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Abstract—Complexity being one of the main limitations of
LPV methods, the need for efficient model reduction techniques
is highly motivated. Yet, so far, there exists no convex formula-
tion of the general problem of finding a reduced model of any
given complexity. In this paper, we focus on the case when the
reduced model is supposed to have a special structure and we
then derive convex conditions. Thus, for a system modeled by
an LFT on a repeated scalar parameter structure, we prove that
the problem can be formulated as an LMI optimization problem
in the case when the reduced model is supposed to depend only
on some parameters of the original system in the same manner
as the plant whereas the dependence on the other parameters
has been removed. The method is applicable to quadratically
stable systems. A complete construction procedure is provided
and a measure of the associated model reduction error is given.
The method is illustrated in the context of missile control.

I. INTRODUCTION

A. Context and problem

LPV synthesis methods have emerged as powerful tools in

designing controllers for nonlinear or time-varying systems

[1]. A large amount of research has been devoted to their

refining: while the oldest and simplest methods make use

of a constant Lyapunov matrix to obtain convex conditions

[2], [3], [4], the efforts for reducing the conservatism have

led to consider more complex parameter-dependent Lyapunov

functions [5], [6]. The methods are now considered to

have reached a theoretically mature state. However, despite

promising features, their use in practice remains limited.

One of the main criticisms is the fact that they often result

in controllers of high complexity, thus requiring expensive

implementation. Indeed, LPV methods typically lead to con-

trollers whose structure mimics the plant structure so that

even in the simplest methods using a constant Lyapunov

function, the controllers have at least the same complexity

as the plant, see e.g., methods to deal with polytopic systems

[7], [8] or rational systems [2], [3], [4]. The need for efficient

model reduction techniques is thus highly motivated. In this

paper, we focus on the model reduction problem and we

obtain a convex formulation in the case when the dependence

of the reduced model on the parameters is chosen in an

appropriate fashion.

B. Previous work

The literature [9], [4], [10] investigates the problem of

finding a reduced model of any given complexity. Most of

these papers provide methods based on a generalization of

balanced truncation model reduction methods. Unfortunately,

they fail to lead to a convex formulation of the problem. The

method in [9] for example consists in solving an optimization

problem expressed by LMI Lyapunov inequalities coupled

with a nonconvex rank constraint.

C. Proposed approach

This paper considers a particular case of a reduced model

structure: it is supposed to depend on some parameters in the

same manner as the plant and no longer at all on the other

parameters. The studied problem is to find such a reduced

model minimizing the L2-gain of the difference system.

Conditions are derived directly by exploiting the parallel

with an LPV synthesis problem [4]. It is then proved that

this particular problem can be expressed as a convex opti-

mization problem. A practical procedure for constructing the

reduced complexity model is given, based on the resolution

of another LMI optimization problem. The result applies to

quadratically stable systems and can easily be extended to

quadratically stabilizable and detectable systems using the

coprime factorization approach proposed in [11].

D. Interests of the result

The problem considered naturally finds an interest when

dealing with the case of LPV systems depending on both

slowly and fast-varying parameters, see e.g., in the missile

model of Reichert [12], [7], [13]. To reduce the complexity,

such a model would usually be simplified by arbitrarily freez-

ing the slowly-varying parameters. An interesting question is

whether an optimal reduced model can be rather obtained: our

method can lead to a reduced model where the dependence

on some parameters has been optimally removed while the

dependence on the other parameters has been preserved.

The method is also well suited to a posteriori simplify

controllers that vary little although they are of high com-

plexity. A noticed phenomenon is indeed the fact that LPV

methods may lead to controllers that seem not to vary much.

The method proposed here makes it possible to find a “best”

model reduction of the controller, easier to implement and

expected to give similar performance.

The problem can furthermore be transposed to the non-

linear context. A similar issue is considered in [14] where
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the focus is on “mildly” nonlinear systems in the scope of

controlling them linearly: the problem there is to approximate

the nonlinear system by a “best” linear model and to find a

corresponding linear controller which is then ensured to work

also on the original nonlinear system. Our method allows to

deal efficiently with this problem: actually, since nonlinear

systems can be modeled as LPV systems by embedding

the nonlinearities in newly defined parameters, our method

applies directly to nonlinear systems. It is then an alternative

to the procedure of [14], having moreover the advantages that

it relies on a convex formulation of the problem and that it

leads to a reduced system depending only on some of the

parameters (or in the nonlinear context, only on some of the

nonlinearities).

E. Structure of the paper

The paper is structured as follows. In Section II the

considered system is introduced and a general statement of

the model reduction problem is proposed. A convex test

of existence of a model reduction for quadratically stable

systems and a construction methodology are provided in

Section III. Section IV illustrates the method in the context

of a missile control.

F. Notations and definitions

The identity matrix of R
n×n is denoted In and the zero

matrix of Rn×m is denoted 0n×m. The subscripts are omitted

when obvious from context. For two operators A and B,

diag(A,B) denotes the operator
[

A 0
0 B

]
. For a full-rank

matrix U , U⊥ denotes an orthogonal complement of U , i.e.,

UU⊥ = 0 and
[
UT U⊥

]
is of maximal rank, while U+

denotes the Moore-Penrose inverse of U . For X ∈ R
n×m and

k ≤ l ≤ n, r ≤ s ≤ m X[k:l][r:s] denotes the matrix extracted

from X made of its lines from k to l and columns from r to

s. For a square matrix M , M > 0 and M ≥ 0 mean respec-

tively positive and semi-positive definiteness. The symbol
∫

denotes the integration operation. For a matrix M partitioned

as
[

M11 M12
M21 M22

]
and an operator ∆, the notation Fu(M,∆)

stands for M22 + M21∆(I − ∆M11)
−1M12 and Fl(M,∆)

stands for M11 + M12∆(I − ∆M22)
−1M21 whenever they

exist. The L2 norm of a signal w from R
+ in R

n, if it exists,

is defined as the integral: ||w||2 =
√∫ +∞

0 w(t)Tw(t)dt
and the set of signals for which the L2 norm is defined

is noted L2. The extended space Le
2 is then defined as

Le
2 = {w : R

+ → R
n|∀T > 0, PT (w) ∈ L2} where

for a given signal w and a T > 0, the causal truncation

operator PT is such that ∀t ≤ T, PT (w(t)) = w(t) and

∀t > T, PT (w(t)) = 0. The L2-gain of an operator H is

defined as ||H ||2 = supw∈L2,u6=0 ||Hw||2/||w||2. For matri-

ces Z1, · · · , Zr where for all i ∈ {1 · · · r} Zi ∈ R
ki×ki , the

following notation is used: for a given integer s ≤ r, Ẑ1,s =
diag (Z1, · · · , Zs) and Ẑs+1,r = diag (Zs+1, · · · , Zr).

II. PRELIMINARIES AND PROBLEM FORMULATION

A. The considered system

General LPV systems can be described as follows:
{

ẋ(t) = A(δ(t))x(t) +B(δ(t))w(t)
z(t) = C(δ(t))x(t) +D(δ(t))w(t),

(1)

where x(t) ∈ R
n is the state, w(t) ∈ R

nw the in-

put and z(t) ∈ R
nz the output. The vector δ(t) =[

δ1(t) · · · δr(t)
]T

∈ R
r is called the parameter vector,

where for i ∈ {1, · · · , r} δi(t) is a real time-varying

scalar parameter measured in real time and belonging to an

interval. With no loss of generality, here it is considered

that δi(t) ∈ [−1, 1]. This paper is concerned with LPV

systems whose state-space matrices are rational functions of

the parameters. Such systems can be represented by an LFT

on a parameter block structure [4]:



ẋ(t)
q(t)
z(t)


 = M




x(t)
p(t)
w(t)


 , p(t) = ∆(t)q(t), (2)

where M is a constant matrix and ∆(t) is called the pa-

rameter block. The signals q(t) and p(t) ∈ R
k are called

respectively the input and the output of the parameter block.

The system matrices are defined as:

M =




A B0 B1

C0 D00 D01

C1 D10 D11




and the system (2) is described in LFT notation by:

z(t) = Fu

(
Fu

(
M,

∫
In

)
,∆(t)

)
w(t). (3)

The parameter block ∆ is a block diagonal matrix: ∆(t) =
diag(∆1(t), · · · ,∆r(t)), where each sub-block is ∆i(t) =
δi(t)Iki

. The dimension of ∆(t), also referred to as the LPV

system complexity, is then k =
∑r

i=1 ki. The following

notation is used: S(∆i) = {Si ∈ R
ki×ki |Si = ST

i > 0},

G(∆i) = {Gi ∈ R
ki×ki |Gi = −GT

i }, S(∆) = {S|S =
diag(S1, · · · , Sr)}, G(∆) = {G|G = diag(G1, · · · , Gr)}.

B. The general model reduction problem

In this section, the general definition of a model reduction

for a LPV system is given and the general model reduction

problem is stated. Next, the particular reduced model struc-

ture considered in this paper is introduced and interpreted.

Definition 2.1 (Reduced-complexity model):

Let ∆(t) = diag(δ1(t)Ik1 , · · · , δr(t)Ikr
),

∆R(t) = diag(δ1(t)IkR1
, · · · , δr(t)IkRr

), M ∈

R
(n+k+nz)×(n+k+nw), MR ∈ R

(nR+kR+nzR
)×(nR+kR+nw)

where nR ≤ n and kR =
∑r

i=1 kRi
. The system:

Fu

(
Fu

(
MR,

∫
InR

)
,∆R(t)

)
(4)

is a reduced-complexity model of the system

Fu

(
Fu

(
M,

∫
In
)
,∆(t)

)
if nzR = nz and for all

i ∈ {1, · · · , r} NRi
≤ Ni. ⋄
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Here, a reduced-complexity model is also referred to as a

“reduced model”. For a given system (3), the model reduction

problem is then to find a reduced model (4) that approximates

(3) “in some sense”. In order to evaluate this approximation,

a measure needs to be introduced: it is called the model

reduction error and it can be defined as a difference system

L2-gain. For this general problem, no convex formulation is

available.

Here, we consider the case when the reduced model is en-

forced to have a special structure. Thus, consider the original

system (3) where ∆(t) = diag(δ1(t)Ik1 , · · · , δr(t)Ikr
). For

a given integer s ≤ r, the reduced model is enforced to be of

the form (4) where ∆R(t) = diag(δ1(t)IkR1
, · · · , δr(t)IkRr

)
is such that for every i ∈ {1, . . . , r}:

kRi
=

{
ki ∀i ∈ {1, . . . , s}
0 ∀i ∈ {s+ 1, . . . , r}.

(5)

In other words, the parameter block of the reduced model is

supposed to be a block diagonal structure formed exclusively

from full copies of some of the plant parameter sub-blocks.

This can be interpreted by saying that the reduced model is

enforced to depend on some of the plant parameters in the

same fashion as the plant (that is, through an LFT of same

complexity) while the dependence on the other parameters

has been removed. With no loss of generality, we assume

that the removed parameters are the last ones.

III. CONVEX CONDITIONS FOR MODEL REDUCTION OF

QUADRATICALLY STABLE SYSTEMS

In this section, the considered model reduction problem is

formally stated. A convex formulation of the problem is then

derived and a construction method is presented. Let us recall

first the definition of quadratic stability.

Definition 3.1: The LPV system defined by the equations

(1) is said to be quadratically stable if it is well-posed

and there exists a matrix P = PT > 0, called (constant)

Lyapunov matrix such that there exists η > 0 such that

A(δ(t))TP + PA(δ(t)) < −ηI . ⋄
Recall that the system (1) is said to be well-posed if for

any input w ∈ Le
2, the signals x, z are in Le

2 and uniquely

defined.

A. The considered model reduction problem for quadratically

stable systems

For quadratically stable systems, the model reduction error

is the L2-gain of the difference between the original model

and the reduced model. The problem is then the next one.

Problem 3.1 (Model reduction problem): Let ǫ > 0 and

consider the quadratically stable system defined for any

input w(t) as z(t) = Fu

(
Fu

(
M,

∫
In
)
,∆(t)

)
w(t) (3)

where ∆(t) = diag(δ1(t)Ik1 , · · · , δr(t)INr
). Let s ≤ r and

∆R(t) = diag(δ1(t)IkR1
, · · · , δr(t)IkRr

) such that for every

i ∈ {1, . . . , r}:

kRi
=

{
ki ∀i ∈ {1, . . . , s}
0 ∀i ∈ {s+ 1, . . . , r}

and kR =
∑s

i=1 ki. Find nR ≤ n and a con-

stant matrix MR ∈ R
(nR+kR+nz)×(nR+kR+nw) such that

the system defined for any input w(t) as zR(t) =
Fu

(
Fu

(
MR,

∫
InR

)
,∆R(t)

)
w(t) (4) is a reduced model

of (3) such that ||z − zR||2 < ǫ||w||2. ◦

B. Existence test as an LMI optimization problem for

quadratically stable systems

In this section, an existence test of a solution to the

model reduction problem for quadratically stable systems

is proposed as a convex optimization problem. The main

result is given in Theorem 3.2. Recall that for matrices

Z1, · · · , Zr, for a given s ≤ r we use the notation: Ẑ1,s =
diag (Z1, · · · , Zs) and Ẑs+1,r = diag (Zs+1, · · · , Zr).

Theorem 3.2: There exists a solution to the (model re-

duction) problem 3.1 if there exists a solution to the fol-

lowing LMI feasibility problem: find, if they exist, matrices

P = PT , Q̃ = Q̃T ∈ R
n×n, ∀i ∈ {1, · · · , s} Ỹi ∈ R

ki×ki

and ∀i ∈ {1, · · · , r} Xi ∈ R
ki×ki such that (6), (7), (8), (9),

(10), (11), where:

Ψ
T
1




0 0 P

0 0 X̂1,s

0 0 X̂s+1,r

0 0 0 ǫ−1I 0 0 0

P 0 0

X̂T
1,s 0 0

X̂T
s+1,r 0 0




Ψ1 < 0,

(6)

Ψ
T
2




0 Q̃ 0

0
ˆ̃
Y 1,s 0

0 X̂s+1,r 0

Q̃ 0 0

ˆ̃
Y

T

1,s 0 0

X̂T
s+1,r 0 0

0 0 0 0 0 0 −ǫI




Ψ2 < 0,

(7)

Q̃ > 0, (8)

P − Q̃ > 0, (9)

Xi +XT
i > 0, ∀i ∈ {1, · · · , r}, (10)

Ỹi + Ỹ T
i > 0, ∀i ∈ {1, · · · , s}, (11)

where:

Ψ1 =




A B0
1√
2
C0

1√
2

(I + D00)

C1 D10
I 0

1√
2
C0 − 1√

2
(I − D00)


 ,

Ψ2 =




A B0 B1
− 1√

2
C0 − 1√

2
(I + D00) − 1√

2
D01

I 0 0

− 1√
2
C0

1√
2

(I − D00) − 1√
2
D01

0 0 I


 .

•

C. Proof

Consider the setup of Problem 3.1. The system defined by

zR(t) = Fu

(
Fu

(
MR,

∫
InR

)
,∆R(t)

)
w(t) with ∆R(t) =

diag (∆1(t), · · · ,∆s(t)) is by definition a reduced model of

the system defined by z(t) = Fu

(
Fu

(
M,

∫
In
)
,∆(t)

)
w(t)

with ∆(t) = diag (∆1(t), · · · ,∆r(t)). Let us prove then the
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convex conditions of Theorem 3.2 for the existence of MR

such that for a given ǫ > 0, ||z − zR||2 < ǫ||w||2.

Let ∆Σ(t) = diag (∆1(t),∆1(t), · · · ,∆s(t),∆s(t), · · ·
· · · , ∆s+1(t), · · · ,∆r(t)) and let the matrix Σ be such that

z(t)− zR(t) = Fu

(
Fu

(
Σ,

∫
In+nR

)
,∆Σ(t)

)
w(t). Observ-

ing that Σ = M+DRz
MRDRw

where M = DzMDw and:

Dz =

[
D 0
0 Inz

]
, Dw =

[
DT 0
0 Inw

]
, (12)

D =




In 0 0
0n×n 0 0

0

IN1
0N1×N1

.
.
.

INs
0Ns×Ns

0

0 0

INs+1

.
.
.

INr




,

DRz
=

[
DR 0
0 Inz

]
, DRw

=

[
DT

R 0
0 −Inw

]
,

(13)

with:

DR =




0n×n 0

In 0

0

0N1×N1
IN1

.
.
.

0Ns×Ns
INs

0

0Ns+1×(N1+...+Ns)

.

.

.

0Nr×(N1+...+Ns)




,

Lemma 3.2 in [4] implies that MR is such that ||z −

zR||2 < ǫ||w||2 if there exist matrices P = P
T

> 0 ∈
R

(n+nR)×(n+nR), S = diag
(
S1, · · · , Ss, Ss, Ss+1, · · · , Sr

)

and G = diag
(
G1, · · · , Gs, Gs+1, · · · , Gr

)
where ∀i ∈

{1, · · · , s} Si ∈ S(∆i,∆i), Gi ∈ G(∆i,∆i) and ∀i ∈
{s+ 1, · · · , r} Si ∈ S(∆i) and Gi ∈ G(∆i), such that:

[
Σ
I

]T




0 P
S G

ǫ−1Inz
0

P 0

G
T

−S
0 −ǫInw




[
Σ
I

]
< 0.

(14)

Introducing the partition:




X1 Y1

X2 Y2

Y T
1 Z1

Y T
2 Z2




=




0 P

S G

ǫ−1Inz 0

P 0

GT −S

0 −ǫInw




,

(15)

the problem can be rewritten [4] so that (14) holds if and

only if:

G + UTMRV + VTMT
RU < 0, (16)

where:

G =




MT
1,1Y1 + Y T

1 M1,1 + Z1 Y T
1 M1,2 MT

2,1

MT
1,2Y1 Z2 − Y T

2 X
−1
2 Y2 (M2,2 + X

−1
2 Y2)T

M2,1 M2,2 + X
−1
2 Y2 −X

−1
2


 ,

(17)

U =
[
DT

Rz1
Y1 0 DT

Rz2

]
, V =

[
DRw

0
]

(18)

and Mi,j and DRzi
are sub-matrices of M and DRz

whose

dimensions are deductible from context.

The Elimination Lemma [15] implies that MR exists such

that there exist P, S, G such that (16) holds if and only if

there exist P , S, G such that:
{

U⊥T
GU⊥ < 0

V⊥T
GV⊥ < 0.

(19)

Exploiting the particular structure of D and DR and proceed-

ing to some manipulations leads to the conclusion that there

exist matrices P , S, G verifying (19) if and only if there ex-

ist matrices P = PT , Q = QT ∈ R
n×n and ∀i ∈ {1, · · · , r}

matrices Si, Ti ∈ S(∆i) and Gi, Hi ∈ G(∆i) such that

(20), (21), (22), (23) hold, where:

Φ
T
1




0 0 P

Ŝ1,s 0 Ĝ1,s
Ŝs+1,r 0 Ĝs+1,r

0 0 0 ǫ−1Inz 0 0 0

P 0 0

ĜT
1,s 0 −Ŝ1,s

ĜT
s+1,r 0 −Ŝs+1,r




Φ1 < 0,

(20)

Φ
T
2




0 0 Q

T̂1,s 0 Ĥ1,s
T̂s+1,r 0 Ĥs+1,r

0 0 0 ǫ−1Inw 0 0 0

Q 0 0

ĤT
1,s 0 −T̂1,s

ĤT
s+1,r 0 −T̂s+1,r




Φ2 < 0,

(21)[
P I
I Q

]
> 0, (22)

[
Ŝs+1,r Ĝs+1,r

ĜT
s+1,r −Ŝs+1,r

] [
T̂s+1,r ĤT

s+1,r

Ĥs+1,r −T̂s+1,r

]
=

[
I 0

0 I

]
,

(23)

where:

Φ1 =




A B0

C0 D00

C1 D10

I 0
0 I



, Φ2 =




A CT
0

BT
0 DT

00

BT
1 DT

01

I 0
0 I



.

This problem is not convex because of (23). Next, let us prove

that it is in fact equivalent to an LMI optimization problem

with respect to some new unknowns. We proceed to a change

of variables: ∀i ∈ {1, · · · , r}, by definition of Si, Ti, Gi

and Hi there exist matrices Xi, Yi ∈ R
ki×ki such that Xi+

XT
i > 0, Yi + Y T

i > 0 and Si = 1
2

(
Xi +XT

i

)
, Gi =

1
2

(
XT

i −Xi

)
, Ti =

1
2

(
Yi + Y T

i

)
and Hi =

1
2

(
Y T
i − Yi

)
.

Let us rewrite now the terms of the problem with respect to

these new variables.

• Replacing Si and Gi by their expression in terms of Xi

and rearranging, (20) reads (6).

• Similarly, replacing Ti and Hi by their expression in terms

of Yi, (21) is rewritten:

Π
T




0 0 Q

0 0 Ŷ1,s
0 0 Ŷs+1,r

0 0 0 ǫ−1Inw 0 0 0

Q 0 0

Ŷ T
1,s 0 0

Ŷ T
s+1,r 0 0




Π < 0, (24)
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where:

Π =




AT CT
0

1√
2
BT

0
1√
2
(I + D00)T

BT
1 DT

01
I 0

1√
2
BT

0 − 1√
2
(I − D00)T


 .

On the other hand, note that (23) is equivalent to

Ŷs+1,r = X̂−1
s+1,r. Replacing in (24), post-multiplying by[

I 0
1
2
BT

0 − 1
2
(I − D00)T

]−1

and pre-multiplying by its trans-

pose yields (24) if and only if:

M
T
Π




0 0 Q

0 0 Ŷ1,s

0 0 X̂
−1
s+1,r

0 0 0 ǫ−1Inw 0 0 0

P 0 0

Ŷ T
1,s 0 0

X̂
−T
s+1,r

0 0




MΠ < 0,

(25)

where MΠ =
[

MΠ
I

]
and MΠ is defined uniquely by[

MΠ
I

] [
I 0

1
2
BT

0 − 1
2
(I − D00)T

]
= Π. Let Q̃ = Q−1 and

ˆ̃
Y 1,s = Ŷ −1

1,s . Define MΠ =

[
MT

Π
I 0

0 I

]
. Then, post-multiplying

(25) by diag
(
Q̃,

ˆ̃
Y 1,s, X̂1,s

)
, pre-multiplying by its trans-

pose and proceeding to some manipulations yields (25) if

and only if:

M
T
Π




0 Q̃ 0

0
ˆ̃
Y 1,s 0

0 X̂s+1,r 0

Q̃ 0 0
ˆ̃
Y

T

1,s 0 0

X̂s+1,r 0 0

0 0 0 0 0 0 −ǫInw




MΠ < 0. (26)

Post-multiplying by
[

I 0 0

− 1
2
C0

1
2
(I − D00) − 1

2
D01

0 0 I

]−1

and

pre-multiplying by its transpose finally yields (26) holds if

and only (7) holds.

• According to Schur’s Lemma, (22) is equivalent to Q−1 >
0 and P−Q−1 > 0 i.e., by definition of Q̃, to (8) and (9). To

summarize, there exists MR such that ||z − zR||2 < ǫ||w||2
if the LMI optimization problem of Theorem 3.2 admits a

solution.

D. Construction

In this section, a procedure for constructing a reduced

model is proposed based on the resolution of a second

LMI optimization problem. For the system defined for any

input w(t) as z(t) = Fu

(
Fu

(
M,

∫
In
)
,∆(t)

)
w(t) (3)

with ∆(t) = diag(∆1(t), · · · ,∆r(t)), of complexity

k, let us assume that for s ≤ r there exists

a reduced model defined for any input w(t) as

zR(t) = Fu

(
Fu

(
MR,

∫
InR

)
,∆R(t)

)
w(t) (4) with

∆R(t) = diag(∆1(t), · · · ,∆s(t)), of complexity kR.

Let {P, Q̃, Ỹ1, · · · , Ỹs, X1, · · · , Xr} be a solution of the

LMI existence test of Theorem 3.2. Define ∆Σ(t) =
diag (∆1(),∆1(t), · · · ,∆s(t),∆s(t),∆s+1(t), · · · ,∆r(t))
and the matrix Σ such that z(t) − zR(t) =
Fu

(
Fu

(
Σ,

∫
In+nR

)
,∆Σ(t)

)
w(t) and recall that

Σ = M + DRz
MRD

T
Rw

where M = DzMDT
w and

the matrices are defined by (12), (13). Next, to construct a

reduced complexity model, proceed as follows.

1) Define Q = Q̃−1, Ŷ1,s = Ỹ −1
1,s and nR = rank(I −

PQ).
2) Find a matrix P ∈ R

(n+nR)×(n+nR) such that P =[
P RP

RT
P

I

]
, where RP ∈ R

n×nR is such that P −

Q−1 = RPR
T
P .

3) Find matrices S, G ∈ R
(N+NR)×(N+NR) defined by:

S =

[
S1,s 0

0 X̂s+1,r + X̂T
s+1,r

]
,

G =

[
G1,s 0

0 X̂T
s+1,r − X̂s+1,r

]
,

where S1,s = 1
2(X1,s + X

T

1,s), G1,s = 1
2(X

T

1,s −

X1,s) and X1,s ∈ R
2kR×2kR is such that X1,s =[

X̂1,s V C

U C

]
, where V ∈ R

k×kR , U ∈ R
kR×k

are such that X̂1,s − Ŷ −1
1,s = V U and C =

2
(
V T Ŝ−1

1,sV
)−1 (

I − 1
2V

T Ŝ−1
1,sU

T
)

.

4) From P, S, G, construct X1, Y1, Z1 according to (15)

and then G, U , V according to (17) and (18).

5) Solve for MR the following LMI feasibility problem:

G + UTMRV + VTMT
RU < 0.

Then the system defined by zR(t) =
Fu

(
Fu

(
MR,

∫
InR

)
,∆R(t)

)
w(t) is a model reduction of

the system defined by z(t) = Fu

(
Fu

(
M,

∫
In
)
,∆(t)

)
w(t)

such that ||z− zR||2 < ǫ||w||2 and the model reduction error

is defined by ǫ.

IV. APPLICATION

To illustrate, we consider the well-known missile bench-

mark of Reichert [12]. The original model being nonlinear, it

is first necessary to build a corresponding LPV system. We

consider the simple model represented as an LFT on a single

parameter:




α̇(t)
q̇(t)
q1(t)

ηc(t)− η(t)
q(t)







A B0 B1

C0 D00 D01

C1 D10 D11







α(t)
q(t)
p1(t)
u(t)


 ,

p1(t) = δ(t)q1(t),

where α(t) is the angle of attack, q(t) the pitch rate,

η(t) the acceleration, ηc(t) the reference acceleration and

u(t) the tail deflection. The matrices are constant and their

exact definition can be found in reference [17]. The time-

varying parameter δ(t) is defined as a polynomial in the

state α(t). Following the usual LPV methodology, an L2-

gain criterion with suitable weighting functions is obtained

(see [17] for details) and the LPV synthesis method with

constant Lyapunov matrix of [4] is applied, yielding an LPV

controller ensuring the closed loop stability and an L2-gain

less than γ = 1.3. This LPV controller naturally has the same
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complexity as the plant i.e., it admits an LFT representation

of the form:




ẋK(t)
q2(t)
u(t)






AK BK0 BK1

CK0 DK00 DK01

CK1 DK10 DK11







xK(t)
q2(t)

ηc(t)− η(t)
q(t)


 ,

p2(t) = δ(t)q2(t).
(27)

Yet the frozen Bode plots for different values of the pa-

rameter displayed on Figure 1 (dashed lines) suggest that

this controller varies weakly with the parameter. In fact, for

this system, it is even known [18] that there exists an LTI

controller achieving good performance.

The model reduction method described in this paper typ-

ically presents an interest in this case. Here, it allows to

construct an optimal controller of reduced complexity (where

the dependence on the parameter has been removed), that is

to say an LTI controller of the form:

[
ẋKR

(t)
uR(t)

]
=

[
AKR BKR

CKR DKR

]


xKR(t)
ηc(t)− η(t)

q(t)


 . (28)

The original controller (27) being quadratically stable, the

method of Section III is directly applied to obtain the model

reduction. Thus, an LTI controller (28) is obtained such that:

||u− uR||2 < ǫ

∣∣∣∣
∣∣∣∣
[

ηc − η
q

]∣∣∣∣
∣∣∣∣
2

,

with a model reduction error less than ǫ = 0.5. The Bode plot

of this reduced controller is displayed on Figure 1 (full line),

superimposed on the original controller frozen Bode plots

(dashed lines). Performing an analysis with a method based

on a constant Lyapunov matrix [4] proves that the reduced

controller also ensures the closed loop stability and a superior

bound on the L2-gain equal to γR = 1.6, i.e., of the same

order as with the original controller.

V. CONCLUSION

This paper addresses the problem of model reduction for

LPV systems modeled by an LFT on a parameter block

diagonal structure. The case is studied when the reduced

model depends on some paramaters through an LFT of same
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Fig. 1. Frozen Bode plots of (1) original controller: LPV system with LFT
on one parameter (dashed) and (2) reduced controller: LTI system (full).

complexity as the plant and no longer at all on the other

parameters. Then, in contrast to the general case, it is proved

that the LPV model reduction problem can be written as

an LMI optimization problem. The method proposed in this

paper is an original contribution in several directions. First, in

contrast with existing procedures for model reduction of LPV

systems, our method relies on a convex LMI optimization

problem. Moreover, it is naturally suited for a wide range

of applications when the plant depends “mildly” on some

parameters (e.g., slow-varying parameters) and “strongly” on

some others. It allows to obtain an optimal reduced model

that no longer depends on some of the parameters. Finally,

it applies directly to the nonlinear context using the fact

that LPV systems can model nonlinear systems by defining

parameters as embeddings of nonlinearities.
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