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Abstract— This paper presents a new approach for the
identification of the dynamical model of flexible manipulators.
The structure of the identified model, chosen as a descriptor
LPV model, is derived from the original non-linear equations. A
set of experiments around different configurations is involved,
which is suitable for an accurate measurement of the tip of
the manipulator by video camera. The final estimation step
is global, allowing the direct identification of the global model
based on the collection of local experimental data. In an output
error context, a genetic algorithm is used for the minimization
of the identification criterion. As a case study, a robotic arm
with two flexible segments is considered. Identification results
based on simulations including noise show the effectiveness of
the approach.

I. INTRODUCTION

A. Identification for robotics

Robotic systems generally have a non-linear behavior.

Most of the time, their models are derived from the standard

laws of physics (e.g., Newton’s laws of motion) [1], [2].

Their descriptions are mainly based on the Euler-Lagrange

equations and the virtual work principle. Interesting from a

theoretical point of view, the exclusive use of the standard

laws of physics makes the final model quite complex and

requires an accurate knowledge of the manipulator as well

as high-level skills in robotics especially when different robot

structures are handled. This is all the more true when the user

wants to have access to physical parameters of the system

which are imperfectly known. To get round this difficulty,

efforts dedicated to robot identification (i.e., parameter es-

timation from experimental data) are more and more made

in the industry [3], [4]. However, a direct identification of a

non-linear black-box model is often tricky because

• strong non-linearities can appear in particular working

conditions,

• the development of a global non-linear model structure

can rely on strong assumptions such as a uniform

density of the manipulator segments or the nature of

the deformations if any.
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Because a linear time-invariant model is often not sufficient

when the system is used in a large robot workspace, linear

parameter-varying (LPV) models are more and more intro-

duced in robotics (see, e.g., [5], [6], [7], [8]). The devel-

opment of LPV model identification for the experimental

modelling of robots is advocated for two main reasons. First,

from an identification point of view, the introduction of such

a structure allows the use of standard tools dedicated to

LTI models for the estimation of models with a structural

flexibility able to picture time-varying as well as non-

linear dynamics. Second, the construction of a reliable LPV

model is a standard initial step for many controller design

techniques available in robotics [9].

B. LPV model identification

Historically, as far as LPV model identification is con-

cerned, the first developments focused on a global procedure

and assumed that one global experiment can be performed in

which the control inputs as well as the scheduling parameters

can be both excited (see, e.g., [10], [11], [12]). On the other

hand, recent methods are based on a multi-step procedure

where (see, e.g., [5], [6], [13], [14])

• a finite set of scheduling parameter values {κi}, i =
{1, q}, is handled,

• local experiments (corresponding to an almost constant

scheduling parameter value) are carried out for each κi,

• local LTI models are estimated from the sets of local

I/O measurements, for each κi,

• a global parameter-dependent model is built from the

interpolation of the local LTI models.

This latter viewpoint is often considered for robots or me-

chanical systems identification (see, e.g., [5], [6], [14], [15]).

More precisely, in [5], [6], the derivation of robot LPV

models is performed by interpolating local LTI state-space

models calculated from frequency responses measured at dif-

ferent operating points. Then, in [14], [15], the identification

of mechanical or vibro-acoustic applications is tackled by

using the SMILE technique. This method is more particularly

based on the interpolation of black-box state-space LTI

models that are estimated for fixed operating conditions of

the system. Interesting for controller design, these black-box

techniques do not take into account the information available

from the non-linear equations governing the behavior of the

manipulator. Recently, this basic idea has been considered

in [8]. In the aforementioned communication, the non-linear

dynamic model of a CRS A465 robotic manipulator is used

to derive a quasi-LPV model of the system. More precisely,

a parameter-affine LPV model is identified by applying a
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global approach where typical trajectories of the scheduling

signals are generated so that all of the expected operating

regions of the plant are covered.

C. Topic of the paper

Inspired by the discussion in [16], the idea used in the

current paper also consists in resorting to the knowledge

available from the study of the non-linear equations gov-

erning the system behavior in order to fix the structure

of the global LPV model. However, in the experimental

framework considered hereafter, the global identification

procedure carried out in [8] cannot be used. Indeed, for

our robot manipulator, the position of the end-effector is

measured by a video camera. This experimental condition

makes the persistent excitation of the scheduling parameter

not conceivable. Indeed, in the aimed setup, a single video

camera is used to provide a measurement of the position

of the end-effector equipped with visual markers. In this

situation, it is recommended to zoom in on the markers in

order to obtain an accurate measurement of the displacements

due to the flexible modes which are of relatively small

amplitude. When moving the arm to another configuration,

the camera must be re-positioned in order to keep the markers

in the image. Thus, a global procedure cannot be carried out.

In order to circumvent this difficulty, an original approach is

developed in the current paper. Based on local experiments

(corresponding to an almost constant scheduling parameter

value), the procedure introduced hereafter provides a global

LPV model without requiring an interpolation stage. As

explained in § II, this new approach is particularly adapted

for our identification problem because

• a standard global procedure (requiring a persistent ex-

citation of the scheduling parameter) is not conceivable

in our experimental framework,

• a LPV descriptor structure of the non-linear system can

be obtained quite easily from an analytical study of

the non-linear equations governing the behavior of the

robot.

Thus, the parameters of the global model are estimated from

a collection of the different local experiments. This basic

idea of realizing global functions by local actions is inspired

from S. Hara’s work dedicated to the design of “glocal

controllers” [17]. For this reason, the identification procedure

described hereafter will be also called “glocal” in the sequel.

This approach is interesting from a theoretical as well as a

practical point of view because

• it circumvents the standard problems related to the

interpolation of local models such as [18], [19]

– the numerical issues if an ill-conditioned param-

eterization for the model class is chosen (e.g.,

use of canonical forms with coefficients with huge

magnitude variations (see [5] for an illustration of

this problem)),

– the challenge of realizing all the models with

respect to the same state variables which comes

into play when dealing with the problem of inter-

polating black-box local state-space models,

• it does not require a persistent excitation of the schedul-

ing parameters.

As a second originality, a descriptor representation of the

LPV model (obtained from the laws of physics) is directly

used. This feature reduces the complexity of the model in

terms of order of the polynomial development of the state

matrices.

This paper can be viewed as an initial study towards

a handy methodology leading to a control-oriented LPV

model for robotic manipulators. The final goal is to sup-

ply a procedure that would be useful for different kinds

of manipulators with two joints and potentially including

flexibilities. Hereafter, a planar manipulator with two DOF

and with flexible segments is considered.

The paper is organized as follows. The non-linear model

of the flexible manipulator is introduced in Section II. More

precisely, the non-linear equations and the deduced analytical

LPV model are provided. This study leads to a LPV model

described with the help of a descriptor state-space structure.

The different phases composing this identification procedure

are described in Section III. The glocal procedure combining

local experiments and a global LPV model is more precisely

introduced. This procedure allows the estimation of physical

parameters of the system such as the section of the arms

composing the manipulator or the Young modulus of the ma-

terial. This approach is validated in Section IV on simulation

data obtained with a non-linear simulator of the flexible arm.

Section V concludes the paper.

II. SYSTEM DESCRIPTION AND ANALYTICAL

LPV MODELLING

A. Manipulator description

image

end-effecter position

θ1

θ2

Fig. 1. Geometry of the flexible arm.

In this study, the system is a flexible robot composed

of two segments as depicted in Figure 1. Such a flexible

structure can be considered, for instance, when considering

the two first rotoid joints of a SCARA manipulator. These

flexible characteristics are satisfied by the SINTERS manip-

ulator used in [20]. This robot is indeed lightweight as it

was designed to attain fast dynamics in order to compensate

the heart tissue motion for intra-cardiac surgery. As a result,

it was observed that the bandwidth is restricted by flexible

modes that can be attributed to small deformations of the

segments.

Both joints are torque-controlled and the joint positions

are measured by encoders. The aim is to control the position

of the end-effector that can be measured by a video camera.
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Deformations of the two segments are considered but are not

measured. Both segments have the same length l1 = l2 =
0.5 m and respective masses of m1 = 7.5 kg and m2 =
5 kg. Their sections are squares of width d = 5 cm. The

material has a Young modulus equal to ε = 1 GPa. In the

following, the parameters to be estimated are ϑ =
[

ε d
]

.

The developed technique could be applied similarly for the

estimation of other physical parameters such as the mass or

the length of the segments. This choice is mainly motivated

by the availability of reliable measurements of l1, l2, m1 and

m2.

B. Non-linear dynamical model

Under the assumption of Euler-Bernoulli beam, the dy-

namical equations of a flexible arm can be derived by using

the assumed-mode method where the deformation field is

decomposed into a finite sum of elementary deformations

[1]. In the current case, small deformations are considered

and only one mode is chosen for the transverse deformation

field. For segment #k, k = 1, 2, the deformation field writes

δk(x, t) = x2vk(t), where x represents the abscissa along the

segment and vk(t) is the state of the deformation. Therefore,

the resulting deformation at the end of the segment of length

lk is δk(lk, t) = l2
k
vk(t). The dynamical model is derived

from the Virtual Work Principle of the DynaFlex toolbox

developed on Maple [21] (for more details on the basic

ideas, refer to [2] and [22]). The resulting model relies on

a generalized position vector q =
[

θ1 θ2 v1 v2
]⊤

and

writes

M(q(t)) q̈(t) = F(q(t), q̇(t)) + G u(t) (1)

where M(q) is the inertia matrix, F(q, q̇) is a generalized

force vector that accounts for the Coriolis and centrifugal

effects (see [23] for details about the mathematical ex-

pressions of matrix M and vector F ). The torque vector

u =
[

u1 u2

]⊤
has only effects on the dynamics of the

rigid positions θ1 and θ2, corresponding to

G =

[

Inθ×nθ

0nv×nθ

]

. (2)

The x and y positions of the end-effector can be written

from the geometrical model, resulting in the non-linear

measurement equation z = g(q), i.e.,

z1 =(l1 −
2

3
l3
1
v2
1
) cos(θ1)− l2

1
v1 sin(θ1)

+ (l2 −
2

3
l3
2
v2
2
) cos(θ12)− l2

2
v2 sin(θ12)

(3a)

z2 =(l1 −
2

3
l3
1
v2
1
) sin(θ1) + l2

1
v1 cos(θ1)

+ l2
2
v2 cos(θ12) + (l2 −

2

3
l3
2
v2
2
) sin(θ12)

(3b)

where θ12 = θ1 + θ2 + 2l1v1.

C. LPV descriptor model from a Jacobian linearization

The dynamical equations (1)-(3) are non-linear. The first

step of this analytical study consists in applying a standard

Jacobian linearization [24] in order to get a linear parameter-

varying state-space representation of the generalized second

order model (1). This LPV state-space form is obtained

by considering a two-step approach. Firstly, the non-linear

equation (1) is linearized for a set of working points (q0, q̇0),
leading to1

M(κ)q̈(t) = −D(κ)q̇(t)−K(κ)q(t) +Gu(t) (4)

with κ = κ(q0, q̇0) the scheduling parameter vector and

where

M(κ) = M(q0) D(κ) =
∂F(q0, q̇0)

∂q̇
(5a)

K(κ) =
∂F(q0, q̇0)

∂q
G = G (5b)

are the inertia, the damping, the stiffness and the control

matrices of the linearized model respectively. In this work,

we focus on the identification of a model that includes

the variability of the behavior with respect to the positions

θk, k = 1, 2. Then, we neglect the other phenomena and

choose q0 =
[

θ⊤
0

01×2

]

and q̇0 = 04×1
2. Notice that,

unlike the model used in [8], the inertia matrix M(κ) is

not inverted in the following. On the contrary, a descrip-

tor model is extracted which is affine with respect to the

scheduling parameter signal κ without any approximations.

More precisely, by considering x =
[

q⊤ q̇⊤
]⊤

∈ R
8 as

the state vector, the following local linearized state equation

can be easily deduced

E(κ)ẋ(t) = A(κ)x(t) +Bu(t) (6)

with

E(κ) =

[

Inq×nq
0nq×nq

0nq×nq
M(κ)

]

(7a)

A(κ) =

[

0nq×nq
Inq×nq

−K(κ) −D(κ)

]

(7b)

B =

[

0nq×nθ

G

]

. (7c)

Notice that the control matrix B is independent from the

scheduling parameter κ.

Let J(θ) denote the Jacobian of the rigid geometric

model, i.e., J(θ) = dg([θ⊤ 01×nv
]⊤)/dθ (see Eq. (3) for

a definition of g). Except for the singular positions, this

Jacobian is invertible and it is possible to define a new

measurement vector y = J−1(θ) z. The entries of this

new measurement vector y are the angular positions of a

fictitious rigid arm that would have the same geometry and

the same measurement z. The use of y instead of z allows

the simplification of the measurement equation, i.e.,

y(t) = Cx(t) (8)

1In the following, the equilibrium values are omitted in order to shorten
the notations.

2This choice of the working point corresponds to neglect the Coriolis
effects. The validity of this assumption will be evaluated simultaneously
with the identified model.
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where C =
[

C1 0nθ×nq

]

and

C1 =

[

1 0 l1 0
0 1 l1 l2

]

. (9)

Due to the lack of space and their relative complexity,

the matrices M and F are not described in this paper.

However, they are available in [23]. Looking closer at M

and F , it is clear that the matrices E and A are affine

functions of cos(θ2) and sin(θ2) as well as linear with

respect to the parameters d and ε. This property makes

the developed model interesting and easy to be used from

an identification point of view. As far as the choice of the

scheduling parameter vector is concerned, it is obvious that

κ =
[

cos(θ2) sin(θ2)
]

will suit. It is also important to

notice that the angular position θ2 is easy to be measured

on a flexible robot as an encoder is generally located at the

motor side of the joints. This availability is paramount when

the experimental modelling of the LPV model is considered.

D. Velocity controlled model

Generally, industrial manipulators are equipped with low-

level joint-velocity control loops in order to reduce the effects

of the frictions that occur in the gear-boxes and therefore

obtain a simpler behavior. Due to the co-location of the

torque actuation and the position measurement at the motor

side, a high bandwidth of this inner loop can be obtained

with a standard static output feedback. More precisely,

u(t) = Λ
(

θ̇
∗(t)− θ̇(t)

)

(10)

where θ̇
∗(t) =

[

θ̇∗
1
(t) θ̇∗

2
(t)
]⊤

is the vector of the speed

references. Replacing Eq. (10) in Eq. (6) results in

E(κ)ẋ(t) =

[

0nq×nθ

GΛ

]

θ̇
∗(t)

+

[

0nq×nq
Inq×nq

−K(κ) −D(κ)−GΛG⊤

]

x(t) (11)

where Λ = diag(λ1, λ2).
Considering the position y as the output measurement

has one drawback: the model is unstable due to the pure

integration between speed and position. Therefore, it is

generally recommended to use the velocity ȳ = ẏ instead3.

Using the state matrices introduced beforehand, the output

equation rewrites

ȳ(t) = Cẋ(t) = C̄x(t) (12)

where C̄ =
[

0nθ×nq
C1

]

.

III. IDENTIFICATION PROCEDURE OF THE LPV

DESCRIPTOR MODEL

In order to estimate the parameter vector ϑ =
[

ε d
]

, a

specific glocal approach is considered. By glocal, it is meant

that a global LPV model is estimated from local experiments.

This approach is interesting because

3In practice, the velocity is estimated from the discrete-time measurement
of the position.

• it does not utilize the standard interpolation step used

in the local approach,

• it does not require a persistent excitation of the schedul-

ing parameters. Notice indeed that this constraint is of-

ten difficult to be fulfilled for many global experimental

methods.

More precisely, as a local approach, several experiments are

carried out where, for each experiment, the variations of

the scheduling parameter are constrained to be very small

and the speed references θ̇
∗ are excited. This approach

is justified because the experiments with a video camera

are easier to be performed when small variations of the

position are considered. However, contrary to the standard

local techniques, it is not intended to

• estimate local LTI models from the sets of local I/O

measurements for each value of κ,

• build the global parameter-dependent model from the

interpolation of the local LTI models.

Hereafter, all the local I/O data sets are used at the same

time in order to estimate the parameters of the global LPV

model. More precisely, considering the availability of δ local

I/O data sets, the following cost function is used

V (ϑ) =
δ
∑

i=1

‖y i(t)− yi(t,ϑ)‖
2

2
(13)

where y(t,ϑ) is the output of the LPV model and y(t)
is the output of the flexible manipulator. By doing so,

the parameters of the LPV model are estimated in one

shot without requiring any interpolation step. Furthermore,

by using such a cumulative cost function, the variance of

the estimated parameters is smaller than by calculating the

parameters as the mean value of δ estimates computed from

each local experimental data set.

Because the criterion V (ϑ) can be highly non-linear with

respect to (w.r.t.) the parameter vector ϑ, its optimization

is performed by using a differential evolution algorithm

[25]. As claimed by its authors, the differential evolution

algorithm used in the following is “a very simple population-

based stochastic function minimizer”. As a genetic algorithm,

the basic idea of the differential evolution algorithm is a

reliable scheme able to generate efficiently the trial parameter

vectors. The main improvements of this approach (w.r.t.

the literature dedicated to the genetic methods [26]) are

mainly its good convergence properties and its suitability for

parallelization [25]. Notice that the estimates obtained from

this genetic algorithm can be used as initial estimates for a

more standard non-linear optimization algorithm used by a

prediction error or output error method.

IV. SIMULATION RESULTS

In this Section, the identification technique introduced

beforehand is tested on data acquired from a non-linear

simulator of the flexible manipulator. This simulator is built

from the non-linear dynamical equations governing the be-

havior of the flexible arm robot presented in Section II-A.

As said previously, δ local I/O data sets are firstly generated.
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More precisely, for 7 constant θ2 in the range
[

π

8
: π

8
: 7π

8

]

,

7 noise-free I/O data sets are acquired. Remember that

κ =
[

cos(θ2) sin(θ2)
]

. For each run, the input signals are

chosen as two uncorrelated pseudo-random binary sequences.

Then, the parameter vector ϑ =
[

ε d
]

is estimated by using

• the glocal technique described in § III,

• the same algorithm as the one applied for the glocal

approach (i.e., the differential evolution algorithm de-

veloped by K. Price et al. [25]) but now with the 7 local

data set separately (so that 7 local models are estimated

with a state-space structure satisfying Equations (11)-

(12) but with a fixed value of κ).

The length of each local data set is equal to 30000 samples

with a sampling period of 0.1 ms. For the identification, a

down-sampling is performed with a rate equal to 10.

As depicted in Tab. I, two signal-to-noise-ratios4 are

considered in this study (∞ and 20dB respectively). As far

as the initialization of the evolution algorithm is concerned,

the initial population members (for each new generation)

is allowed to vary in the range
[

1 GPa, 5 cm
]

× ±20%.

Notice also that, for the local approach as well as the glocal

one, a Monte Carlo simulation of size 20 (corresponding to

20 different initial population members) has been carried out.

For instance, for the local approach, 20 simulations (each

with different initial population members) are performed for

each operating point. These different initial points as well

as the finite precision of the optimization procedure explain

the reason why non-zero standard deviations are obtained

when noise-free data are handled. For the noisy data, a

different output noise is also generated with similar statistical

properties for each run.

By analyzing the figures available in Tab. II, it is clear

that the developed approach leads to reliable estimates of

the parameters d and ε. As far as the noise-free case

is concerned, both approaches give pretty much the same

results. The figures in Tab. I and Tab. II for SNR = ∞ only

highlight the effects of the finite precision of the optimization

procedure as well as the different initial population members.

When noisy data are considered, a comparison of Tab. I and

Tab. II shows that the technique described in § III gives

slightly better estimates than the local one. Indeed, the bias

for the average of the local estimates is 2.4% (0.0512 vs

0.05) instead of 1.2% (0.0506 vs 0.05) for the glocal one.

As far as the standard deviations are concerned, as shown in

the rows entitled “mean” of Tab. I, a geometric propagation

of the standard deviations for d and ε leads to values which

are smaller than what is depicted in Tab. II. However, when

the standard deviations of each local estimate are directly

compared with the glocal ones, the standard deviation is

generally smaller with the glocal technique. Of course, for

the glocal approach, the noise effect is averaged (and the

noise-free results are almost obtained) because all the data

sets are used simultaneously. Thus, when noisy data are

4The signal-to-noise ratio is defined as follows: SNR =

10 log
(

cov{ȳi}
cov{v}

)

, i ∈ [1, ny ] where v stands for the noise acting

on the noise-free output ȳi.

handled, the glocal method should be preferred than the local

one.

SNR = ∞

ε d

θ2 mean std mean std

π
8

1.0198e+09 1.0348e+08 0.0506 0.0015

2π
8

0.9976e+09 1.4689e+08 0.0509 0.0018

3π
8

1.0579e+09 1.3451e+08 0.0499 0.0017

4π
8

0.9622e+09 1.2826e+08 0.0509 0.0017

5π
8

1.0203e+09 0.9628e+08 0.0499 0.0012

6π
8

1.0767e+09 1.0749e+08 0.0490 0.0013

7π
8

0.9742e+09 1.2715e+08 0.0502 0.0017

mean 1.0155e+09 0.4603e+08 0.0503 0.000594

SNR = 20 dB

ε d

θ2 mean std mean std

π
8

0.9156e+09 1.1052e+08 0.0527 0.0022

2π
8

1.0121e+09 1.3769e+08 0.0514 0.0026

3π
8

0.9652e+09 1.1691e+08 0.0513 0.0018

4π
8

1.0066e+09 1.3042e+08 0.0512 0.0021

5π
8

0.9646e+09 0.8966e+08 0.0506 0.0016

6π
8

1.0162e+09 1.8357e+08 0.0502 0.0030

7π
8

0.9599e+09 1.1275e+08 0.0508 0.0022

mean 0.9771e+09 0.4871e+08 0.0512 0.000853

TABLE I

ESTIMATED PARAMETERS FROM THE LOCAL EXPERIMENTS. THE TRUE

VALUES ARE ε = 1 GPa AND d = 5 cm RESPECTIVELY. FOR THE

“MEAN” STANDARD DEVIATION, A GEOMETRIC PROPAGATION IS USED,

i.e., stdmean =

√

(

∑δ
i=1

std2
i

)

/δ.

In order to validate the LPV descriptor model, the time

responses of the system and the model are compared in

the following. For the model, the estimated parameters are

chosen equal to d = 0.0506 m and ε = 9.83e+ 08 Pa, i.e.,

the values obtained with the glocal method from noisy data.

The system as well as the LPV model are excited so that the

whole range of the scheduling parameter is smoothly visited

(see Fig. 2 for a sample). The following measurement fit 5

FIT = 100×max

(

1−

∥

∥ȳi − ˆ̄yi
∥

∥

‖ȳi −mean(ȳi)‖
, 0

)

, i ∈ [1, 2]

is introduced in order to quantify the quality of the model on

validation data (i.e., a data set different from the one used for

the estimation). Using 10 different sets of validation data, the

average fit for the first and the second output of the system

are 96.8% and 97.1% respectively. These figures prove the

efficiency of the developed identification method.

5ȳi stands for the ith output of the system and ˆ̄yi for its estimate.
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SNR = ∞

ε d

mean std mean std

1.0098e+09 0.9240e+08 0.0502 0.0013

SNR = 20 dB

ε d

mean std mean std

0.9833e+09 0.9350e+08 0.0506 0.0013

TABLE II

ESTIMATED PARAMETERS WITH THE GLOCAL METHOD. THE TRUE

VALUES ARE ε = 1 GPa AND d = 5 cm RESPECTIVELY.
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Fig. 2. Evolution of θ2 during the LPV model validation.

V. CONCLUSION

In this paper, the construction of a descriptor linear

parameter-varying model of a flexible robot manipulator is

investigated. Based on the non-linear equations governing the

behavior of such a system, a linear parameter-varying model

structure is firstly extracted by applying a standard Jaco-

bian linearization. A descriptor state-space linear parameter-

varying model is more precisely derived. Then, in order

to take advantage of this additional modeling effort during

the estimation step of the parameters of the LPV model, a

specific identification procedure is suggested in this article.

Based on local experiments (where the scheduling parameter

signal is fixed), a new global method (which herein does

not require complex persistence of excitation assumptions

for the scheduling parameters) is more precisely developed.

Thus, a global linear parameter-varying model of the system

is calculated from local experiments without requiring a stan-

dard interpolation step. This mixed analytical/experimental

local/global technique is evaluated on data from a 2 degree-

of-freedom flexible manipulator.
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strasbg.fr/∼laroche/flexrob/.

[24] A. Marcos and G. Balas, “Development of linear-parameter-varying
models for aircraft,” Journal of Guidance, Control and Dynamics,
vol. 27, pp. 218–228, 2004.

[25] K. Price, R. Storn, and J. Lampinen, Differential evolution: a practical

approach to global optimization. Springer, 2005.
[26] R. Schaefer, Foundations of global genetic optimization. Springer,

2010.

823


