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Abstract— This paper introduces a novel Just-In-Time (JIT)
learning based soft sensor for modeling of non-Gaussian pro-
cess. Most of JIT modeling uses distance based similarity
measure for local modeling, which may be inappropriate for
many industrial processes exhibiting non-Gaussian behaviors.
Since most of industrial processes are non-Gaussian, a non-
Gaussian regression (NGR) technique is used to extract non-
Gaussian independent components that are correlated to re-
sponse variable in the sense of mutual information. Support
vector data description (SVDD) is then performed on the
extracted independent components to construct a new similarity
measure. Based on the similarity measure, a novel JIT modeling
procedure is proposed. Application studies on a numerical
example as well as an industrial process confirm that the
proposed JIT model can achieve good predictive accuracy.

I. INTRODUCTION

During the last decades, development of soft sensor for

the task of on-line prediction, process monitoring and fault

detection have attracted much attention. In many industrial

settings, some important process and quality variables cannot

be measured in real time [1] [2]. To overcome the lack

of online measurements for such parameters, soft sensor

has emerged as one of the most important tools, among

which data-driven models are the most popular in the pro-

cess industry. Data-driven methods like principal component

analysis (PCR), partial least squares (PLS), artificial neural

network (ANN) and support vector machine (SVM) have

been successfully applied to a series of industrial applications

[3 6].

Despite their popularity, construction of high performance

soft sensor is not an easy task. Even though a good soft

sensor is obtained, the performance will deteriorate after

a certain time due to change of process characteristics.

Therefore, soft sensor should be updated regularly to ensure

a good performance, which would be a laborious task.

To get a soft sensor which can be updated automatically,

different kinds of recursive methods have been introduced,
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such as recursive PCR, recursive PLS [7] [8]. However,

recursive methods cannot adapt to abrupt change of process

characteristics as well as switch of operation conditions

in time. Alternatively, Just-In-Time (JIT) learning [9 13]

were proposed to deal with such kind of situations. In JIT

modelling, local models are built from historical data when

an estimated value is requested. By using local models,

the current operation condition can be well tracked. Most

JIT modelling techniques select samples for local modelling

using distance-based similarity measure. However, distance-

based similarity measure doesn’t take the correlation among

variables into account. As an alternative, correlation-based

similarity measure [14] was proposed to develop soft sen-

sors,which is based on the Q and T 2 statistics of principal

component analysis (PCA). By using PCA, the method in

[14] assumes the data is Gaussian-distributed, which is not

valid for many industrial applications [15]. In contrast to the

work in [14], this article proposes a novel JIT modelling

technique by defining a new similarity measure suitable for

non-Gaussian data. The similarity measure is constructed

using support vector data description (SVDD) [16]. To utilize

the non-Gaussian information in process data, the newly

developed non-Gaussian regression (NGR) method [17] is

used to build the local model. The new soft sensor takes

the non-Gaussianity of process data into account and hence

better modelling effects can be achieved.

The rest of the paper is as follows. In the next section,

fundamentals of NGR and SVDD are introduced. The pro-

posed JIT modelling technique is then proposed, followed by

the simulation and application studies in Section 4. Finally,

Section 5 gives a concluding summary of the presented

article.

II. PRELIMINARIES

In this section, the principles of NGR and SVDD are

briefly explained.

A. Non-Gaussian Regression Method

The NGR algorithm adopted in this article is developed in

[17]. The purpose of the NGR algorithm is double folded.

The first objective is to extract non-Gaussian components

from the predictor and response variable sets, which is the

same as the objective of ICA; the second objective is to

maximize mutual information between extracted components

and response variables. By considering the dual objective

function, the algorithm considers higher-order statistics infor-

mation between extracted components and response variable,

and thus more suitable for modelling non-Gaussian process.
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Denote the predictor and response variable sets to be x ∈
R

M and x ∈ R
N respectively. Similar to ICA, the measured

predictor variable set x = (x1x2 . . .xM )T is assumed to be

described by a linear combination of a set of n(n ≤ M)
independent components (ICs) s = (s1s2 . . . sn)T as follows

x = As + e (1)

where A ∈ R
M×n is the mixing matrix,e is a Gaussian

distributed residual vector with zero mean and covariance

Σe,e ∼ N(0,Σe). The ICs can be extracted by estimating

an orthogonal demixing matrix W ∈ R
M×n, such that

ŝ = WT x = WT As ≈ s (2)

The process of determining the demixing matrix W is often

preceded by a pre-whitening transform on the predictor

variable set by applying principal component analysis (PCA)

ŝ = WT z = WT Qx

=




wT
1

wT
2
...

wT
n







λ1 0 · · · 0
0 λ2 · · · 0
...

...
...

...

0 0 · · · λb




−
1

2




pT
1

pT
2
...

pT
n


x (3)

where Q is the whitening matrix, P = (p1p2 . . .pn)T ∈
R

M×b is an orthogonal matrix of eigenvectors,λ1, . . . , λb are

the first b eigenvalues of the covariance matrix E(xxT ).The

pre-whitening transform ensures that each elements of ŝ has

zero mean and unit variance.

The NGR algorithm relies on information theoretic mea-

sures like negentropy and mutual information. The negen-

tropy of a random variable θ is defined as

J(θ) = H(υ) − H(θ) (4)

where υ is a Gaussian distributed random variable with the

same mean and covariance as θ. H(υ) and H(θ) are the

entropy of υ and θ. Given the probability density function

p(θ)(θ ∈ Θ ⊆ R), the entropy is defined as

H(θ) = −

∫

Θ

p(θ) log(p(θ))dθ (5)

A Gaussian variable υ has the greatest entropy among all

random variables of equal variance, so that maximizing

Eq. (4) leads to maximizing the non-Gaussianity of θ. The

negentropy can be approximated by

J(θ) ≈ [E{G(θ)} − E{G(υ)}]2 (6)

Here,G(·) is a nonquadratic function, the proposed functions

for G(·) incluede [18]:

G1(θ) =
1

a1
log cosh(a1θ) G2(θ) = − exp(−

a2θ
2

2
)

where 1 ≤ a1 ≤ 2, a2 = 1. The mutual information between

θ and a random variable φ ∈ Φ ⊆ R is defined as

I (θ, φ) =

∫

Θ

∫

Φ

pθφ (θ, φ) log

(
pθφ (θ, φ)

pθ (θ) pφ (φ)

)
dφdΘ

where p(θ, φ) is the joint probability density of θ and φ,p(φ)
is the marginal density of φ. An alternative expression for

mutual information can be obtained by using Eq. (5)

I(θ, φ) = H(θ) + H(φ) − H(θ, φ)

Here,H(θ, φ) is the joint entropy of θ and φ, defined by

H(θ, φ) =

∫

Θ

∫

Φ

pθφ (θ, φ) log (pθφ (θ, φ)) dφdθ

For simplicity, consider the case of N = 1 and the

response variable y having been normalized. For a specific

IC, say wT
i z, the i-th weight vector wi can be obtained by

solving the following dual-objective function

ŵi = arg max
wi

α(H(ν) − H(wT
i z))

+β(H(wT
i z) + H(y) − H(wT

i z, y)) (7)

where 0 ≤ α ≤ 1, 0 ≤ β ≤ 1, α + β = 1 are design

coefficients. Neglecting constant terms H(y) and H(υ), and

then reformulating Eq.(7) yields

ŵi = arg max
wi

(α − β)(H(υ) − H(wT
i z))

−βH(wT
i z, y) (8)

Using Eq. (6), the first term on the right hand side can

be easily approximated. Now the key problem becomes

approximation of the joint entropy H(wT
i z, y), which can

be approximated by Edgeworth expansion [19] as follows

H(wT
i z, y) = H(φp) −

1

12
(κ1,1,1)2 −

1

4
(κ1,1,2)2 −

1

4
(κ1,2,2)2 −

1

12
(κ2,2,2)2 (9)

Here,Φp is the Gaussian estimate of (wT
i z, y), i.e., φp has the

same mean and covariance matrix as (wT
i z, y). H(φp) is the

familiar expression for the 2-dimensional entropy:H(φp) =
1
2 log |Σ|+ log(2πe),where |Σ| is the determinant of covari-

ance matrix. κ1,1,1, κ1,1,2, κ1,2,2, and κ2,2,2 are the standard-

ized 3rd order cumulants. Since both wT
i z and y have zero

mean and unit variance, the standardized 3rd order cumulants

are equal to their corresponding moments, so that we have

|Σ| = 1 − (E
{
(wT

i z)y
}
)2

κ1,1,1 = E
{
(wT

i z)3
}

κ1,1,2 = E
{
(wT

i z)2y
}

κ1,2,2 = E
{
wT

i zy2
}

κ2,2,2 = E
{
y3

}
(10)

The approximation of the joint entropy function therefore

becomes

H
(
wT

i z, y
)

= log (2πe) +
1

2
log

(
1 −

(
E

{(
wT

i z
)
y
})2

)

−
1

12

((
E

{(
wT

i z
)3

})2

+ 3E
{(

wT
i z

)2
y
}2

+3E
{(

wT
i z

)
y2

}2
+

(
E

{
y3

})2
)

(11)
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Eq. (8) can finally be expressed as the following form

ŵi = arg max
wi

(α − β)
(
H(υ) − H(wT

i z)
)

−
β

2
log

(
1 −

(
E

{
(wT

i z
)
y
}
)2

)
+

β

12

(
E

{
(wT

i z)3
})2

+
β

4

(
E

{
(wT

i z)2y
})2

+
β

4

(
E

{
(wT

i z)y2
})2

+
β

12

(
E

{
y3

})2
(12)

and is subject to the following constraints



ŵT
1

ŵT
2
...

ŵT
i


 ŵi =




0
0
...

1


 (13)

After determining the weight vectors, the maximum can be

achieved by using optimization methods like gradient search

or particle swarm optimization. The optimization terminates

until desired number of ICs have been obtained, which can

be determined by making independence test between the

extracted IC and the response variable. The ICs can be

computed as follows

ŝ = ŴT Qx (14)

The above modelling technique can be easily extended to

the case of N > 1 by considering the non-Gaussianity of

response variables in Eq. (7). The regression relationship

between the output variable and the extracted ICs can now

be determined by using ordinary least squares

y = ĉŝ + e ĉ = yzT Ŵ
{
ŴT zzT Ŵ

}
−1

(15)

B. Support Vector Data Description

SVDD is a classification tool designed to detect whether

new samples resemble the properties of the reference set.

It has been recognized as a useful tool in process monitor-

ing to construct monitoring statistics for non-Gaussian data

[20] [21]. The main idea is to envelop the data within a

feature space by a minimal spherical volume. This volume

should contain as many samples as possible. The sphere

is determined by its centre a and radius R. Assume we

have L training samples and SVDD is performed on the

extracted non-Gaussian components {ŝi} , ŝi ∈ R
n, i =

1, 2, . . . , L.The minimal sphere can be obtained by solving

the following optimization problem

minF (R,a) = R2 + C
∑

i

ξi

s.t.‖si − a‖2 ≤ R2 + ξi, ξi ≥ 0, i = 1, 2, . . . , L (16)

Here,slack variable ξi is the penalty term for misclassifi-

cation; the parameter C controls the trade-off between the

volume and errors. The dual problem of Eq. (16) can be

derived as follows

max
a

∑

i

ai(ŝi, ŝi) −
∑

i

∑

j

aiaj(ŝi, ŝj)

s.t.
∑

i

γi = 1, γi ∈ [0, C] , i = 1, 2, . . . , L (17)

The centre a and radius R of the hypersphere are given by

a =
∑

i

γiŝi

R =

√
(ŝk, ŝk) − 2

∑

i

γi(ŝk, ŝi) +
∑

i

∑

j

(ŝi, ŝj) (18)

where ŝk, k = 1, . . . ,K are support vectors with γk > 0.

After the hypersphere is constructed in the feature space,

the hypothesis that a new sample ¯̄s belongs to the reference

set is accepted if the following conditions hold

f(¯̄s) = ‖¯̄s − a‖2 ≤ R2

‖¯̄s − a‖2 = (¯̄s, ¯̄s) − 2
∑

i

γi(¯̄s, ŝi) +
∑

i

∑

j

γiγj(ŝi, ŝj) (19)

To maintain the numerical efficiency in determining the

hypersphere, the kernel trick is often employed by replacing

(ŝi, ŝj) in Eq. (17) by the kernel function K(ŝi, ŝj) =
exp

(
−‖ŝi − ŝj‖

2/σ2
)

The statistic D can then be constructed to measure the

distance between a new sample and the reference set in the

hypersphere

D =
¯̄s − a

R
(20)

Higher D value indicates the new sample is more likely

to be from a different data set and hence can serve as the

similarity measure.

III. JUST-IN-TIME MODELING BASED ON NGR

AND SVDD

The previous section discussed details of NGR and SVDD.

This section introduces how to build a JIT model for non-

Gaussian data through NGR and SVDD.

Assume n ICs ŝ = (ŝ1, ŝ2, . . . , ŝn)T have been extracted

from the predictor variable set x = (x1x2 . . .xM )T using

the NGR technique and there are a total of L samples.

The ICs exhibit high non-Gaussianity and are correlated

to response variable y in the sense of mutual information.

By projecting the non-Gaussian components into the kernel

space,D statistic for each sample can be calculated using Eq.

(20). In addition, Hotelling’s T 2 statistic is also included to

avoid extrapolation and guarantee that the sample is located

in the modeling data. The T 2 statistic is defined as

T 2 =
n∑

t=1

ŝ2
t

δ2
ŝt

(21)

where δ2
ŝt

denotes the standard deviation of the t-th IC ŝt.

When the value of T 2 statistic is small, the sample is close

to the mean of the modeling data in the original space. By

integrating D and T 2 statistic one can get the following the

following index for data set selection

J = λD + (1 − λ)T 2 (22)

where 0 ≤ λ ≤ 1.

To construct the JIT model, the samples are firstly divided

into several data sets; each data set consists of successive
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samples included in a certain period of time, since charac-

teristics of such data set is expect to be similar. First, NGR

is used to extract non-Gaussian components and build local

regression models between predictor and response variables

for these data sets. As a new sample arrives, the evaluation

index J in Eq. (22) is calculated and the data set that

minimizes J is selected as the modeling data to get the

required prediction for response variables.

Assume the first through Lth input-output measurements

are stored in database and zl =
[
xT

l ,yT
l

]
∈ R

M+N (l =
1, 2, . . . , L). When a newly measured input sample xL+1 is

available, one need to estimate the response variables ŷL+1,

which should be as close to the real value yL+1 as possible.

Denote the data set that was used to build the lth local model

to be Zl and the local model to be f l. The procedure of our

JIT modeling is as follows:

1) The index J is calculated from xL+1 and the data set

ZL that was used to build the previous local model

fL, denoted to be JL+1;

2) Determine a threshold J̄ ≥ 0,if JL+1 ≤ J̄, then

fL+1 = fL and ZL+1 = ZL. fL+1 is then used to

estimate the response variables until a new measure-

ment xL+2 is available; return to Step 1. If JL+1 > J̄,

k = 1, then go to the next step;

3) Extract the kth data st Zk =
[
zk, . . . , zk+W−1

]
∈

R
(M+N)×W , where W is the window length, which

is used to control the number of data samples for

modelling;

4) Build the local model fk using NGR and compute the

centre ak and the radius Rk; calculate the index JL+1

between xL+1 and the data set Zk;

5) k = k + d if k ≤ S − W + 1, then return to Step 4.

If k > S − W + 1, then go to the next step. Here d
is the window moving width, which is used to control

the updating frequency of local models;

6) The data set Zk that minimizes JL+1 is selected and

defined as the modeling data set ZL+1; the local model

fk is then used to estimate the response variables

ŷL+1;

7) When a new measurement xL+2 is available, return to

Step 1.

In the above procedure, the window length W and window

width d are used to control the model updating frequency.

Meanwhile, by setting a larger threshold J̄, the update

frequency can also be lowered, so that an ergodic modeling

process can be avoided. Considering the fact that our model-

ing process involves an optimization procedure, this becomes

even more important. The JIT model can also be extended

to model dynamic processes by including measurements at

different sampling times into the modeling data.

IV. APPLICATION STUDIES

In order to evaluate the performance of the proposed

JIT modelling method, we consider both numerical and

real examples. The numerical study relates to a simulation

example that includes 7 inputs and 1 output. For the real

example, we consider the sulfur recovery unit.

A. Numerical study

For the numerical study, the 7 predictor variables are

simulated as linear combinations of a total of 5 source

variables. The performance of the proposed JIT technique

will be compared with that of [14] using different numbers

of ICs.

Consider the following five unknown sources





s1(k) = 2 cos(0.08k) sin(0.06k)
s2(k) = sin(0.3k) + 3 cos(0.1k)
s3(k) = sin(0.4k) + 3 cos(0.1k)
s4(k) = cos(0.1k) − sin(0.05k)

s5(k) = uniformly distributed noise in[−1, 1]

Process data are generated from the five source signals as

xT = sT A + e, e ∼ N (0, 0.01).To highlight the effects of

process change, 3000 samples belonging to 3 different modes

are generated. For the first 1000 samples, the mixing matrix

A is set as follows

A =

[
0.86 −0.55 0.17 −0.33 0.89 0.2 0.8
0.79 0.65 0.32 0.12 −0.97 0.4 0.5
0.67 0.46 −0.28 0.27 −0.74 −0.3 −0.45
0.23 0.15 0.56 0.84 0.23 0.13 0.14
0.34 0.95 0.12 0.47 0.92 0.19 0.56

]

The response data is generated by y = 0.8x1 + 0.6x2 +
1.5x3. For the second 1000 samples,A is left multiplied by

the following matrix

B =




1 0 0 0 0 0 0
1 1 0 0 0 0 0
1 1 1 0 0 0 0
1 1 1 1 0 0 0
1 1 1 1 1 0 0
1 1 1 1 1 1 0
1 1 1 1 1 1 1




The response data is generated by y = 2.4x2 +1.6x3 +4x4.

The mixing matrix for the last 1000 samples is set as B2A,

and the response data is generated by y = 1.2x1+0.4x2+x4.

Finally, a normally distributed noise is added to the response

data,y = y+h,h ∼ N (0, 0.1). The proposed JIT technique

is then used to build local models. From each mode, the first

900 samples are selected and combined into a data set with

2700 samples and the remaining 300 samples are used to

test the performance of the JIT technique. The parameters

are set as α = 0.2, σ = 1, C = 0.05, λ = 0.999. By setting

α = 0, 2 higher emphasis is put on mutual information so

that less independent components are needed to construct

an accurate model. The window length and window width

are set as W = 500, d = 60 respectively and the threshold

J̄ = 0. The number of ICs used in the proposed JIT technique

is determined by trial and error. The estimation results are

shown in Fig. 1, which shows that the correlation coefficient

r is 0.9940 and a root mean square error (RMSE) of 3.1 with

3 ICs extracted.

In contrast, the prediction result using the CoJIT technique

proposed in [14] are shown in Fig.2. For the CoJIT technique,

the weights for T 2 and Q statistics are 0.01 and 0.99

respectively; and the window length and width are also set

as W = 500, d = 60. Fig.2 shows a correlation coefficient of

0.9815 and RMSE of 5.38. Both evaluation criterions show
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Fig. 1. Prediction results by the proposed JIT for the numerical study

that the proposed JIT technique produces better predictions

than CoJIT. Moreover, the proposed JIT technique achieves

higher prediction accuracy with only 3 ICs retained, while

CoJIT needs to retain 4 PCs.
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−50

0

50

100

 y

Samples

 

 

Estimated value

Actual value

RMSE = 5.38

r = 0.9815

PCs = 4

Fig. 2. Prediction results by CoJIT for the numerical study

B. Sulfur recovery unit

The sulfur recovery unit (SRU) [22] [23] is an important

refinery processing unit which is utilized to remove envi-

ronmental pollutants from acid gas streams before releasing

into the atmosphere. The main environmental pollutant to be

removed is hydrogen sulfide which is extremely dangerous.

The SRU process considered in this paper is fed by 2 kinds

of acid gases. The first kind, called MEA gas, comes from

the gas washing plant and is rich in H2S. The second kind,

called SWS, comes from the sour water stripping (SWS)

plant and is rich in H2S and NH3. The acid gases are fed

into the SRU and burnt in reactors, where H2S is transformed

into pure sulfur. The combustion products are then cooled

and generated to liquid sulfur. The liquid sulfur is further

processed to form water vapor and sulfur, which is a valuable

byproduct of SRU. The final gas stream (tail gas) is then

released to the atmosphere. It should be noted that the tail gas

contains residual H2S and SO2, which should be minimized.

In order to monitor the performance of SRU and improve

the sulfur recovery rate, soft sensors are needed to measure

the concentration of H2S(y1)and SO2(y2) in the tail gas. To

make predictions on the concentration of H2S and SO2, 5

process variables are selected and listed in Table 1.

TABLE I

SELECTED PROCESS VARIABLES

Predictor variable Variable Description

x1 MEA gas flow
x2 first air flow
x3 second air flow
x4 gas flow in SWS zone
x5 air flow in SWS zone

To make a fair comparison with CoJIT, two separate JIT

models are built for prediction of H2S and SO2 concentration

and a total of 2700 samples are used. To account for process

dynamics, the input sample at the present and previous

time instance as well as the output sample at the previous

time instance are included in the predictor space. So that

there are 11 predictor variables and 1 response variable for

each model. For prediction of y1, the parameters are set as

α = 0.2, σ = 1, C = 0.01, λ = 0.99. The window length

and window width are set as W = 700, d = 40 respectively

and the threshold J̄ = 0. The number of ICs used in the

proposed JIT technique is determined by trial and error.

The estimation results are shown in Fig. 3, which shows

that the correlation coefficient r is 0.9336 and a root mean

square error (RMSE) of 0.0152 with 4 ICs extracted. For

comparison, Fig. 4 gives the estimation results for CoJIT,

with λ = 0.99,W = 700, d = 40 and the threshold J̄ = 0
respectively.

50 100 150 200 250
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0.15

0.2

0.25

0.3

0.35
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 y
1

 

 

Estimated value

Actual value

RMSE = 0.0152

r = 0.9336

ICs = 4

Fig. 3. Prediction result by the proposed JIT for RSU data (y1)
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Fig. 4. Prediction result by CoJIT for RSU data (y1)
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From Fig. 3 and Fig. 4 it can be seen that the proposed

JIT technique gives better predictions for y1 than CoJIT with

regard to both evaluation criterions, while the ICs retained

is 4 with comparison to 7 PCs for CoJIT.

For prediction of y2, the same parameters are set for both

methods, however, with different number of ICs and PCs.

The results are shown in Fig. 5 and Fig. 6 respectively.

Similar results can be observed from Fig. 5 and Fig. 6.
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Fig. 5. Prediction result by the proposed JIT for RSU data (y2)
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Fig. 6. Prediction result by CoJIT for RSU data (y2)

For our method, the correlation coefficient r between

the estimated value and actual value is 0.9822 and RMSE

is 0.0155 with 6 ICs retained. As for CoJIT, it produces

a correlation coefficient r of 0.9797 and RMSE value of

0.0168, both shows poorer predictive accuracy than our

method. Moreover, to produce the desired result, 8 PCs

should be retained for CoJIT. In this regard, our JIT method

can produce better predictions with simpler model.

V. CONCLUSION

This article proposes a novel JIT modeling technique

by utilizing non-Gaussian information of the operation

data. Non-Gaussian components are extracted from predictor

data through the NGR method, which considers both non-

Gaussianty of the extracted components and correlation be-

tween response variables in the sense of mutual information.

SVDD is performed on the extracted ICs by projecting the

data into kernel space to calculate the D statistic. The D
statistic is then mixed with the T 2 statistic to get a new

similarity measure. Based on the new similarity measure,

a JIT modeling procedure is proposed and tested on both

numerical and application studies. The new similarity is

more suitable for non-Gaussian data; hence better predictive

accuracy can be obtained.
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