simplicity, we assume that it has a

unique globally minimizing solution (xs, us). It is worth

pointing out that, unlike in standard model predictive control,

economic model predictive control deals with stage costs

for which points (x, u) satisfying ℓ(x, u) ≤ ℓ(xs, us) and

g(x, u) ≤ 0 may exist which are not steady-states, [6].

Now, we define some important sets to clarify the issue of

feasibility for the optimization problems associated to MPC.

Definition 1 (Feasible set): We define feasible set ZN as

the set of (x,u) pairs, i.e.

ZN =

{

(x,u) ∈ R
n × R

N(m1+m2) | x(0) = x, x(N) = xs,

x(k + 1) =

[

A1 0
0 A2

]

x(k) +

[

B1

B2

]

u(k)

g(x(k), u(k)) ≤ 0,∀k ∈ I0:N−1

}

(8)
The set of feasible states XN is the projection of ZN onto

R
n.

Definition 2 (Feasible states): XN is called the set of

feasible states, and is defined as follows

XN = {x|∃u such that (x,u) ∈ ZN )} . (9)

We also define a set of feasible control sequences in terms

of ZN .

Definition 3 (The set of feasible control sequences):

UN (x) := {u|(x,u) ∈ ZN} (10)

For the feasible set, the following lemma is well-known,

so we omit the proof.

Lemma 1: The feasible set ZN is convex.

Since for real industrial plants there is no natural termination

time of production we proceed as in standard MPC by

minimizing (6) over a finite time horizon and refining the

optimization in a receding horizon manner [1] at each time

instant.

IV. FORMULATION OF CENTRALIZED CONTROL AND

COOPERATIVE CONTROL

Now we define centralized control and cooperative control,

and compare them to clarify the role of each subsystem in the

plantwide system. Consider subsystem 1, for which we define

an objective function V1(x,u), or V1(x,u1,u2) for simplic-

ity, as a sum of stage cost functions ℓ1(x1(k), u1(k), u2(k))
[5].

V1(x1(0),u1,u2) =
N−1
∑

k=0

ℓ1(x1(k), u1(k), u2(k)) (11)

where x(k) =

[

x1(k)
x2(k)

]

, u(k) =

[

u1(k)
u2(k)

]

,

u1 =











u1(0)
u1(1)

...

u1(N − 1)











,u2 =











u2(0)
u2(1)

...

u2(N − 1)











,

and x(k + 1) = Ax(k) + Bu(k).

(12)

In similar manner, we define an objective function for sub-

system 2, so the plantwide objective function to be optimized

is a weighted sum of objective functions of subsystems;

V (x(0),u) =ρ1V1(x1(0),u1(k),u2(k))

+ ρ2V2(x2(0),u1(k),u2(k))
(13)

where ρ1, ρ2 > 0 are relative weights. In cooperative

MPC individual objective functions are stated separately as

subsystems may have conflicting goals, on the other hand, as

the aim is that of cooperation (rather than competition), only

the global utility function V is needed in order to define the

control policies.

The goals of cooperative economic MPC are 1) to

minimize the plantwide objective function, 2) to control the

plantwide system towards its desired steady-state, and 3) to

achieve this by means of decentralized optimization. This

departs from non-cooperative MPC in that each subsystem

i is supposed to select his input by optimizing only its

own objective function Vi(·) rather than the global utility

function, [4]. In analogy to non-cooperative MPC, however,

each subsystem can only adjust its own input, say ui.

Definition 4: The optimization problem to be solved for

cooperative economic MPC of subsystem i ∈ I1:2 is stated

below

min
ui

V (x1(0), x2(0),u1,u2) subject to

x(k + 1) = Ax(k) + Bu(k), k ∈ I>0

g(x(k), u(k)) ≤ 0, k ∈ I0:N−1

x(0) = x0

x(N) = xs.

(14)

Notice that when V (·) is minimized with respect to ui,

u3−i plays the role of a known parameter. Compared to

cooperative MPC, in centralized MPC scheme we assume
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that both u1 and u2 can be adjusted to find the optimal

solution for the objective function.

Definition 5: The optimizing problem we propose to solve

for centralized economic MPC is stated

min
u1,u2

V (x1(0), x2(0),u1,u2) subject to

x(k + 1) = Ax(k) + Bu(k), k ∈ I>0

g(x(k), u(k)) ≤ 0, k ∈ I0:N−1

x(0) = x0

x(N) = xs.

(15)

Note that, through centralized optimization, we can find

the optimal control for plantwide system since all states and

inputs of all subsystems are simultaneously considered.

V. ASSUMPTIONS AND CONVERGENCE RESULTS

Implementing distributed MPC strategies to converge to-

wards an agreed control action is similar to accomplishing

centralized MPC with optimization distributed over many

processors [5]. As the time available for computation is finite,

instead of converging to the true optimum, we allow each

subsystem to inject its own suboptimal control to attain a

feasible suboptimal control strategy for the whole system. In

this section we introduce the definition of suboptimal MPC,

and provide key assumptions to establish its performance

and the convergence properties of the resulting closed-loop

system.

A. Suboptimal MPC

We define the current state of the systems x ∈ R
n1+n2 ,

the trajectory of inputs u = {u(0), u(1), . . . , u(N − 1)} ∈
R

N(m1+m2). For a feasible state x ∈ XN we assume a

feasible initial input trajectory ũ ∈ UN (x). Each subsystem i

performs p-times iterations of a feasible path algorithm, and

computes a new input sequence ui, improved with respect

to the previous input trajectory. Iterations are synchronized

between different subsystems and communication is assumed

between the subsystems at each iteration. Of the computed

input trajectory u, the first component u(0) is effectively

applied to the plant, giving rise to the next state according

to the evolution equation x+ = Ax + Bu. For any initial

state x(0), we initialize a feasible input trajectory ũ(0) :=
h(x(0)) for some continuous function h(·). At subsequent

times, we denote ũ
+ = {u(1), u(2), . . . , u(N − 1), us}

as a warm start [4] for the iterations to be performed by

the individual subsystems. Since u
+ is a function of the

state x and of ũ
+, which in turn is function of x and u,

the input sequence u
+ can be expressed as a function of

(x,u). We denote hp(·) as the p-times iterates from the

warm start through the given iteration algorithm [5], thus

u
+ = hp(x, ũ+).

B. Assumptions

For subsystems i ∈ I1:2, following assumptions are used

to establish stability.

Assumption 1: For i ∈ I1:2,

1) The systems (Ai, Bij) are controllable (for j in I1:2).

2) u1(k) ∈ U1 and u2(k) ∈ U2, where U1 and U2 are

compact and convex sets such that 0 is in the interior

of Ui ∀i ∈ I1:2

3) Every stage cost function ℓi(·, ·) is strongly convex,

with bounded sublevel sets.

4) Constraint g(x, u) is convex.

The following strong duality condition is the key assump-

tion for MPC with an economic stage cost function ℓ(x, u)
[6].

Assumption 2 (Strong duality of steady-state problem):

For the plantwide stage cost function ℓ(x, u) :=
ρ1ℓ1(x, u) + ρ2ℓ2(x, u), there exists a multiplier λs

so that (xs, us) uniquely solves

min
x,u

ℓ(x, u) + [x − (Ax + Bu)]
′
λs s.t. g(x, u) ≤ 0 (16)

Furthermore, there exists a K∞-function β such that the

rotated stage cost function

L(x, u) := ℓ(x, u) + [x − (Ax + Bu)]
′
λs − ℓ(xs, us) (17)

satisfies

L(x, u) ≥ β (|x − xs|) (18)

for all (x, u) satisfying g(x, u) ≤ 0, and L(x, u) is Lipschitz

on
⋃

x∈XN
{x} × UN (x), i.e.,

|L(x, u) − L(x0, u0)| ≤ LL |(x, u) − (x0, u0)| . (19)

The existence and uniqueness of the optimal solution for

problem (14) is guaranteed by stong convexity of objective

functions and strong duality [3]. Therefore, we denote its

solution from current state x and assigned the input of the

other subsystem uj as

u
∗
i (x,uj) := arg min

ui

V (x,ui,uj) (20)

where i, j ∈ I1:2 and i 6= j.

C. Stability and average performance

For standard MPC, defining the cost-to-go variable and

using it as a Lyapunov function candidate is a well-known
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method to analyze of closed-loop stability of equilibria. In

our notation, this is:

W (x) := min
u

V (x,u)

subject to x(k + 1) = Ax(k) + Bu(k), k ∈ I>0

g(x(k), u(k)) ≤ 0, k ∈ I0:N−1

x(0) = x

x(N) = xs

(21)

In standard MPC scheme, the assumption ℓ(xs, us) <

ℓ(x, u), which implies 0 = W (xs) ≤ W (x), holds for all

feasible states. Moreover, along solutions of the closed-loop

systems the following inequality holds:

W (x(k+1))−W (x(k)) ≤ L(xs, us)−L(x(k), u(k)). (22)

This condition implies V (x(k + 1)) ≤ V (x(k)), the mono-

tonicity of the cost-to-go function, evaluated along solutions

of closed-loop systems. The monotonicity is important for

the proof of asymptotic stability since the cost-to-go function

can be used as a Lyapunov function candidate under some

mild conditions.

In economic MPC, the inequality (22) does not hold,

so Lyapunov-like analysis tools are not generally available.

However, in spite of the loss of monotonicity, economic MPC

of linear systems subject to strict convex cost functionals

and convex constraints, xs turns out to be asymptotically

stable with the same basin of attraction of standard MPC. A

proof based on convexity arguments was shown in [8], and

a different proof based on Lyapunov argument was derived

in [6] recently.

The performance of economic MPC was analyzed in [1].

Its main result is that for a feasible initial state x ∈ XN ,

a closed-loop system has an average performance no worse

than that of the best feasible steady state, (xs, us). It might be

a major strength of economic MPC that even if the stability

is not guaranteed, asymptotic performance is preserved.

It is worth pointing out that the key technical step in the

prove of such convergence and performance results is simply

the realization that:

V (x, u) ≤ V (x, ũ), (23)

that is, the fact that the (centralized) optimizer yields a

solution that is at least as good as the ‘warm start’ obtained

by shifting the feasible solution coming from the previous

sample time. In this respect, then, also decentralized cooper-

ative economic MPC will guarantee these same properties

even if we do not allow for the optimization iterates to

converge to the optimal solution. This is further discussed

in the next Section.

VI. DISTRIBUTED ITERATIONS AND THEIR

CONVERGENCE PROPERTY

We now design a controller, based on iteration, for the

cooperative MPC, and show how it works in a plantwide

system. The iteration for finding u
p+1 in terms of the current

input sequence of subsystems u
p
1 and u

p
2 is:

u
p+1
1 = α1u

p
1 + α2u

∗
1(x(0),up

2) (24)

u
p+1
2 = α2u

p
2 + α1u

∗
2(x(0),up

1) (25)

α1 + α2 = 1, α1, α2 > 0 (26)

in which u
∗
1(·) and u

∗
2(·) are defined in (20) for given initial

condition x(0) and current iterates u
p. If we denote u

∗
i :=

u
∗
i (x(0),up

j ) for simplicity, this iteration is equivalent to

[

u1

u2

]p+1

= α1

[

u
p
1

u
∗
2

]

+ α2

[

u
∗
1

u
p
2

]

. (27)

From this iteration, the following lemmas follow immedi-

ately.

Lemma 2 (Feasibility): Given a feasible input sequence

and state pair (x,up), the next iterate and state pair given in

(27) are also feasible. That is,

(x,up+1) ∈ ZN , ∀p ≥ 1. (28)

Proof: Let (x,up) be feasible. We want to show that

if (x,up) ∈ ZN , then (x,up+1) ∈ ZN . Since the feasible

set ZN is convex from lemma 1, any convex combination of

states and input sequence in ZN are also belong to the set.

From the definition of u
∗
1 and u

∗
2 in (20), we can easily

find

(

x,

[

u
p
1

u
∗
2

])

and

(

x,

[

u
∗
1

u
p
2

])

are feasible. Therefore,

(x,up+1) belongs in ZN since

α1

(

x,

[

u
p
1

u
∗
2

])

+ α2

(

x,

[

u
∗
1

u
p
2

])

=

(

(α1 + α2)x, α1

[

u
p
1

u
∗
2

]

+ α2

[

u
∗
1

u
p
2

])

= (x,up+1)

(29)

in which α1 > 0, α2 > 0, and α1 + α2 = 1.

Lemma 3 (Convergence of control sequence): The cost

function V (x(0),up) is convergent as p → ∞.

Proof: In [6], it is shown that economic MPC with the

objective function V (·) has the same optimizing law of a

“rotated MPC” with objective function V̄ (·) such that

V̄ (x,u1,u2)

:= V (x,u1,u2) − [x − xs]
′λs − Nℓ(xs, us)

=

N−1
∑

k=0

L(x(k), u(k)).

(30)
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Since u
∗
i is a minimizer of V̄ (·) , then it holds

V̄

(

x(0),

[

u
∗
1

u
p
2

])

≤ V̄

(

x(0),

[

u
p
1

u
p
2

])

,

V̄

(

x(0),

[

u
p
1

u
∗
2

])

≤ V̄

(

x(0),

[

u
p
1

u
p
2

]) (31)

for all p ≥ 0. From (31) and convexity of V̄ (·), objective

function V̄ (·) satisfies

V̄ (x(0),up+1)

= V̄

(

x(0), α1

[

u
p
1

u
∗
2

]

+ α2

[

u
∗
1

u
p
2

])

≤ α1V̄

(

x(0),

[

u
p
1

u
∗
2

])

+ α2V̄

(

x(0),

[

u
∗
1

u
p
2

])

≤ α1V̄

(

x(0),

[

u
p
1

u
p
2

])

+ α2V̄

(

x(0),

[

u
p
1

u
p
2

])

= V̄ (x(0),up)

(32)

The final equality follows from α1 + α2 = 1. Because V̄ (·)
is monotonically decreasing and bounded below, it converges

[5]. The convergence of V̄ (·) ensures convergence of V (·) as

p → ∞ the optimal costs associated to the two functionals

only differ by a fixed amount.

Lemma 4 (Optimality): V (x(0),up
1,u

p
2) converges to the

optimal value V (x(0),u0
1,u

0
2) as p → ∞. Furthermore, the

iterates (up
1,u

p
2) converges to (u0

1,u
0
2), which is the Pareto

(centralized) optimal solution.

Proof: The main idea and techniques of the following

proof are based on [5]. We may safely deal with V̄ (·) instead

of V (·) because they agree (up to a constant) on the set of

feasible input sequences. From lemma 3, the cost converges,

say to Ṽ . Since V̄ (·) is strongly convex, the sublevel sets

lev≤aV̄ (x,u) := {(x,u)|V̄ (x,u) ≤ a} are compact and

bounded for all a. Therefore all iterates u
p belong to the

compact sublevel set lev≤V (x,u0)V̄ (·), so there is at least

one accumulation point in it. Choose a subsequence P ⊂
{1, 2, 3, . . .} such that {up}p∈P converges to ū, an arbitrary

accumulation point. Clearly limp→∞ V̄ (x(0),up) = Ṽ , and

by continuity of V̄ ,

V̄ (x(0), ū) = lim
p∈P,p→∞

V̄ (x(0),up) = Ṽ . (33)

Moreover, exploiting conditions (31) we also obtain

lim
p∈P,p→∞

V̄ (x(0),u∗
1(x(0),up

2),u
p
2) = Ṽ

lim
p∈P,p→∞

V̄ (x(0),up
1,u

∗
2(x(0),up

1)) = Ṽ .
(34)

We suppose for contradiction that Ṽ 6= V (x(0),u0) and

thus ū 6= u
0. Since V (x(0), ·) is convex, we have

∇V̄ (ū)′(u0 − ū) ≤ ∆V̄ := V̄ (x(0),u0) − V̄ (x(0), ū) < 0
(35)

where ∇V̄ (x(0), ·) is the gradient of V̄ (x(0),u) with respect

to u. This means that at least one of the followings holds.

∇V̄ (x(0), ū)′
[

u
0
1 − ū1

0

]

≤
1

2
∆V̄ or (36)

∇V̄ (x(0), ū)′
[

0
u

0
2 − ū2

]

≤
1

2
∆V̄ (37)

Suppose that (36) holds. Applying Taylor’s theorem to V̄ ,

the following holds:

V̄ (x(0),up
1 + ǫ(u0

1 − u
p
1),u

p
2)

= V̄ (x(0),up
1,u

p
2)

+ ∇V̄ (x(0),up
1,u

p
2)

[

ǫ
(

u
0
1 − u

p
1

)

0

]

+
1

2

[

ǫ
(

u
0
1 − u

p
1

)

0

]′

∇2V̄ (x(0),up
1+

γpǫ(u
0
1 − u

p
1),u

p
2)

[

ǫ
(

u
0
1 − u

p
1

)

0

]

(38)

for some γp ∈ (0, 1). By taking limit with respect to p in (38)

(and assuming without loss of generality that γp converges

to γ), we can derive

lim
p∈P,p→+∞

V̄ (x(0),up
1 + ǫ(u0

1 − u
p
1),u

p
2)

= Ṽ +ǫ∇V̄ (x(0), ū)
′

[

u
0
1 − ū1

0

]

+
1

2
ǫ2

[

u
0
1 − ū1

0

]′

∇2V̄ (x(0), ū1+

ǫγ
(

u
0
1 − ū1

)

, ū2

)

[

u
0
1 − ū1

0

]

< Ṽ

(39)

where the last inequality holds for all sufficiently small ǫ >

0. Since u
∗
1(u

p
2) is optimal for V̄ (x(0), (·,up

2)), we can find

Ṽ = lim
p∈P,p→∞

V̄ (x(0), (u∗
1(u

p
2),u

p
2))

≤ lim
p∈P,p→∞

V̄ (x(0), (up
1 + ǫ(u0

1 − u
p
1),u

p
2))

< Ṽ

(40)

which gives a contradiction. Because we obtain the same

result about u2 with the same logic from (37), we can

conclude that Ṽ = V̄ (x(0),u0) and thus ū = u
0. Since

ū is an arbitrary accumulation point of the sequence {up},

and the sequence is confined in a compact set, the whole

sequence converges to u
0. Moreover, from convergence of
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u
p to u

0 and continuity of V (·), V (·) also converges to its

centralized optimal value.

We now establish the stability of the closed-loop system

with cooperative MPC scheme as a form of suboptimal MPC.

First we define the warm start for each subsystem as

ũ
+
1 = {u1(1), u1(2), . . . , u1(N − 1), us1}

ũ
+
2 = {u2(1), u2(2), . . . , u2(N − 1), us2}

(41)

where us =
[

u′
s1

, u′
s2

]′
. The warm start ũ

+
i is used as

the initial condition for the cooperative MPC problems in

subsystems i. By the function h
p
1 and h

p
2 we represent the

outcome of applying the cooperative control iteration (27) p

times.

u
+
1 = h

p
1(x1, x2,u1,u2)

u
+
2 = h

p
2(x1, x2,u1,u2)

(42)

The systems evolution is then,








x+
1

x+
2

u
+
1

u
+
2









=









A1x1 + B11u1 + B12u2

A2x2 + B21u1 + B22u2

h
p
1(x1, x2, ũ

+
1 , ũ+

2 )
h

p
2(x1, x2, ũ

+
1 , ũ+

2 )









(43)

which can equivalently be written as:
[

x+

u
+

]

=

[

Ax + B1u1 + B2u2

hp(x, ũ)

]

. (44)

For this closed-loop systems, now the stability of the

closed-loop system is derived as follows.

Theorem 1 (Stability): Given Assumption 1, the equilib-

rium point xs, which satisfies the steady-state condition (7),

is asymptotically stable on the set of feasible states XN for

the closed-loop system (44).

Proof: From the definition of V̄ (·) in (17) and Assump-

tion 2, we can directly derive

V̄ (x+, ũ+) − V̄ (x,u)

=

N−1
∑

k=0

L(x+(k), ũ+(k)) −

N−1
∑

k=0

L(x(k), u(k))

= L(xs, us) − L(x(0), u(0)) = −L(x0, u0)

≤ −β(|x0 − xs|)

(45)

The second equality holds since L(·) is uniquely minimized

by (xs, us), and by assumption its optimal value is zero.

Using this result and applying the controllers in (43) gives

V̄ (x+,u+)− V̄ (x,u) ≤ −L(x0, u0) ≤ −β(|x − xs|) (46)

We also have for all x ∈ XN

β(|x − xs|) ≤ V̄ (x,u) ≤ α(|x − xs|) (47)

in which a K∞ function α(·) := (|λs|+ LlLF )(·) + Ll(1 +
LF )γ(·), which is established in Appendix of [6]. Hence the

closed-loop system is asymptotically stable with XN as a

region of attraction.

VII. CONCLUSION

We presented a cooperative distributed controller to op-

timize the same objective function in parallel without a

coordinator. The algorithm based on iteration is almost

equivalent to a suboptimal centralized controller, which is

to be terminated at Pareto optimal at convergence. Even

though monotonic decreasing of object function V (·) for

each iteration is not guaranteed, the convergence of control

sequence u
p to ū and asymptotic stability are satisfied.
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