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Abstract— This paper presents a tractable method of solving
a non-convex, nonlinear optimization problem formulated for
robust static attitude determination based on a least squares
approach with nonlinear constraints. Considering infinity-norm
bounded uncertainties, this robust min-max problem is approx-
imated with a minimization problem, although the objective
function and constraints are still nonlinear. We propose an
additional regularization term to improve the robust perfor-
mance. We then use semidefinite relaxation to convert the
approximate nonlinear optimization problem into a tractable
semidefinite program with a linear objective and linear matrix

inequality constraints. We show how to extract the solution of
the nonlinear optimization problem from the solution of the
semidefinite relaxation. Numerical simulations suggest that the
gap between the considered problem and its relaxation is zero.

I. INTRODUCTION

Semidefinite relaxation (SDR) is a powerful and com-

putationally efficient approximation technique for difficult

optimization problems [1]. In particular, it can be applied to

many non-convex quadratically constrained quadratic pro-

grams (QCQPs) in an almost mechanical fashion. In this

work, which is an extension of previous work on robust static

attitude determination with norm-bounded uncertainties [2],

we use SDR to efficiently solve a nonlinear and non-convex

optimization problem formulated for robust static attitude

determination.

Static attitude determination has been widely used in

satellites and other aerospace systems, such as aircrafts and

helicopters, since many years [3], [4]. It is also very useful

for a variety of other applications, such as marine systems

and automotive, etc. Static approach only needs information

of some vector quantities in two coordinate frames, such as

the earth magnetic field, sun or star vectors, position, etc.,

and does not depend on system dynamics. This technique

can also be used to initialize a dynamic estimator for highly

nonlinear systems, thus reducing likelihood of divergence.

The attitude of a rigid body, formally defined as a coordi-

nate transformation from one frame to the other [5], requires

vector information in two coordinate frames. Normally, one

of these coordinate frames is fixed in the body of the system,

known as the body frame, while the other is called the

reference frame, whose selection normally depends upon the

control system requirements. This transformation is obtained
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through a proper orthogonal transformation matrix C ∈R
3×3,

also known as a direction cosine matrix. To determine the

attitude, a weighted least squares approach, based on the

Wahba problem [6] is often used. The matrix C imposes some

constraints, such as the orthogonality constraint C TC = I and

the constraint for matrix C to be proper to preserve the orien-

tation in a rotation, i.e. det(C) = +1. Many efficient solutions

of this constrained least squares problem can be found in the

literature, mostly developed for satellite applications [3], [7]–

[10]. Most of these algorithms are based on a quaternion

transformation [11], which transforms the Wahba problem

into an eigenvalue problem [3].

Since the vector information for attitude determination is

obtained from some sensor or a mathematical model, an

error or uncertainty is always present in the values. Although

a sensitivity analysis is generally presented with analytical

expressions of the maximum error covariance under sto-

chastic variation, the above-mentioned algorithms do not

directly address the issue of uncertainty in the measured

and model vectors. Some discussions considering uncertainty

in the input measurements can be found in [12], [13], but

modeling errors are generally not considered. However, these

errors could be significant; for example, in the case of the

earth magnetic field, which is one of the most common

sensors used for attitude determination in many applications

such as satellites, aircrafts, etc., errors between sophisticated

models and the actual field can be around 20% [14], [15].

The use of simple models, such as the low order IGRF

model [15], which are normally preferred due to lower

computational cost, result in a less accurate earth magnetic

field vector in the reference frame, leading to errors in the

attitude estimate. Attitude inaccuracy is further increased

due to sensor errors, which are mainly due to noise and

installation issues. The magnetic field sensing in the post

launch tumbling phase of a satellite is another example of a

big source of uncertainty. All such errors can be considered

as ∞-norm bounded uncertainties in the input information

vectors.

A discussion on considering uncertainty in both sensor

measurements and model vectors is given in [2], where a

robust optimization (RO) problem is formulated using an

affine parameterization of ∞−norm bounded uncertainties. In

this work, we use a more generalized uncertainty structure to

formulate the robust problem. The robust min-max problem

is then approximated with a minimization problem using

an analytical upper bound. We also propose a new type

of regularization to further improve the robust performance.

However, this approximate formulation is still non-convex
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with a nonlinear objective and constraints. Our main con-

tribution is to propose a tractable method for solving the

associated nonlinear, non-convex quadratically constrained

quadratic optimization problem using semidefinite relaxation.

The relaxed formulation, which is convex with a linear

objective and linear matrix inequality constraints, can be

solved efficiently in polynomial time [1]. We also show how

we can extract an optimal quaternion from the SDR solution.

Further, numerical simulations are presented, which suggest

that the obtained quaternion vector results in no gap between

the actual problem and its semidefinite relaxation.

The paper is organized as follows. In Section II, a robust

estimation problem is presented and then simplified to a form

suitable for applying semidefinite relaxation. The application

of SDR is discussed in Section III. Section IV gives simula-

tion results, while conclusions and future directions are given

in last section.

Notation: For a vector x, its 2-norm is ‖x‖2 :=
√

xT x, while

the infinity-norm is ‖x‖∞ := max
1≤i≤n

|xi|. The cross product

for vectors x and y is represented as x × y. For a vector,

x ≥ 0 means that each element of x is non-negative. For

a matrix, A � 0 means that A is positive semidefinite. In

denotes the identity matrix of size n, while 0n×m represents

a matrix of n rows and m columns with all zero entries. The

minimum (maximum) eigenvalue of a symmetric matrix A

is represented by λmin(max)(A). Operator diag(λ1,λ2, . . . ,λn)
represents a matrix of size n × n, having only diagonal

elements λ1,λ2, . . . ,λn.

II. ROBUST ATTITUDE DETERMINATION

PROBLEM

This section will briefly introduce the robust attitude

determination problem and is an extension of [2] with

a generalized uncertainty parameterization. A robust static

attitude determination problem using weighted least squares

is defined as

min
C

max
b̄i ∈ B(bi), r̄i ∈ R(ri),

i = 1, . . . ,n

1

2

n

∑
i=1

wi

∥

∥b̄i −Cr̄i

∥

∥

2

2

subject to CTC = I, det(C) = 1.

(1)

In this equation b̄i ∈ B(bi) and r̄i ∈ R(ri), i = 1, . . . ,n,

n represents number of measurements, where B(b i) and

R(ri) are bounded sets of uncertain vectors b̄i and r̄i having

uncertainty bounds γbi and γri for each vector in the body

and reference frame, wi represent weights and det(·) is the

determinant of a matrix. With an appropriate definition of

the uncertainty sets (see Appendix I) and using a quaternion

for coordinate transformation, the optimization problem (1)

can be written as

q̂ ∗ := argmin
q

{−qT Kq+ max
‖δ‖∞≤1

(p(q)T δ + δ T Q(q)δ )}

subject to qT q = 1,
(2)

where δ ∈ R
6n :=

[

δb1 δr1, . . . ,δbn δrn

]

is a vector of

uncertainty parameterization, p(q) ∈ R
6n and Q(q) ∈ R

6n×6n

are given as

p(q) :=















w1γ b1(b1 − kb(q,r1))
w1γ r1(r1 − kr(q,b1))

...

wnγ bn(bn − kb(q,rn))
wnγ rn(rn − kr(q,bn))















,

where the vector kb(q,ri) :=
[

qT K1
ri

q qT K2
ri

q qT K3
ri

q
]T

and kr(q,bi) :=
[

qT K1
bi

q qT K2
bi

q qT K3
bi

q
]T

. The definition
of these matrices is given in Appendix II.

Q(q) :=















1
2

w1γ2
b1I3 − 1

2
w1γb1γr1C . . . 03×3 03×3

− 1
2

w1γb1γr1CT 1
2

w1γ2
r1I3 . . . 03×3 03×3

.

.

.

.

.

.
. . .

.

.

.

.

.

.

03×3 03×3 . . . 1
2

w1γ2
bnI3 − 1

2
w1γbnγrnC

03×3 03×3 . . . − 1
2

w1γbnγrnCT 1
2

w1γ2
rnI3















,

where transformation matrix C is a function of q. The

robust problem is non-convex in q, because the matrix K is

indefinite, while the maximization term p(q)T δ + δ T Q(q)δ
in (2) is convex in δ , because Q is positive semidefinite.

Both of these characteristics make the optimization problem

difficult to solve. To simplify the problem, an upper bound

on the maximum of p(q)T δ + δ T Q(q)δ over δ is used,

presented in the following proposition.

Proposition 1. [2] An upper bound on the maximization
term appearing in (2) is

0 ≤ max
‖δ‖∞≤1

(p(q)T δ +δ T Q(q)δ ) ≤ ‖p(q)‖1 +6nλmax(Q(q)). (3)

A comparison of the analytical upper bound with a tighter

bound obtained using SDR of the maximization term is given

in Section IV. However, while determining the SDR bound

on maximization term, it is assumed that q is known, which

is not the case in actual. The plot shows that the average

relative error between two bounds is small. Thus, use of the

analytical bound can give computational simplification, but

at the cost of some loss in accuracy of the true solution of

(2), although the loss is not much.

A. Addition of a Regularization Terms

The main reason of using the analytical upper bound is

computational efficiency and the fact that exact solution of

the maximization term may not be guaranteed. However, due

to this approximation, the algorithm may not always give

good results in terms of robustness. To improve performance,

we introduce a new type of regularization by adding a

term −ηq2
4 in the objective function. This regularization is

motivated from the definition of quaternion given as

q :=

[

q

q4

]

=









ê1 sin(α/2)
ê2 sin(α/2)
ê3 sin(α/2)
cos(α/2)









, (4)

where ê :=
[

ê1 ê2 ê3

]T
is the axis of rotation and α is the

angle of rotation. The proposed regularization corresponds to

minimization of the quaternion angle of rotation i.e. now the

optimal solution minimizes both the primary cost as well as
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the quaternion angle of rotation. Here, η > 0 is a tunning

parameter. In the current work, we used η = 0.5.

Using this upper bound along with the regularization term,

we approximate the original min-max problem (2) with the

following non-convex minimization problem

(q ∗,u∗) := argmin
q,u

−qT Kq+ uT e+ 6nλmax(Q)−ηq2
4

subject to qT q = 1,

−ui ≤ pi ≤ ui, i = 1, . . . ,6n,

(5)

where u :=
[

u1 u2 . . . u6n

]T
, p(q) =

[

p1 p2 . . . p6n

]T
and e ∈ R

6n is a vector of ones.

B. Formulation for SDR

Before applying semidefinite relaxation on (5), we first

do a further simplification by removing the nonlinear

term 6nλmax(Q).

Lemma 1. The maximum eigenvalue of the block diagonal

matrix Q(q) is a constant.

Proof: To find the eigenvalues of the block diagonal
matrix Q(q) = diag(Q1,Q2, . . . ,Qn), we need to solve n
equations i.e. det(Qi −λ I6) = 0, i = 1, . . . ,n. Consider i = 1
case, where we can write

det(Q1 −λ I6) = det





λ1(λ2 −a) 0 0
0 λ3(λ4 −a)
0 0 λ5(λ6 −a)



 = 0,

where a := 1
2
w1(γ

2
b1 + γ2

r1). The above equation implies that

λ1 = λ3 = λ5 = 0, and λ2 = λ4 = λ6 = 1
2
w1(γ

2
b1 + γ2

r1).
Similarly we can find eigenvalues for Q i, i = 2, . . . ,n. Finally,

λmax(Q) = maxi
1
2
(wiγ2

bi + wiγ2
ri). However, the maximum

eigenvalue is independent of q.

Finally, using Lemma 1 and representing q2
4 = qT Sq, where

S ∈ R
4×4 is matrix of zeros with only S(4,4) = 1, we can

write

(q ∗,u∗) = argmax
q,u

qT Krq−uT e− c̃

subject to qT q = 1,

−ui ≤ pi ≤ ui, i = 1, . . . ,6n

(6)

where Kr := K + ηS and c̃ include all constants. Note that

the maximization form is suitable to apply semidefinite

relaxation for finding an upper bound.

III. SEMIDEFINITE RELAXATION FOR ROBUST

ESTIMATION PROBLEM

In this section we will apply semidefinite relaxation on the
formulation presented in (6). Suppose, γ̄ is an upper bound
for the objective function of (6). We obtain the following
expression, such that the right hand side is equal to the left
hand side.

qT Krq−uT e− c̃− γ̄ = −µ1(1−qT q)

− µ2(u1 − p1)−µ3(u1 + p1)

− µ4(u2 − p2)−µ5(u2 + p2)

..

.

− µ12n(u6n − p6n)−µ12n+1(u6n + p6n)

− xT
L (µ)x, (7)

where xT :=
[

qT uT 1
]T

and µ :=
[

µ1 µ2 . . . µ12n+1

]T
,

L (µ) :=





















L1,1(µ) 04×1 . . . 04×1 04×1

01×4 0 . . . 0
1−µ2−µ3

2

01×4 0 . . . 0
1−µ4−µ6

2
.
.
.

.

.

.
. . .

.

.

.
.
.
.

01×4 0 . . . 0
1−µ12n−µ12n+1

2

01×4
1−µ2−µ3

2
. . .

1−µ12n−µ12n+1
2

ℓ j, j





















,

L1,1(µ) := µ1I4 − (µ2 −µ3)w1γb1K1
r1 − (µ4 −µ5)w1γb1K2

r1

−(µ6 −µ7)w1γb1K3
r1 − (µ8 −µ9)w1γ r1K1

b1 − . . .

−(µ12n −µ12n+1)wnγ r1K3
bn
−Kr ,

ℓ j, j := γ̄ −µ1 +
6n

∑
l=1

(µ2l −µ2l+1)cl + c̃,

where j is the size of x and c :=
[

w1γ b1bT
1 w1γ r1rT

1 . . . wnγ bnbT
n wnγ rnrT

n

]T
.

Now if all the terms on the right hand side are either zero
or negative, we can say that γ̄ is an upper bound on the cost
of (6). Using this relaxation, we can write an optimization
problem to find the minimum value of this upper bound
ensuring the right hand side is either zero or negative.

(γ̄ ∗,µ ∗) := argmin
γ̄,µ

{γ̄ | L (µ) � 0,µi ≥ 0, i = 2,3, . . . ,12n+1}.
(8)

Problem (8) can further be simplified using a reduced set

of optimization variables.

Theorem 1. Using a reduced set of optimization vari-

ables µr :=
[

µ1 µ2 µ4 . . . µ12n

]T
, an equivalent for-

mulation to (8) is

µ ∗
r = argmin

µr

µ1 −
6n

∑
l=1

(2µ2l −1)cl − c̃

subject to µ2,µ4, . . . ,µ12n ≥ 0,

1−µ2 ≥ 0,1−µ4 ≥ 0, . . . ,1−µ12n ≥ 0,

L1,1(µr) � 0,

(9)

where L1,1(µr) is given as

L1,1(µr) := µ1I4 −2µ2w1γb1
K1

r1
−2µ4w1γb1

K2
r1

− 2µ6w1γb1
K3

r1
−2µ8w1γ r1

K1
b1
− . . .

− 2µ12nwnγbn
K3

rn
+w1γb1K1

r1
+w1γb1

K2
r1

+ w1γb1
K3

r1
+w1γ r1

K1
b1

+ · · ·+w12nγbn
K3

rn

− Kr,

Proof. In (8), the symmetric matrix L (µ) has zero diagonal

elements. For L (µ) to be positive semidefinite, as required

in (8), all row/column elements corresponding to zero diag-

onal entries must also be zero [18, Theorem 4.2.6] i.e. 1−
µ2−µ3 = 0,1−µ4−µ5 = 0,1−µ6−µ7 = 0 and so on. Using

this property, we can force these elements to be zero by

eliminating µ3,µ5, . . . ,µ12n+1 from (8) with additional con-

straints 1−µ2 ≥ 0,1−µ4 ≥ 0, . . . ,1−µ12n+1 ≥ 0. Moreover,

as we are minimizing the scalar γ̄ subject to constraints, its

minimum possible value, satisfying the constraint L (µ)� 0,

is when ℓ j, j = 0, giving γ̄ = µ1 −∑6n
l=1 (2µ2l −1)cl − c̃. So
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with these modifications, instead of L (µ) � 0, we only

need L1,1(µr) � 0, hence can write (9) using reduced set

of optimization variables, which is equivalent to solving (8)

for minimum upper bound on (5). �

A. Finding q∗

Although the solution of the semidefinite program (9)

gives a minimum upper bound on the robust estimation

problem (6), our main interest is to find q ∗ that could

maximize the cost (6). Now the question arises, can we find

q ∗ using the solution µ ∗
r of (9)? Suppose µ ∗

r results in a zero

value of the right hand side of (7), then γ̄ ∗, i.e. the minimum

value of cost (9), is equal to the maximum cost of (6), and

the corresponding q will be our required q ∗.

In this regard, as a first step, we establish whether there

exists a q that can make qT L ∗
1,1q = 0, where L ∗

1,1 :=

L1,1(µ∗
r ). If such a q exists, it will further ensure xT L ∗x = 0,

where L ∗ := L (µ∗) and µ∗ can be obtained from µ ∗
r .

Lemma 2. Let µ ∗
r be a minimizer for the SDR problem (9),

then λmin(L
∗

1,1) = 0.

Proof. Using µr, the objective function of (9) can be written

as J := µ1 −d, where d is sum of all remaining terms. Now

whatever the sign of d is, the cost function J is minimum

when µ1 is minimum. However, at the same time, we need

L1,1(µr)� 0. We can also write L1,1(µr)= µ1I4−Kµ , where

Kµ is sum of all other terms in the expression. This is a

symmetric matrix with eigenvalues λ1, . . . ,λ4, and λ1 ≥ λ2 ≥
λ3 ≥ λ4. Then, µ1I4−Kµ will have eigenvalues µ1−λ1,µ1−
λ2,µ1 − λ3,µ1 − λ4. Now, µ1 = λ1 is the smallest possible

value that can make L1,1(µr)� 0. This optimal value of µ1,

i.e. µ∗
1 will also ensure λmin(L

∗
1,1) equal to zero. �

Theorem 2. The matrix L ∗
1,1 has at least one eigenvalue

equal to zero, as stated in Lemma 2, and q̃ is an eigenvector

of L
∗

1,1 corresponding to the zero eigenvalue, then this q̃ will

result in q̃T
L

∗
1,1q̃ = x̃T

L
∗x̃ = 0, where x̃ :=

[

q̃T ũ 1
]T

.

Proof. If q̃ is an eigenvector of L ∗
1,1 corresponding to the

zero eigenvalue, then it will belong to N (L ∗
1,1), where

N (·) represents the null space, making both L
∗

1,1q̃ = 0 and

q̃T L ∗
1,1q̃ = 0. Moreover, all elements of matrix L ∗ are zero,

except sub-matrix L ∗
1,1 and q̃T L ∗

1,1q̃ = 0 will also result in

x̃T L ∗x̃ = 0. �

Next, we present an important conjecture, relating vector

q̃ determined using Theorem 2 and q∗, the solution of (6).

Conjecture 1. If only one eigenvalue of L ∗
1,1 is zero, then

the vector q̃, that makes q̃T
L

∗
1,1q̃ = 0, also ensures the

relaxation gap between the approximate problem (6) and its

semidefinite relaxation (9) is zero, making q̃ = q ∗.

It is evident from the right hand side of (7), that the first

and last terms are zero. If the terms relating with inequality

constraints in (6) are zero, then the gap will also be zero. The

mathematical proof of this claim will be discussed elsewhere,

however we will present numerical simulation results in

support of this claim.

IV. SIMULATION RESULTS

We consider the problem of attitude determination for a

low cost CubeSat [19], a pico-class of satellite moving in

a circular orbit of radius 650 km, using two measurements

only, namely the earth magnetic field and the sun vector. For

the earth magnetic field, two magnetometers are installed,

one inside the satellite, which is mainly used in the post-

launch phase when the satellite is recovering from launch

disturbances, while the second magnetometer is installed on

an extended boom, which is deployed once the satellite has

de-tumbled and achieved an equilibrium. The sun vector is

sensed by a pair of sun sensors installed on the satellite body.

Both of these measurements are in the body frame. For the

earth magnetic field vector in the reference frame, we used

the first order IGRF model [15], while the reference sun

vector is obtained using a simplified sun model based on

the sun ephemeris. Both sensor measurements and reference

vectors are not accurate. For example, sensor measurements

are affected by noise, misalignments, etc. Especially in the

post-launch tumbling phase, the measurement errors further

increase due to the use of an internal magnetometer installed

on-board the satellite, which suffers from interaction with

the magnetic field generated by the surrounding electronics.

Similarly, the reference vectors are also not exact because

they are obtained from mathematical models, which are nor-

mally based on low-order approximations for simplification

and computational benefits. In this work, we are considering

all such errors as ∞-norm bounded uncertainties, and for

simulation purpose we set an uncertainty bound of 30% of

the 2-norm of body and reference frame vectors.

Firstly, we give a comparison of the analytical upper
bound (3) with the bound obtained using SDR. For this
comparison, we used two pairs of unit vectors, one in the
body frame and second in the reference frame, given as

b1 =
[

0.706 −0.094 0.702
]T

,

r1 =
[

0.748 −0.415 0.518
]T

,

b2 =
[

−0.106 −0.342 −0.934
]T

,

r2 =
[

−0.265 4.103×10−5 −0.964
]T

.

(10)

A uniformly distributed random error in the range ±γ bi

and ±γri is introduced in corresponding vectors for each

simulation run, using the uncertainty description given in

Appendix I. A comparison of both bounds and their relative

errors for 100 simulations is given in Figure 1. The plot

shows that the relative error is less than 5% on average. This

corresponds to the error in the solution of (2), introduced by

the use of the analystical upper bound.

Secondly, we give a quantitative comparison of the optimal
quaternion obtained from (6) using fmincon (with interior-
point algorithm, tolerance of 10−12 and an initial guess of
eigenvector of K matrix corresponding to largest eigenvalue
i.e. the quaternion for non-robust solution) and solution of (9)
using mincx (with same tolerance). For the vector set given
in (10), we added a random bounded error and the resulting
perturbed vectors are
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Fig. 1. Comparison of the analytical bound given in (3) and the bound
obtained by semidefinite relaxation of the maximization term in (2).

TABLE I

COMPARISON OF THE QUATERNION OBTAINED FROM (6) AND (9) FOR

THE VECTOR SET (11)

q∗ q̃ |q∗− q̃|
0.1385731079 0.1385731105 2.5796×10−9

0.0245276544 0.0245276547 3.3654×10−10

-0.0357041309 -0.0357041319 9.3820×10−10

0.9894044183 0.9894044179 4.0349×10−10

b1 =
[

0.794 −0.073 0.603
]T

,

r1 =
[

0.76 −0.365 0.537
]T

,

b2 =
[

−0.083 −0.347 −0.934
]T

,

r2 =
[

−0.28 5.72×10−5 −0.96
]T

.

(11)

A comparison of the two quaternions is given in Table

I. Note that q∗ is obtained using Theorem 2. The error

between two quaternion is almost zero. Lastly, we present

performance comparison of the robust and non-robust ap-

proaches in the presence of uncertainties, using in-orbit

data obtained from nonlinear closed-loop simulations for the

satellite. The ideal data was corrupted by adding uniformly

distributed random errors in the range of ±γbi and ±γri

in corresponding vectors. We present attitude determination

results for 25 minutes of flight data obtained with a sample

time of 1 second. The simulation was initialized with roll,

pitch and yaw body rates of 0.5, 0.5 and 0.1 deg/s and

roll, pitch and yaw angles of 10, 0, 0 deg, respectively.

We solved the robust problem formulated in (6) using the

nonlinear optimization solver fmincon of MATLAB, while

the problem formulated using semidefinite relaxation in (9)

was solved using the LMI toolbox command mincx. First,

the performance benefit of the robust approach is given

in Figure 2, showing an improvement over the non-robust

approach in the presence of uncertainties. It can be observed

that due to the uncertainties in the input information, the non-

robust approach can give large errors in the estimated attitude

angles, while the robust approach gives much better perfor-
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Fig. 2. A comparison of attitude angles obtained using non-robust and
robust algorithms. The dotted line shows the original data without errors
while the other two cases include errors within the chosen uncertainty bound.
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Fig. 3. Eigenvalues of L ∗
1,1 matrix.

mance, limiting the maximum attitude error to a smaller

band. Next, a comparison of the difference between the

robust problem and its semidefinite relaxation is presented.

In this regard, the eigenvalues of L ∗
1,1 are presented in

Figure 3, showing that the smallest eigenvalue is zero for

all cases, validating Theorem 2. Figure 4 support Conjecture

1. Figure 4 shows the relaxation gap between the robust

problem and its semidefinite relaxation i.e. qT Krq−uT e− γ̄ ,

where the first part qT Krq−uT e is calculated using the results

obtained from fmincon and γ̄ is obtained from mincx. It

can be observed that the gap is zero for all time instances of

the simulation.

V. CONCLUSIONS AND FUTURE WORK

We presented a semidefinite relaxation based approach

to efficiently solve a non-convex nonlinear optimization

problem, which is an approximation of a robust attitude

determination problem with norm-bounded uncertainties. We

approximated this problem into a non-convex quadratic pro-

gram with quadratic constraints, and then used semidefinite
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Fig. 4. Gap between the maximum cost of (6) and its upper bound γ̄ ∗

obtained using the solution of (9).

relaxation to transform into a semidefinite program with

linear cost and linear matrix inequality constraints. It was

also shown how to extract the attitude information from the

relaxed formulation. Further, the numerical results showed

that the gap between (6) and its relaxation (9) is practically

zero, showing that the extracted quaternion is the solution to

the nonlinear optimization problem (6).

The presented approach can be strengthened by doing

further work on some issues. For example, Conjecture 1

needs mathematical justification to guarantee a zero re-

laxation gap. Moreover, a detailed quantitative analysis of

the computational benefit obtained over the solution of the

original nonlinear problem will also be helpful in this regard.

These tasks could be a possible direction for future work.

APPENDIX I

UNCERTAINTY DESCRIPTION

A general description of bounded sets B(b) and R(r) of

uncertain vectors b̄ and r̄ is given here along with an affine

uncertainty parameterization. Let β ,ρ ∈ R
3 are vectors of

perturbation variables for uncertainty parameterization and

γb,γ r ∈ R are bounds on uncertainty for input vectors in the

body and reference frame, respectively. We are considering

that each input vector can have different error bounds. This

type of uncertainty is called an interval uncertainty and

corresponding perturbation set represents a box. Further, we

normalize each perturbation vector in the body and reference

frame with the corresponding uncertainty bound and denote

it as δb = β/γb and δr = ρ/γ r. Using these normalized

perturbation vectors, we describe the uncertainty sets in the

body and reference frame as

B(b) =

{

b+
3

∑
l=1

δbl b̃l | ‖δb‖∞ ≤ 1

}

,

R(r) =

{

r +
3

∑
l=1

δrl r̃l | ‖δr‖∞ ≤ 1

}

,

where b̃l := γbel and r̃l := γrel are fixed vectors for a given

problem with el being +ve lth standard basis vector in R
3.

APPENDIX II

DEFINITION OF FEW MATRICES

K1
ri

=







ri1 ri2 ri3 0
ri2 −ri1 0 −ri3

ri3 0 −ri1 ri2

0 −ri3 ri2 ri1






,K2

ri
=







−ri2 ri1 0 ri3

ri1 ri2 ri3 0
0 ri3 −ri2 −ri1

ri3 0 −ri1 ri2






,

K3
ri

=







−ri3 0 ri1 −ri2

0 −ri3 ri2 ri1

ri1 ri2 ri3 0
−ri2 ri1 0 ri3






,K1

bi
=







bi1 bi2 bi3 0
bi2 −bi1 0 ri3

bi3 0 −bi1 −bi2

0 bi3 −bi2 bi1






,

K2
bi

=







−bi2 bi1 0 −bi3

bi1 bi2 bi3 0
0 bi3 −ri2 ri1

−bi3 0 bi1 bi2






,K3

bi
=







−bi3 0 bi1 bi2

0 −bi3 bi2 −bi1

bi1 bi2 bi3 0
bi2 −bi1 0 bi3






.
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