
Fast predictive control of linear systems combining Nesterov’s gradient

method and the method of multipliers

Markus Kögel and Rolf Findeisen

Abstract— The fast, tailored solution of linear, predictive
control problems is important, yet challenging. We present
an algorithm based on the fast gradient method and the
method of multipliers for model predictive control of linear,
discrete-time, time-invariant, systems with box constraints. The
algorithm uses the augmented Lagrangian method to handle
equality constraints, so it can takes advantage of the sparsity
of the problem. We present different schemes to update the
multipliers. An example illustrates the performance of the
algorithm, which is competitive with other tailored solution
methods.

Index Terms— Model predictive control, Augmented La-
grangian, Online optimization, Fast gradient method.

I. INTRODUCTION

Predictive control, also denoted model predictive control

(MPC) or receding horizon control, is frequently used to

control systems subject to constraints, see [7], [8], [11],

[17]. Predictive control allows to control systems with a

high performance and such that constraints are satisfied. In

predictive control at each time a new measurement becomes

available the input is determined by solving a finite horizon

optimal control problem of which the resulting input is

applied until the next time. Solving the required optimization

problem fast and with a limited memory footprint, e.g. for

embedded control problems, is challenging. We present in

this paper a suitable method for discrete-time, linear, time-

invariant systems subject to a quadratic cost criterion and

box constraints.

In principle there are two main solution approaches to

solve the resulting quadratic program appearing in such

predictive control problems: online and offline (explicitly).

In the so-called online-optimization at each step the problem

is solved online in real-time. The resulting computational

demand depends on the problem and can be challenging.

For this reason online-optimization is usually limited by the

available computation speed. In the latter approach, often

called explicit MPC, the solution for all possible states is

calculated offline and stored in for example a table, see [1].

Unfortunately, this table grows in general exponentially in

the number of states, inputs and horizon. So, the explicit

solution is often limited by its memory demand and often

restricted to small-scale systems.

M. Kögel and R. Findeisen are with the Institute for Automation
Engineering, Otto-von-Guericke-University Magdeburg, Germany. M. K.
is also a member of the International Max Planck Research School
for Analysis, Design and Optimization in Chemical and Biochemi-
cal Process Engineering, Magdeburg, Germany. {markus.koegel,
rolf.findeisen}@ovgu.de.

We present in this paper an online-optimization method

tailored for MPC. With respect to the efficient online so-

lution of such predictive control problems many tailored

approaches exist by now. Active set methods tailored for

model predictive control problems are presented in [5], [14].

Unfortunately, in theory the worst case time complexity of

these algorithm is exponential in the number of constraints.

However, in practice they are very efficient and can be used

e.g. to control diesel engines with sampling times down to

milliseconds, cf. [6].

In [18], [22] interior-points methods taking the special

structure of the problem into account are considered. More-

over, [21] discusses inexact interior points approaches.

The works [19], [20] present online-optimization for sys-

tems with input constraints using the Nesterov’s gradient

method [15], [16]. In [10] we described a method to deter-

mine the gradient efficiently exploiting the underlying struc-

ture of the problems. This approach is extended in [9] using

the method of augmented Lagrangians to handle constraints

on the states. This result is based on the condensed problem

i.e. with eliminated equality constraints.

In this paper we use the method of augmented Lagrangians

to handle the equality constraints due to the dynamic and

a possible terminal constraint. We employ the fast gradient

method to solve the sparse subproblem arising from the mul-

tiplier method and discuss methods to update the multipliers.

As shown, the memory demand and the computational time

is only linearly increasing in the length of the horizon for

most update schemes and the conditioning of the arising

subproblems is bounded above for any horizon length.

The remainder of the paper is structured as follows. First

we outline the problem setup in Section II. Afterwards

we present the used optimization methods in Section III.

In Section IV we present as the main result the proposed

algorithm for the considered MPC problem. We outline an

efficient implementation of the algorithm, analyze properties

of the arising subproblems and discuss the computational

demand. In Section V, we illustrate the performance of the

approach by an example. Finally, we draw conclusions and

outline future research directions in Section V.

II. PROBLEM STATEMENT

We consider linear, discrete-time, time-invariant systems

of the form

xk+1 = Axk +Buk + d̃, (1)

where xk ∈ R
n is the state, uk ∈ R

p is the input and d̃

is a constant disturbance or reference. All matrices have the

2011 50th IEEE Conference on Decision and Control and
European Control Conference (CDC-ECC)
Orlando, FL, USA, December 12-15, 2011

978-1-61284-799-3/11/$26.00 ©2011 IEEE 501

appropriate dimensions. We assume that the state and input

are constrained to compact boxes,

x ≤ xk ≤ x, u ≤ uk ≤ u. (2)

where ≤ holds entry-wise.

In this work we consider model predictive control of the

system (1) subject to the constraints (2) with a control and

prediction horizon of length N and a quadratic cost criterion

[7], [11], [12]. The quadratic cost consists of a stage cost Jj
and final cost Jf given by

J =

k+N−1
∑

j=k

Jj + Jf (3)

Jj =
1

2
xTj Qxj +

1

2
uTj Ruj + uTj Sxj + xTj q̃ + uTj r̃

(

Q ST

S R

)

=W =WT > 0

Jf =
1

2
xTk+NTxk+N + xTk+N t̃, T = T T > 0.

Moreover the terminal state can be constrained to a box

and there can be equality constraints to enforce stability

xf ≤ xk+N ≤ xf (4)

Fxk+N = f̃ , (5)

where F ∈ Rm×n,m ≤ n,m < Np.

Note that this framework is rather general and contains

several special cases. In particular classical stabilization i.e.

the control towards the origin is given by d̃ = r̃ = q̃ = t̃ = 0.

We focus in this work on fast solutions of the MPC

problems, stability results and conditions can be found in,

e.g., [12] and the references therein.

Note that the N(p+ n) optimization variables are

z =
(

uTk xTk+1 uTk+1 . . . uTk+N−1 xTk+N

)T
. (6)

Moreover, to denote the 2N(p+n) inequality constraints on

the optimization variables due to the terminal constraint (4),

state and input constraints (2), we define

z ≤ z ≤ z ⇔







x ≤ xk+j ≤ x, ∀j = 1, . . . , N − 1
u ≤ uk+j ≤ u, ∀j = 0, . . . , N − 1
xf ≤ xk+N ≤ xf .

(7)

Using these definitions the MPC optimization problem, a

quadratic program (QP), is shortly given by

min
z

1

2
zTHz + zTg (8)

s.t. z ≤ z ≤ z

Cz = e,

where H ∈ RN(p+n)×N(p+n), g ∈ RN(p+n)×1, C ∈
RNn+m×N(p+n), e ∈ RNn+m×1 are given by

C =















B −I 0 0 . . . 0 0 0
0 A B −I . . . 0 0 0
...

...
...

...
. . .

...
...

...

0 0 0 0 . . . A B −I
0 0 0 0 . . . 0 0 F















(9)

H =















R 0 . . . 0 0
0 W . . . 0 0
...

...
. . .

...
...

0 0 . . . W 0
0 0 . . . 0 T















, (10)

e =















−Axk + d̃

d̃
...

d̃

f̃















, g =



















Sxk + r̃

q̃

r̃
...

r̃

t̃



















. (11)

Note that there are Nn + m equality constraints resulting

from the dynamic (1) and the terminal condition (5).

III. REVIEW OF OPTIMIZATION METHODS

Several approaches to solve (8) efficiently exist [5], [9],

[14], [18], [21], [22]. In this work we consider approaches

based on the fast gradient method and the method of multi-

pliers to solve (8). We briefly review these two methods.

A. Fast Gradient method methods

We will use Nesterov’s gradient method also known as

Fast Gradient method, cf. [15], [16]. Therefore we shortly

recap this method as well as the required background infor-

mation gradient projection.

Let us consider the unconstrained convex problem

min
x

f(x), (12)

where f(x) : R
N → R is a smooth, convex function

with a globally Lipschitz continuous gradient. Using the

well-known gradient descent method, see e.g. [16], we can

determine a solution to (12) using an initial guess x0 and

xi+1 = xi −
1

L
∇f(x) = G(xi), (13)

where ∇f(x) is the gradient. Here 1
L

is used as step-size,

where L is a Lipschitz constant of the gradient ∇f(x)

∀x, y ∈ R
N , ‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖,

to guarantee f(xi+1) < f(xi). Although, L is non-unique,

using L as small as possible yields in general the best results.

If optimization variables are constrained to a convex,

closed set X , then one can solve the problem using gradient

projection, see [16]. In particular we consider the projected

gradient step GX (x) instead of (13)

GX (x) = argmin
z∈X

‖x− z‖
2
, z =x−

1

L
∇f(x) = G(x).

In summary,

xi+1 = GX (xi),

delivers feasible iterates and converges to the minimizer.

Note that, the projected gradient step GX (x) requires an

Euclidean projection into X . This projection is in general

nontrivial. However, it can be done analytically for simple

sets such as boxes. Clearly, if X = R
N , then GX (x) = G(x).

502

Next, Nesterov’s gradient method is outlined in Algorithm

1. It uses the projected gradient step GX (x) and an additional

step that leads to faster convergence than the gradient projec-

tion method. The scalar sequence ci needs to satisfy certain

Algorithm 1 Fast Gradient method

Require: Initial guess x0 ∈ X , Number of iterations imax,

Parameter L, Sequence ci

1: Set x−1 = y0 = x0

2: for i = 1, . . . , imax do

3: Compute xi = GX (yi−1)
4: Compute yi = xi + ci(xi − xi−1)
5: end for

6: return ximax

conditions [16]. For example, it is always possible to choose

ci = i−1
i+2 . However, if we know a strong convexity constant

φ > 0, i.e.

∀x, y ∈ R
N , ‖∇f(x)−∇f(y)‖ ≥ φ‖x− y‖,

then ci can be constant: ci =
√
L−

√
φ√

L+
√
φ

. Clearly, φ is non-

unique and L ≥ φ. Note that it is advantageous to use a φ

as large as possible. As above X = R
N is possible.

B. Method of multipliers for equality constraints

In this work we use the method of augmented Lagrangians,

also called method of multipliers, cf. [2], [3], to minimize a

convex function f(s) subject to linear equality constraints

Ψs = ψ and simple constraints on s ∈ S

min
s
f(s), s.t. Ψs = ψ, s ∈ S. (14)

For such convex problems the method can be interpreted

as maximizing a proximal approximation ζ(λ)µ of the dual

function ζ(ξ) for some penalty parameter µ > 0

ζ(λ)µ = sup
ξ

(

ζ(ξ) −
1

2µ
‖ξ − λ‖2

)

, (15)

where λ is a so-called augmented Lagrange multiplier or

just multiplier. The proximal approximation ζ(λ)µ is concave

(−ζ(λ)µ is convex) and has a Lipschitz constant of 1
µ

.

Moreover the gradient of the proximal approximation is

∇ζ(λ)µ = Ψŝ− ψ, (16)

where ŝ is the minimizer of

min
s∈S

f(s) +
µ

2
‖Ψs− ψ −

1

µ
λ‖2. (17)

The augmented Lagrangian method solves the problem (14)

employing (16) and (17). So the method consists of an outer

iteration called multiplier update and an inner subproblem,

as outlined in Algorithm 2. The standard method to update

the multipliers is a gradient method given by

λj+1 = λj − µ∇ζ(λj) = λj − µ(Ψŝj − ψ), (18)

where ŝj is an (approximate) minimizer of the subproblem

(17). The second possibility is to use the fast gradient method

for the multiplier update. At the start of the algorithm we set

λ0v = λ−1 = λ0 and then solve the subproblem (17) using

the multiplier λjv . Afterwards we update via

λj+1 = λjv − µ∇ζ(λjv) = λjv − µ(Ψŝj − ψ) (19)

λj+1
v = λj+1 +

j − 1

j + 2
(λj+1 − λj).

Note that using the fast gradient method for the multiplier

update in combination with an inexact solution of the sub-

problem might be problematic due to the inherent error

accumulation of the fast gradient method, see [4]. However

if we solve the subproblem precise enough, then the fast

gradient based update might be faster as the gradient update.

Finally, we consider the second order update [2], [3], [13]

λj+1 = λj − (M j
I)

−1∇ζ(λj) = λj − (M j
I)

−1(Ψŝj − ψ),

M
j
I =

∂∇ζ(λj)

∂s

T

(P j
a)

−1 ∂∇ζ(λ
j)

∂s
= ΨT (P j

a)
−1Ψ (20)

P j
a =

∂2f

∂s2
(ŝj) + µΨΨT .

Note that P j
a is the Hessian matrix of (17), cf. [3], [13].

Remark 1: (Choice of µ and Convergence)

Since f(s) is convex any value of µ > 0 guarantees

convergence of this method, see [3], for first order updates

(18), (19), if the subproblem is solved exact. Larger values

of µ lead to an improved convergence, but can lead to a

more difficult subproblem, see Section IV-B. In contrast for

the second order update convergence cannot be guaranteed

globally.

Algorithm 2 Augmented Lagrangian method

Require: Initial guess λ0, number of iterations jmax

1: for j = 1, . . . , jmax do

2: Solve subproblem (17) and obtain the minimizer ŝj

3: Multiplier update: obtain λj+1, (λj+1
v) using (18),

(19) or (20)

4: end for

5: return λjmax , ŝjmax

IV. MAIN RESULT: APPLICATION TO MPC PROBLEM

In this Section we present the proposed algorithm tailored

for MPC. We first consider the outer iteration with the

multiplier update and than the subproblem.

A. Outer iteration and multiplier updates

We apply the outlined augmented Lagrangian method to

the MPC problem. First, observe that the gradient of the

proximal approximation ∇ζ(v)µ (16) for (8) is

∇ζ(v)µ = Cẑ − e, (21)

where C and e are as in (9), (11) and where ẑ is the

minimizer of the subproblem (17). For the QP underlying

the MPC problem this subproblem is

ẑ = argmin
z

1

2
zTHz + zT g +

µ

2
‖Cz − e−

1

µ
v‖2 (22)

s.t. z ≤ z ≤ z,

503

where H , g, C and e are as in (9), (10), (11) and the

inequality constraints are defined as in (7). For the second

order update (20) we need the matrix P j
a , which is given by

P j
a = Ha = H + µCTC, (23)

is the Hessian matrix of (22).

B. Solving the subproblem

Let us now consider the QP arising as the subproblem from

the augmented Lagrangian method above, which is given by

(22). Note that, this problem is always feasible, e.g. z = z

is feasible. If we define ga as

ga(xk, v) = g(xk)− µCT e(xk)− µCT v, (24)

and use Ha as defined in (23) and drop the constant term,

then we can rewrite the problem as

min
z

1

2
zTHaz + zT ga(xk, v) (25)

s.t. z ≤ z ≤ z.

In detail, the matrix Ha is sparse and has the structure

Ha =



























φ1 φ2 0 0 0 . . . 0 0 0
φT2 φ3 φ4 φ5 0 . . . 0 0 0
0 φT4 φ1 φ2 0 . . . 0 0 0
0 φT5 φT2 φ3 φ4 . . . 0 0 0
...

...
...

...
...

. . .
...

...
...

0 0 0 0 0 . . . φ3 φ4 φ5
0 0 0 0 0 . . . φT4 φ1 φ2
0 0 0 0 0 . . . φT5 φT2 φ6



























.

where,

φ1 = R+ µBTB, φ2 = −µBT (26)

φ3 = Q+ µ(I +ATA), φ4 = ST + µATB (27)

φ5 = −µAT , φ6 = P + µ(I + FTF). (28)

These matrices have the dimensions φ1 ∈ R
p×p, φ2 ∈ R

p×n,

φ3 ∈ R
n×n, φ4 ∈ R

n×p, φ5 ∈ R
n×n and φ6 ∈ R

n×n. Note

that Ha has at most N(n2 + p2 + 2np) + (N − 1)(2n2 +
2np) nonzero entries, because φ1, φ2, φ

T
2 appear N times

in Ha and φ3, φ4, φ
T
4 , φ5, φ

T
5 appear N − 1 times and φ6

appears once in Ha. Moreover, the block-diagonal matrix

Ha depends neither on the multiplier v nor on the state xk,

which simplifies the following analysis.

In order to solve the QP (25) we use the Fast Gradient

method, presented in Section III-A. Note that this method

employs two parameters, the Lipschitz constant of the gra-

dient L and the strong convexity parameter, φ. Since the

cost function is quadratic, these parameters can easily be

obtained from the matrix Ha. In particular L = λMax(Ha)
is the largest eigenvalue of Ha and φ = λMin(Ha) is

the smallest eigenvalue of Ha. Due to our assumptions the

smallest eigenvalue of Ha is positive, see also Proposition

1.

Note that the condition number of the matrix Ha is

cond(Ha) = λMax(Ha)
λMin(Ha)

= L
φ

and thus governs the con-

vergence rate of the fast gradient method, cf. Section III-

A. Therefore we are able to analyze the influence of the

horizon length N as well as the penalty parameter µ onto

the conditioning of Ha.

First we discuss the impact of µ onto the eigenvalues of

Ha. Note that CTC is singular, due to the assumption m <

Np, thus

λMin(Ha) ≥ λMin(H) (29)

λMax(Ha) ≤ λMax(H) + µλMax(C
TC), (30)

which yields the following proposition.

Proposition 1: (Influence of µ on the conditioning of Ha)

The condition number of the matrix Ha (23) is bounded

above by an affine, increasing function in µ. In particular,

cond(Ha) ≤
λMax(H) + µλMax(C

TC)

λMin(H)
. (31)

The proof follows directly from the discussion above.

From this proposition it follows that the inner problem

might get harder to solve for increasing µ.

Now let us investigate the influence of the horizon length

N onto the condition number.

Proposition 2: (Influence of N on the conditioning of Ha)

For a given system (1), weighting (3) and penalty parameter

µ there exists, independent of N , an upper bound K and

lower bound K on the eigenvalues of Ha, and thus an upper

bound on the condition number cond(Ha) ≤ KK−1.

Proof: The lower bound follows from the fact that Ha is

given as in (23) by the sum of a positive definite matrices H

and the positive semi-definite µCTC (we assume m < Np).

Finally from the structure of H (10) we obtain

λMin(Ha) ≥ min(λMin(W), λMin(R), λMin(T)) = K.

Now let us determine the upper bound on the eigenvalues.

First due to the spectral radius property of the 1-norm we

have λMax(Ha) ≤ ||Ha||1. Finally, due to basic properties

of the 1-norm and the structure of Ha we obtain

||Ha||1 =max(||
(

φT5 φT2 φT3 φ4 φ5
)T

||1,

||
(

φT4 φT1 φ2
)T

||1, ||
(

φT5 φT2 φT6
)T

||1),

i.e. ||Ha||1 = K is independent of N and thus λMax(Ha)
is bounded above for any N by K.

Therefore increasing N has only a limited impact on the

convergence rate of the fast gradient method, cf. [16].

C. Implementation

We consider first the implementation of the outer iteration

(Algorithm 1) and second we discuss the implementation of

the fast gradient method for the subproblem (Step 4).

1) Multiplier updates: For all multiplier updates we need

to evaluate (21). We can compute Cẑ efficiently by exploiting

the sparsity structure of C, cf. (9). This requires only

O(Nn2) calculations, assuming p ≤ n. Secondly, only the

first n entries of e(xk) depend on xk, i.e. those need to be

updated once per MPC step.

For the gradient based update (18) and fast gradient based

update (19) we can avoid the online multiplication of C,

e(xk) by scaling the data by µ offline appropriately.

504

The second order update (20) can be implemented straight-

forward: Since M j =M = C(Ha)
−1CT is constant, we can

determine (M j)−1 offline.

2) Subproblem: First note that the gradient of the sub-

problem (25) is

∂Ja

∂z
= Haz + ga(xk, v). (32)

We can use the sparse structure of Ha to compute Haz.

This requires only O(Nn2) computations assuming p ≤ n.

Moreover, ga(xk, v) consists of three different parts

ga(xk, v) = g̃a + ga(xk) + ga(v). (33)

First the constant term g̃a, which can be zero, is

g̃a =















r̃ − µBT d̃

q̃ − µ(AT d̃− d̃)
...

r̃ − µBT d̃

t̃− µ(FT f̃ − d̃))















. (34)

Second there are terms, which depend on xk or on v

ga(xk) =















Sxk + µBTAxk
−µAxk

0
...

0















(35)

ga(v) =



















−µBT v1
µ(v1 −AT v2)

−µBT v2
...

−µBT vN
µ(vN − FT vN+1)



















. (36)

In summary, we need to recalculate ga(xk, v) each time v or

xk have changed, but g̃a is constant and ga(xk) need to be

updated only after xk has changed.

The fast gradient algorithm requires also the projection of

z into the set z ≤ z ≤ z, i.e. the box constraints. Since these

constraints are separable, this is only a entry-wise saturation

and thus O(N(n + p)). We have

z[i] =











z[i], if z[i] > z[i]

z[i], if z[i] < z[i]

z[i], else,

(37)

where z[i] denotes the ith entry of z.

3) Warmstarting : Note that, we need initial guesses

for z to solve the subproblem (25) and initial guesses for

the multipliers λ. We use use warmstarting to improve the

performance, i.e., the initial guess are based on previous

solution. There are two different cases for warmstarting.

First, if we need to solve the subproblem after a multiplier

update, then we just use the last obtained z as new initial

guess. Second, if we need to do a new MPC step, i.e., xk
changes, then we need initial guesses for the optimization

variables z and the multipliers λ. Here we use basically a

u1 u2

u3

Fig. 1. Example: Chain of masses connected by springs.

shifted solution appended by zeros. For the multipliers λ this

can be done similarly.

D. Computational effort

In this section we discuss the memory demand and sum-

marize the time complexity.

1) Memory demand: We first estimate the demand for

dynamic data and later on the demand of static data, which

is often crucial in embedded applications. For the outer

iteration we need to store xk and the first n entries of e(xk).
Next we need to store ẑj , which has N(n + p) entries.

For the gradient update (18) the gradient to be determined,

the old and the new multiplier vector have 3(Nn + m)
elements. The other three updates have an increased memory

effort of 4(Nn + m). Moreover solving the subproblems

requires additional dynamic data. First, ga(xk) has only n+p
nonzero entries. Second the fast gradient algorithm itself

have a memory demand of 5N(n+ p). In combination with

ga(xk, v) and the gradient the subproblem has a memory

demand of (5N + 1)(n + p). In summary the demand for

dynamic data increases linearly in the horizon length N , the

number of states n and the number of inputs p.

Let us consider now the static data, which stays constant

during the run of the algorithm. For the (fast) gradient update

(18) or (19), we need only C and the constant part of e. Using

their structure, we need only to store a constant amount of

data. The second order update 20) needs in addition M−1

and therefore has a memory demand of O(Nn2).
Also for the subproblem one can exploits the underlying

structure of the problem data: φ1, . . . , φ6 and S, A, B and

F : have less as 10n2 elements. In addition, g̃a consists of

three blocks of size n, p or m. Finally, the upper and lower

bound of z and z have a memory demand of about 4n+2p.

Thus, the size of the static data is independent of N for the

subproblem.

2) Time complexity: If we assume p ≤ n, then as

discusses above an iteration of the subproblem has a time

complexity of order O(Nn2). The second order update (20)

has a time complexity of O((Nn)2) due to the matrix-vector

product with M−1. All other multiplier updates have as

discussed above a complexity of O(Nn2).

V. EXAMPLE

We implemented the proposed algorithms in Matlab. In

particular, we use a single thread of a 2.4 GHz Intel Core

2 Quad Q6600 Intel CPU to evaluate the algorithms and we

utilize Embedded Matlab to generate native code.

As example we use the chain of mass example from [22]

illustrated in Figure 1. This system has n = 12 states and

505

Algorithm µ jmax imax

Gradient update, (18), 50 4 14
Fast Gradient update, (19), 40 4 14
Second order update, (20), 3.5 8 5

TABLE I

CHOICE OF PENALTY PARAMETER µ, NUMBER OF MULTIPLIER UPDATES

jmax AND ITERATIONS OF INNER PROBLEM imax

Algorithm ∆J Tavg Tmax

Gradient update, (18), 1.10% 2ms 2ms
Fast Gradient update, (19), 1.09% 2ms 2ms
Second order update, (20), 0.04% 2ms 2.1ms

Consed approach [9], 0.05% 1.9ms 1.9ms
qpOASES [5], (max. 20 its) 0.43% 2.4ms 5ms
qpOASES [5], (exact) 0% 2.5ms 8ms
quadprog (exact) 0% 46.6ms 153ms

TABLE II

COMPARISON OF ALGORITHMS FOR CHAIN OF MASSES EXAMPLE. Tmax

MAXIMUM COMPUTATION TIME OF AN MPC STEP, Tavg AVERAGE

COMPUTATION TIME PER MPC STEP, ∆J PERFORMANCE DECREASE

(MONTE CARLO SIMULATIONS).

three actuators (p = 3), each acting on two masses. Moreover

we use the same parameters: the spring constants are 1,

each mass has a value of 1 and there is no damping. The

actuators are limited to ±0.5 and all states are limited to ±4.

The system is discretized using a sampling time of 0.5. In

addition, there is as disturbance a random force w(t) ∈ R
n,

component-wise uniformly distributed on [−0.5, 0.5], acting

on each mass. Finally, the cost matrices are N = 30,

Q = R = T = I and F = S = 0.

In order to compare the different update schemes (18), (19)

or (20) we first determined the possible number of multiplier

updates, and iterations of the fast gradient method solving

the subproblem (25) s.t. the MPC has a computational delay

of 2ms. Next we tuned the penalty parameter µ using one

Monte Carlo simulation by comparing the performance with

exact MPC obtained using the QP solver quadprog of Matlab.

Note that the Monte Carlo simulation are 20000 steps long

and averaging is done over the last 90 % of the steps.

Table II shows the average performance decrease com-

pared to exact MPC for the different update formulas ob-

tained using 20 Monte Carlo simulations of the same size as

above. Here, the second order update, yields the best results

and is competitive with other algorithms as shown in Table

II. The fast gradient and the gradient update deliver worse

and similar results. For the same example the [22] report a

computation time of about 5ms, but on a slower CPU (we

cannot run the provided code).

VI. CONCLUSIONS

In this paper we presented a numerical efficient solution

approach for model predictive control of discrete time linear,

time-invariant systems with box constraints. The proposed

algorithm solves the underlying quadratic program using a

combination of augmented Lagrangians and the fast gradient

method and exploits the sparsity of the setup. We discussed

different multiplier update and showed that the condition

number of the subproblem is bounded above for any horizon.

Finally, we illustrated that the performance is competitive

with other recent methods tailored for MPC.

The convergence behavior will be analyzed as well as

further detailed comparisons with other already existing

algorithms will be obtained in future work.

REFERENCES

[1] BEMPORAD, A., MORARI, M., DUA, V., AND PISTIKOPOULOS,
E. The explicit linear quadratic regulator for constrained systems.
Automatica 38, 1 (2002), 3–20.

[2] BERTSEKAS, D. P. Nonlinear Programming. Athena Scientific, 1995.
[3] BERTSEKAS, D. P. Constrained Optimization and Lagrange multiplier

methods. Athena Scientific, 1996.
[4] DEVOLDER, O., GLINEUR, F., AND NESTEROV, Y. First-order Meth-

ods of Smooth Convex Optimization with Inexact Oracle. Available
online at http://www.optimization-online.org.

[5] FERREAU, H. J., BOCK, H. G., AND DIEHL, M. An online active set
strategy to overcome the limitations of explicit MPC. International

Journal of Robust and Nonlinear Control 18 (2008), 816–830.
[6] FERREAU, H. J., ORTNER, P., LANGTHALER, P., DEL RE, L., AND

DIEHL, M. Predictive control of a real-world diesel engine using
extended online active set strategy. Annual Reviews in Control 31

(2007), 293–301.
[7] FINDEISEN, R., BIEGLER, L., AND ALLGÖWER, F. Assessment and

Future Directions of Nonlinear Model Predictive Control. Lecture
Notes in Control and Information Sciences. Springer, 2008.

[8] GARCIA, C., PRETT, D., AND MORARI, M. Model predictive control:
Theory and practice - A survey. Automatica 25, 3 (1989), 335–348.

[9] KÖGEL, M., AND FINDEISEN, R. Fast predictive control of linear,
time-invariant systems using an algorithm based on the Fast gradient
method and augmented Lagrange multipliers. 2011 MSC, To appear.

[10] KÖGEL, M., AND FINDEISEN, R. A Fast Gradient method for
embedded linear predictive control. In Proceedings of the IFAC World
Congress 2011 (2011), pp. 1362–1367.

[11] MACIEJOWSKI, J. M. Predictive Control with Constraints. Prentice
Hall, Upper Saddle River, New Jersey, 2002.

[12] MAYNE, D. Q., RAWLINGS, J. B., RAO, C. V., AND SCOKAERT,
P. Constrained Model Predictive Control: Stability and Optimality.
Automatica 36 (2000), 789–814.

[13] MIJANGOS, E. An implementation of newton-like methods on
nonlinearly constrained networks. Computers & Operations Research

31, 2 (2004), 181–199.
[14] MILMAN, R., AND DAVISON, E. J. A Fast MPC Algorithm Using

Nonfeasible Active Set Methods. Journal of Optimization Theory and
Applications 139 (2008), 591–616.

[15] NESTEROV, Y. A method for solving a convex programming problem
with convergence rate 1/k2. Soviet Mathematics Doklady 27, 2
(1983), 372–376.

[16] NESTEROV, Y. Introductory Lectures on Convex Optimization: A Basic

Course. Kluwer Acad. Publ., 2004.
[17] QIN, S., AND BADGWELL, T. A survey of industrial model predictive

control technology. Control Engineering Practice 11, 7 (2003), 733–
764.

[18] RAO, C., WRIGHT, S., AND RAWLINGS, J. Application of Interior-
Methods to Model Predictive Control. Journal of Optimization Theory
and Applications 99 (1998), 723–757.

[19] RICHTER, S., JONES, C. N., AND MORARI, M. Real-Time Input-
Constrained MPC Using Fast Gradient Methods. In 48th IEEE Confer-
ence on Decision and Control and 28th Chinese Control Conference,

Shanghai (2009), pp. 7387–7393.
[20] RICHTER, S., MARIETHOZ, S., AND MORARI, M. High-Speed

Online MPC Based on a Fast Gradient Method Applied to Power
Converter Control. In Proceedings of the 2010 ACC (2010), pp. 4737–
4743.

[21] SHAHZAD, A., KERRIGAN, E. C., AND CONSTANTINIDES, G. A.
Preconditioners for Inexact Interior Point Methods for Predictive
Control. In Proceedings of the 2010 American Control Conference

(2010), pp. 5714–5719.
[22] WANG, Y., AND BOYD, S. Fast Model Predictive Control Using

Online Optimization. In 17th IFAC World Congress (2008), pp. 6974–
6979.

506

