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Abstract— The aim of this paper is to address optimality of
control strategies for stochastic discrete time control systems
subject to conditional distribution uncertainty. This type of
uncertainty is motivated from the fact that the value function
involves expectation with respect to the conditional distribution.
The issues which will be discussed are the following. 1) Optimal
stochastic control systems subject to conditional distribution
uncertainty, 2) optimality criteria for stochastic control systems
with conditional distribution uncertainty, including principle of
optimality and dynamic programming.

I. INTRODUCTION

The objective of this paper is to investigate stochastic optimal
control problems in discrete time when the conditional
distribution associated with the classical value function is
uncertain. By invoking a total variation distance model to
describe the uncertainty of conditional distribution, a new
dynamic programming equation is derived. The issues which
will be discussed are the following.
• Formulation of optimal stochastic control systems sub-

ject to conditional distribution uncertainty.
• Optimality criteria for stochastic control systems with

conditional distribution uncertainty, when the condi-
tional distribution belongs to a ball centered at a
nominal conditional distribution with respect to total
variational distance.

The mathematical model used to describe uncertain systems
is the total variational distance developed in earlier work
[1], [2]. Here the goal is to extend the previous work to
uncertain discrete-time systems using conditional distribution
uncertainty and provide an illustrative example. The formu-
lation is based on minimax theory, in which nature attempts
to maximize the pay-off while the designers objective is to
minimize it. The main objective is to characterize the solution
of the minimax game via dynamic programming. It turns out
that once the maximizing measure is found and substituted
into the pay-off the equivalent optimization problem to be
solved is a stochastic optimal control problem.
The rest of the paper is organized as follows. In Section II
the abstract formulation is introduced while in Section II-A
the maximizing measure is characterized. In section III, the
abstract setup is applied to a stochastic discrete-time uncer-
tain controlled systems. A dynamic programming equation is
derived to characterize the optimality of minimax strategies.

This work was not supported by any organization
C. D. Charalambous is with Faculty of Electrical Engineering, University

of Cyprus, Nicosia, Cyprus chadcha@ucy.ac.cy
I. Tzortzis is with Faculty of Electrical Engineering, University of Cyprus,

Nicosia, Cyprus tzortzis.ioannis@ucy.ac.cy
F. Rezaei, Canada frezaei@alumni.uottawa.ca

II. ABSTRACT FORMULATION

Let (Σ,dΣ) denote a complete, separable metric space (a
Polish space), and (Σ,B(Σ)) the corresponding measurable
space, in which B(Σ) is the σ -algebra generated by open sets
in Σ. Let M1(Σ) denote space of countably additive prob-
ability measures on (Σ,B(Σ)). Given a known or nominal
probability measure µ ∈M1(Σ) the uncertainty set based on
total variation distance is defined by

BR(µ)
4
=
{

ν ∈M1(Σ) : ||ν−µ|| ≤ R
}

where R ∈ [0,∞). The total variation distance1 on M1(Σ)×
M1(Σ) is defined by

d(α,β )≡ ||α−β || 4= sup
P∈P(Σ)

∑
Fi∈P
|α(Fi)−β (Fi)|

where α,β ∈M1(Σ) and P(Σ) denotes the collection of all
finite partitions of Σ. Note that the distance metric induced by
the total variation norm does not require absolute continuity
of measures when defining the uncertainty ball, i.e., singular
measures are admissible. It covers the case when µ0 ∈M1(Σ̃)
and ν ∈M1(Σ), where Σ̃⊂Σ and µ ∈M1(Σ) is the extension
of µ0 ∈M1(Σ̃) on Σ. Since the elements of M1(Σ) are
probability measures the radius of uncertainty belongs to the
restricted set R ∈ [0,2].
Let Σ be a locally compact separable metric space and B(Σ)

its Borel σ -algebra. Let X0
4
=C0(Σ) denote the Banach space

of continuous functions on Σ that vanish at infinity, X1
4
=

BC(Σ) the Banach space of bounded continuous functions
on Σ, and X2

4
= BM(Σ) the Banach space of bounded

measurable functions on Σ, all equipped with the sup-norm.
Clearly, X0 ⊂X1 ⊂X2.
It is known that the topological dual of X0 [9] denoted
by X ∗

0 is isometrically isomorphic to Mrca(Σ), the Banach
space of finite signed regular Borel measures on (Σ,B(Σ))
(also known as Radon measures), the dual space X ∗

1 is
isometrically isomorphic to Mrba(Σ), the Banach space of
finitely additive finite regular signed measures on (Σ,B(Σ)),
and the dual space X ∗

2 is isometrically isomorphic to
Mba(Σ), the Banach space of finitely additive finite signed
measures on (Σ,B(Σ)). Note that when Σ is compact, the
elements of X ∗

1 have countably additive extensions, thus
X ∗

1 is isometrically isomorphic to Mrca(Σ).
At the abstract level, systems are represented by measures
θ ∈M1(Σ) induced by the underlying random processes,

1The definition of total variation distance is defined for signed measures
as well.
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which are defined on an appropriate Polish space. The
set of admissible controls denoted by Uad is assumed to
be a compact subset of an appropriate Polish space (U
which may be endowed with a metric compatible with the
topology). The pay-off is represented by a linear functional
on the space of probability measures M1(Σ).

Nominal System. The nominal system is defined as follows.
By choosing a control policy u ∈ Uad for the nominal
system (which is perfectly known), then the nominal system
induces a nominal probability measure µu ∈M1(Σ).

Uncertain System. For a given u ∈ Uad , let M(u) ⊂M1(Σ)
denote the set of probability measures induced by the
perturbed system while control u ∈ Uad is applied. The
perturbed system or uncertain system νu ∈ M(u) is further
restricted to the following constraint described by the varia-
tional norm.

BR(µ
u) = {νu ∈M(u) : d(νu,µu)≤ R}, R≥ 0

Mini-Max Optimization. Let `u : Σ → ℜ be a real-valued
bounded non-negative measurable function. The uncertain
system measure tries to maximize the average pay-off func-
tional denoted by

L(νu)≡
∫

Σ

`u(x)νu(dx) (II.1)

over the set BR(µ
u) for a given u ∈ Uad . The effect of

uncertainty leads to the following maximization problem:

sup
ν∈BR(µu)

L(ν)≡ sup
ν∈BR(µu)

∫
Σ

`u(x)νu(dx), for every u ∈Uad

The designer on the other hand, tries to choose a control
policy to minimize the worst case average cost. This gives
rise to the min-max problem

inf
u∈Uad

sup
ν∈BR(µu)

L(νu) (II.2)

Note that many stochastic optimization problems involve
operation as in (II.2); specifically, value functions in optimal
stochastic control are defined via (II.2) for a fixed νu

(e.g., without the supremum over the measure on which
expectation is taken).

A. Characterization of the Maximizing Measure

In this section we drop the dependence on the control u of the
various measures and functions. Suppose ` is a non negative
element in BC(Σ). Let µ ∈M1(Σ) ⊂Mrba(Σ) be a given
probability measure referred to as the nominal measure.
Define the uncertainty set by

BR(µ)
4
=
{

ν ∈M1(Σ) : d(ν ,µ)≤ R
}

The objective is to find the worst case (supremum) of average
pay-off over the uncertainty set BR(µ). The average pay-off
is defined as a linear functional on the Banach space Mrba(Σ)

given by L(ν) ≡
∫

Σ
`(x)ν(dx), subject to the constraint that

ν ∈ BR(µ). Hence, the problem is the following

L̃(µ)≡ sup
ν∈BR(µ)

L(ν) =
∫

Σ

`(x)ν(dx) (II.3)

where µ ∈M1(Σ) is fixed. The optimization problem in
(II.3) is solved as follows. Introduce the set M0(Σ)

4
=
{

η ∈

Mrca(Σ) : η(Σ) = 0
}

. The constraint set BR(µ) is equivalent
to the set

BR(M0(Σ))
4
=
{

ξ ∈M0(Σ) : ξ = ν−µ, ν ∈M1(Σ),

µ ∈M1(Σ) is fixed, ||ξ || ≤ R
}

(II.4)

For ξ ∈ M0(Σ), the total variation of ξ is defined by
||ξ || 4= ξ+(Σ)+ξ−(Σ), where {ξ+,ξ−} is the Hanh-Jordan
decomposition of ξ into ξ = ξ+−ξ−. Moreover, ξ (Σ) = 0
implies that ξ+(Σ) = ξ−(Σ), and hence ξ+(Σ) = ξ−(Σ) =
||ξ ||

2 . For ξ ∈ BR(M0(Σ)) then ξ = (ν − µ)+− (ν − µ)− ≡
ξ+−ξ−.
Define ξ

4
= ν−µ ∈M0(Σ). Then from (II.3), since `∈BC(Σ)

and nonnegative, we have have the following.

L(ν)≤ R
2

{
sup
x∈Σ

`(x)− inf
x∈Σ

`(x)
}
+Eµ(`) (II.5)

where Eµ(`)
4
=
∫
`dµ . Moreover, the upper bound in the

right hand side of (II.5) is achieved by ξ ∗ ∈ BR(M0(Σ))
as follows. Let

x0 ∈ Σ
0 4

=
{

x ∈ Σ : `(x) = sup{`(x) : x ∈ Σ} ≡M
}
,

x0 ∈ Σ0
4
=

{
x ∈ Σ : `(x) = inf{`(x) : x ∈ Σ} ≡ m

}
Take

ξ
∗(dx) = ν

∗(dx)−µ(dx) =
R
2

(
δx0(dx)−δx0(dx)

)
, (II.6)

where δy(dx) denotes the Dirac measure concentrated at
y ∈ Σ. This is indeed a signed measure with total variation
||ν∗−µ||= R, and

∫
Σ
`(x)(ν∗−µ)(dx) = R

2

(
M−m

)
.

Hence, by using (II.6) as a candidate of the maximizing
measure then∫

Σ

`(x)ν∗(dx) =
R
2

{
sup
x∈Σ

`(x)− inf
x∈Σ

`(x)
}
+Eµ(`), (II.7)

where ξ ∗ satisfies the constraint ||ξ ∗|| = ||ν∗− µ|| = R, it
is normalized ξ ∗(Σ) = 1, while the additional condition 0≤
ν∗(A)≤ 1 on any A∈B(Σ) should hold. Alternatively, (II.7)
is expressed as∫

Σ

`(x)ν∗(dx) =
∫

Σ0
Mν
∗(dx)+

∫
Σ0

mν
∗(dx)

+
∫

Σ\Σ0∪Σ0

`(x)µ(dx) (II.8)

Hence,∫
Σ0

ν
∗(dx) = µ(Σ0)+

R
2
,
∫

Σ0

ν
∗(dx) = µ(Σ0)−

R
2
,

ν
∗(A) = µ(A), ∀A⊆ Σ\Σ

0∪Σ0 (II.9)
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Lemma 2.1: [2]. Suppose ` : Σ→ ℜ is a bounded non-
negative measurable function, and η is a countably additive
non-negative finite measure defined on (Σ,B(Σ)).
Then

sup
s>0

∫
Σ
`(x)es`(x)η(dx)∫
Σ

es`(x)η(dx)
= ||`||∞,η (II.10)

where ||`||∞,η = η-ess supx∈Σ `(x)
4
= inf∆∈Nη

supx∈∆c ‖`(x)‖
and Nη = {A ∈B(Σ) : η(A) = 0}

Next, we state the main theorem which characterizes the
maximizing measure as a convex combination of two
probability measures.

Theorem 2.2: [2] Suppose ` ∈ BC(Σ) is non-negative,
infx∈Σ `(x) = 0, and R ∈ [0,2). Then there exists a family
of probability measures which attain the supremum in (II.3)
given by

ν
∗(E) =

β

β +1

∫
E es0`(x)η(dx)∫
Σ

es0`(x)η(dx)
+

1
1+β

µ(E) (II.11)

where E ∈B(Σ), 2β ∈ (R,∞), s0 ∈ (0,∞) and η ∈M+
rca(Σ)

is arbitrary. Moreover, β and η satisfy ||ν∗−µ||= R.

Clearly, ν∗(dx) is a convex combination of the tilted mea-
sure es0`(x)η(dx)∫

Σ es0`(x)η(dx)
and µ(dx). Hence, the initial optimization

problem is equivalent to a linear combination of L1 and L∞

optimization problem as follows.

sup
ν∈BR(µ)

∫
Σ

`(x)ν(dx) =
R
2
.||`||∞ +Eµ(`), for inf

x∈Σ
`(x) = 0,

= (β +1)
∫

Σ

`(x)ν∗(dx), fη ,`(s0) =
R

2β
||`||∞. (II.12)

The rest of the paper deals with the application of the above
results to discrete-time controlled stochastic systems (e.g.,
infx∈Σ `(x) = 0).

III. FULLY OBSERVED UNCERTAIN CONTROL SYSTEMS

Define N+
4
= {0,1,2,3, . . .}, Nn

+
4
= {0,1,2, . . . ,n},n ∈ N+.

All processes are defined on the probability space
(Ω,F,Q) with filtration {F0, j}n

j=0,n ∈ N+. Let
F0, j ⊂ F0, j, j = 0,1, . . . ,n be a sub-sigma field. The
state space, the control space, and the noise spaces
are sequences of Polish spaces {X j : j = 0,1, . . . ,n},
{U j : j = 0,1, . . . ,n − 1}, {W j : j = 1,2, . . . ,n − 1},
respectively. These spaces are associated with their
corresponding measurable spaces (X j,B(X j)), j ∈ Nn

+,
(U j,B(U j)), (W j,B(W j)), j ∈ Nn−1

+ . Thus, sequences of
state spaces, control spaces, noise spaces are identified with
their product spaces, (X0,n,B(X0,n)), (U0,n−1,B(U0,n−1)),
(W0,n−1,B(W0,n−1)), respectively, n ∈Nn. The state process

is denoted by x
4
= {x j : j = 0,1, . . . ,n}, x j : Ω 7−→X j, j∈Nn

+,

the control process is denoted by u
4
= {u j : j = 0,1, . . . ,n−1},

u j : Ω 7−→ U j, j ∈ Nn−1
+ , and noise process is denoted by

w
4
= {w j : j = 1,2, . . . ,n−1}, w j : Ω 7−→W j, j ∈ Nn−1

+ .

Denote by Ũad [0,n−1] the set of the U0,n−1−valued control
processes u such that u j is F0, j−measurable, j ∈ Nn−1

+ .
Note that state constrained controls may be included in
the formulation by further assuming that u j take values in
a nonempty subset U j(x j)⊂U j,∀x j ∈X j, j = 0,1, . . . ,n−1.

Define two additional classes of admissible control laws as
follows. Uad [0,n−1]⊆ Ũad [0,n−1] denoting those controls
u j which are G0, j

4
= σ{x0, . . . ,x j,u0, . . . ,u j−1}−measurable,

and U M
ad [0,n− 1] ⊆ Ũad [0,n− 1] denoting those controls

which are σ{x j}-measurable, called feedback control strate-
gies, and Markovian control strategies, respectively. Thus,
u ∈ Uad [0,n− 1] implies that there exists a sequence of
measurable function called control laws or strategies g

4
=

{g j : j = 0,1, . . . ,n− 1}, g j : X0, j ×U0, j−1 → U j, ug
j =

g j(x
g
0,x

g
1, . . . ,x

g
j ,u

g
0,u

g
1, . . . ,u

g
j−1) and similarly for the rest.

Conditional distributions are represented by stochastic
kernels defined below.

Definition 3.1: Given the measurable spaces
(X ,B(X )),(Y ,B(Y )), a stochastic Kernels on
(Y ,B(Y )) conditioned on (X ,B(X )) is a mapping
P : B(Y ) × X → [0,1] satisfying the following two
properties:
1) For every x ∈X , the set function P(·;x) is a probability
measure (possibly finitely additive) on B(Y );
2) for every A ∈ B(Y ), the function P(A; ·) is B(X )-
measurable.
The set of all stochastic Kernels (Y ,B(Y )) conditioned
on (X ,B(X )) are denoted by M (Y ;X ).

A. Problem Formulation

Below, the stochastic dynamics, pay-off, assumptions and
uncertain system definitions are introduced.

Nominal Stochastic Dynamical Model. For each
u ∈ Ũad [0,n − 1] the nominal state process giving rise
to a nominal measure is described by the following discrete-
time difference equation.

Definition 3.2: (Nominal System). A nominal system
family of state processes {xg = xg

0,x
g
1, . . . ,x

g
n : u ∈ Ũad [0,n−

1]} corresponds to a sequence of stochastic kernels
{Pw j(dw;x,u) : j = 0,1, . . . ,n − 1}, and functions {b j :
X j ×U j ×W j 7−→ X j+1 : j = 0,1, . . . ,n − 1} if for all
u ∈ Ũad [0,n− 1], there exists noise processes {w j : j =
0,1, . . . ,n−1} such that the following hold.

1) For each j ∈ Nn−1
+ , w j is F0, j− measurable and

{xg
0,x

g
1, . . . ,x

g
n} are generated by the recursion

xg
j+1 = b j(x

g
j ,u

g
j ,w j), xg

0 = x0 (III.13)

which implies that if x0 is F0,0−measurable then xg
j

is F0, j−1−measurable.
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2) For every A ∈B(W j), j ∈ Nn−1
+

Prob(w j ∈ A|G0, j) = Pw j(A;xg
j ,u

g
j),a.s.

3) Prob(xg
0 = x0) = 1,∀u ∈ Ũad [0,n−1].

Uncertainty Stochastic Model. The uncertainty
model is described by the conditional distribution,
Qw j |G0, j(dw j|G0, j) ∈M1(W j), 0≤ j ≤ n−1, as follows.

Definition 3.3: Given a nominal system of Definition
3.2, a fixed nominal stochastic kernel Pwi(dwi;xg

i ,u
g
i ) ∈

M (Wi;Xi ×Ui), and Ri ∈ [0,2], the class of measures is
defined by

BRi(Pwi)(G0,i)
4
=
{
Qwi(·|G0,i) ∈M1(W0,i−1) :

||Qwi(·;G0,i)−Pwi(·;xg
i ,u

g
i )||var ≤ Ri

}
for i = 0,1, . . . ,n−1.
The above model is motivated by the fact that dynamic
programming involves conditional expectation with respect
to Qwi(dwi;G0,i).

Pay-Off Functional. The sample pay-off is functional of
xg,ug,w, and for each u ∈ Ũad [0,n−1] the average pay-off
is defined by

J0,n(g,Q)
4
= EQ

{n−1

∑
j=0

f j(x
g
j ,u

g
j ,w j)+hn(xg

n)
}

(III.14)

where EQ(·) denotes expectation with respect to the true joint
measure Q ∈M1(X0,n×U0,n−1×W0,n−1)
The following assumptions are introduced.

Assumption 3.4: The nominal system family satisfies
the following assumptions:
1) (U0,n−1,d) is Polish space. The control {ug

j : j ∈ Nn−1
+ }

is non anticipative.
2) The maps {b j : X j × U j × W j 7−→ X j+1 : j =
0,1, . . . ,n − 1} are bounded continuous, and the maps
{ f j : X j×U j×W j 7−→R : j = 0,1, . . . ,n−1}, fn : Xn 7−→R
are bounded continuous and non-negative.

Notice that for u ∈ Ũad [0,n− 1] the nominal system state
xg

j is a measurable function of {wk : k = 0,1, . . . , j−1} and
{ug

k : k = 0,1, . . . , j−1}, and hence xg
j is F0, j−1−measurable

for j ∈ Nn
+.

For u ∈ Uad [0,n − 1] the nominal system state xg
j is

a measurable function of {wk : k = 0,1, . . . , j − 1} and
{ug

k : k = 0,1, . . . , j−1}.

B. Maximization over a Class of Measures and Dynamic
Programming

Section II describes at the abstract level, how to construct
the maximizing measure of a linear functional over a total
variational distance constraint. Similar arguments can be
carried out for the case of discrete time stochastic controlled

systems, to deal with uncertainty of the conditional
distribution Qw j |G0, j(dw j|G0, j) ∈M1(W j), 0≤ j ≤ n−1.

Given the above formulation a minimax stochastic controlled
problem can be formulated over a total variation distance
uncertainty ball, centered at the nominal conditional
distribution Pwi(dwi;xg

i ,u
g
i ) ∈M (Wi;Xi×Ui) having radius

Ri ∈ [0,2], for i = 0,1, . . . ,n− 1 with respect to the total
variation distance metric. The precise problem statement
should thus, be as follows.

Problem 3.5: For a given u∈Uad [0,n−1] assume that the
measures M(u) induced by the true uncertainty while control
u ∈Uad [0,n−1] is applied are M(u) ⊂M1(W0,n−1). Given
a nominal system of Definition 3.2 an admissible control set
Uad [0,n− 1] and an uncertainty class BRk(Pwk)(G0,k),k =
0,1, ...,n − 1 find a u∗ ∈ Uad [0,n − 1] and a sequence
of stochastic kernels Q∗wk

(dwk;G0,k) ∈ BRk(Pwk)(G0,k), k =
0,1, ...,n−1 which solve the following minimax optimization
problem.

J0,n(g∗,{Q∗wk
}n−1

k=0) = inf
u∈Uad [0,n−1]

sup
Qwk (dwk ;G0,k)∈BRk

(Pwk )(G0,k)

k=0,1,...,n−1

EQ

{n−1

∑
k=0

fk(x
g
k ,u

g
k ,wk)+hn(xg

n)
}

(III.15)

Dynamic Programming for Maximization over Conditional
Distributions.

Define the pay-off associated with the maximization problem

J0,n(g,{Q∗wi
}n−1

i=0 )
4
=

sup
Qwk (dwk ;G0,k)∈BRk

(Pwk )(G0,k)

k=0,1,...,n−1

J0,n(g,{Qwk}
n−1
k=0) (III.16)

Define the conditional expectation taken over the events G0, j
maximized over the class BRk(Pwk)(G0,k), k = j, j+1, . . . ,n−
1, which is the value function of (III.16) as follows:

Vj(u
g
[ j,n−1],G0, j)

4
= sup

Qwk (dwk ;G0,k)∈BRk
(Pwk )(G0,k)

k= j, j+1,...,n−1

EQ

{n−1

∑
k= j

fk(x
g
k ,u

g
k ,wk)+hn(xg

n)|G0, j

}
(III.17)

Then Vj(u
g
[ j,n−1],G0, j) satisfies the following dynamic pro-

gramming equation.

Vj(u
g
[ j,n−1],G0, j) = sup

Qw j (dw j ;G0, j)∈BR j (Pw j )(G0, j)

EQw j (dw j ;G0, j){
f j(x

g
j ,u

g
j ,w j)+Vj+1(u

g
[ j+1,n−1],G0, j+1)

}
(III.18)

Vn(G0,n) = hn(xg
n) (III.19)

where EQw j (dw j ;G0, j) denotes expectation with respect to
Qw j(dw j;G0, j).
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Theorem 3.6: Assume f j(x
g
j ,u j, ·) + Vj+1(u

g
[ j+1,n−1], ·) :

W j → R+ in (III.18) is bounded continuous with zero in-
fimum value.
Then

Vj(u
g
[ j,n−1],G0, j) =

R j

2
sup

w j∈W j

{
f j(x

g
j ,u

g
j ,w j)

+Vj+1(u
g
[ j+1,n−1],G0, j+1)

}
+EPw j

{
f j(x

g
j ,u

g
j ,w j)

+Vj+1(u
g
[ j+1,n−1],G0, j+1)|G0, j

}
(III.20)

Vn(G0,n) = hn(xg
n) (III.21)

and the supremum in (III.18) is attained at

Q∗w j
(dw j;G0, j)

=
γ je

s j

(
f j(x

g
j ,u

g
j ,w j)+V j+1(u

g
[ j+1,n−1],G0, j+1)

)
EVw j

{
e

s j

(
f j(x

g
j ,u

g
j ,w j)+V j+1(u

g
[ j+1,n−1],G0, j+1)

)
|G0, j

}
×Vw j(dw j;G0, j)+(1− γ j)Pw j(dw j;xg

j ,u
g
j) (III.22)

where γ j =
β j

1+β j
. Also,

J0,n(g,{Q∗wi
}n−1

i=0 ) = E
{

V0(u[0,n−1],G0,0)
}

(III.23)

Moreover, if Vw j(dw j;G0, j) = Pw j(dw j;xg
j ,u

g
j), a.s., then

Vj(u[ j,n−1],G0, j) =Vj(u[ j,n−1],x
g
j), a.s.

Proof. (III.20), (III.21) and (III.23), follow from dynamic
programming arguments. (III.22) is an application of
Theorem 2.2. The last statement follows from the
assumption.

Dynamic Programming for the Minimax Problem.

Let Vj(G0, j) represent the minimax pay-off on the future time
horizon { j, j+1, ...,n} at time j ∈ Nn

+ defined by

Vj(G0, j)
4
= inf

u∈Uad [ j,n−1]
sup

Qwk (dwk ;G0,k)∈BRk
(Pwk )(G0,k)

k= j, j+1,...,n−1

EQ

{n−1

∑
k= j

fk(x
g
k ,u

g
k ,wk)+hn(xg

n)|G0, j

}
(III.24)

= inf
u∈Uad [ j,n−1]

Vj(u
g
[ j,n−1],G0, j) (III.25)

Then by reconditioning one obtains

Vj(G0, j)
4
= inf

u∈Uad [ j,n−1]
sup

Qwk (dwk ;G0,k)∈BRk
(Pwk )(G0,k)

k= j, j+1,...,n−1

EQ

{
fk(x

g
k ,u

g
k ,wk)+EQ

{ n−1

∑
k= j+1

fk(x
g
k ,u

g
k ,wk)

+hn(xg
n)|G0, j+1

}
|G0,k

}
(III.26)

Hence, the following dynamic programming recursion

Vj(G0, j)
4
= inf

u∈Uad [ j, j]
sup

Qw j (dw j ;G0, j)∈BR j (Pw j )(G0, j)

EQw j

{
f j(x

g
j ,u

g
j ,w j)+Vj+1(G0, j+1)|G0, j

}
(III.27)

Vn(G0,n) = hn(xg
n) (III.28)

Next, invoke the following additional assumption.

Assumption 3.7: The maximizing measure (III.22)
in Theorem 3.6 is chosen so that Q∗w j

(dw j;G0, j) =

Q∗w j
(dw j;xg

j ,u
g
j), a.s.

The above assumption is satisfied provided the tilted
measure in (III.22) is constructed from the nominal measure
Pw j(dw j;xg

j ,u
g
j), via Vw j(dw j;G0, j) = Pw j(dw j;xg

j ,u
g
j), a.s.

Next, we state the main theorem.

Theorem 3.8: Suppose Assumption 3.7 holds. Then
Vj(G0, j) = Vj(x) satisfies the following dynamic program-
ming recursion

Vj(x)
4
= inf

u∈Uad [ j, j]
sup

Qw j (dw j ;x,u)∈BR j (Pw j )(x,u)

EQw j

{
f j(x,u,w)+Vj+1(b j(x,u,w))

}
(III.29)

Vn(x) = hn(x) (III.30)

Also,

J0,n(g∗,{Q∗wi
}n−1

i=0 ) = E
{

V0(x)
}

(III.31)

Moreover, if f j(x j,u j, ·) +Vj+1(b j(x j,u j, ·)) : W j → R+ is
bounded continuous with zero infimum value then

Vj(x)
4
= inf

u∈Uad [ j, j]

{R j

2
sup

w∈W j

{
f j(x,u,w)+Vj+1(b j(x,u,w))

}
+EPw j (dw;x,u)

{
f j(x,u,w)+Vj+1(b j(x,u,w))

}}
(III.32)

Vn(x) = hn(x) (III.33)

Remark. 1) The point to be made here is that the dynamic
programming equation (III.32) involves in its right hand
side the supremum of the cost-to-go in addition to the
standard term, which to the best of our knowledge, has not
appeared in the literature. When the zero infimum value
is removed the right side of (III.32) will include the term
−R j

2 infw∈W j

{
f j(x,u,w) + Vj+1(b j(x,u,w))

}
as in (II.7).

2) One may also conclude that dynamic programming
recursion such as (III.32), (III.33) can be derived for finite
state Markov Decision problems as well.

C. Working Example

To illustrate an application of the minimax problem, consider
an inventory control example inspired by [12]. Specifically,
an optimal inventory ordering policy of a quantity of a certain
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item at each of N periods must be found so as to meet a
stochastic demand. Let us denote
• xk, stock available at the beginning of the kth period
• uk, stock ordered at the beginning of the kth period
• wk, demand during kth period with given probability

distribution
• h, holding cost per unit item remaining unsold at the

end of the kth period
• c, cost per unit stock ordered
• p, shortage cost per unit demand unfilled

The random disturbance wk may depend on values of xk
and uk but not on values of prior disturbances w0, ...,wk−1.
Excess demand is backlogged and filled as soon as additional
inventory becomes available. The noise of previous section
belong to a class described by BRi(Pwi)(G0,i) (see Definition
3.3), and inventory and demand are non-negative integers
variables. Thus, the nominal system equation is

xk+1 = max(0,xk +uk−wk) (III.34)

The total cost over N periods is

E
{N−1

∑
k=0

[cuk + pmax(0,wk− xk−uk)

+hmax(0,xk +uk−wk)]
}

(III.35)

Assume that the maximum capacity (xk + uk) for stock is
2 units, that the planning horizon N = 3 periods, and that
the holding cost h and the ordering cost c are both 1 unit.
The shortage cost p is assumed to be 3 units. The demand
wk has a nominal probability distribution given by, Pwk(wk =
0) = 0.1, Pwk(wk = 1) = 0.7, and Pwk(wk = 2) = 0.2. There
is no fixed cost and the initial stock is zero. The dynamic
programming algorithm for the minimax problem takes the
form (ignoring the −R

2 minwk∈{0,1,2}{·} term)

Vk(xk) = min
0≤uk≤2−xk

{R
2

max
wk∈{0,1,2}

[
uk +max(0,xk +uk−wk)

+3max(0,wk− xk−uk)+Vk+1(max(0,xk +uk−wk))
]

+Ewk{uk +max(0,xk +uk−wk)+3max(0,wk− xk−uk)

+Vk+1(max(0,xk +uk−wk))}
}

(III.36)

V3(x3) = 0 (III.37)

where Rk =R∈ [0,2]. By setting R= 0, the uncertain class re-
duces to the nominal demand probability distribution, which
implies that the maximizing term in (III.36) is removed (as in
[12]). The problem is solved for two possible values of R for
each period resulting in optimal ordering policies as shown in
Table IV.1. By setting R= 1, we choose to calculate the opti-
mal ordering policy, when Pwk(wk 6= i), k = 0,1,2, i = 0,1,2
is uncertain. Taking fully into consideration the maximizing
term in (III.36) the dynamic programming algorithm results
in optimal ordering policies which are more robust with
respect to uncertainty, but with the sacrifice of low present
and future costs. In cases where the planner needs to balance
the desire for low costs with the undesirability of scenarios

with high uncertainty, he must choose values of R between
0 and 1.

IV. CONCLUSION AND FUTURE WORK

The paper derives a new dynamic programming equation
when the conditional distribution which appear in dynamic
programming equation is described by a ball with respect to
the total variation distance uncertainty. Future work will treat
the general case described by II.8 and II.9 and will determine
how ν∗(dx) behaves as a function of R.
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R = 1 R = 0.2
Stage.0 Stage.0 Stage.0 Stage.0

Stock Cost-to-go Optimal Stock Stock Cost-to-go Optimal Stock
to Purchase to Purchase

0 15.03 2 0 6.72 1
1 13.53 1 1 5.62 0
2 12.03 0 2 4.68 0

Stage.1 Stage.1 Stage.1 Stage.1
Stock Cost-to-go Optimal Stock Stock Cost-to-go Optimal Stock

to Purchase to Purchase
0 8.32 2 0 4.30 1
1 6.82 1 1 3.20 0
2 5.32 0 2 2.44 0

Stage.2 Stage.2 Stage.2 Stage.2
Stock Cost-to-go Optimal Stock Stock Cost-to-go Optimal Stock

to Purchase to Purchase
0 3.7 1 0 2.10 1
1 2.2 0 1 1 0
2 1.9 0 2 1.10 0

TABLE IV.1
RESULTS OF THE DP ALGORITHM
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