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Abstract— For a broad class of H∞ preview/delayed control
problems, a solvability condition is newly established based on
an analytic solution of operator Riccati equation. The condition
is characterized by maximal eigenvalue of a compact operator
and enables us to overcome the limitation of existing methods.
An H

∞ control law is also clarified and some interpretation
is provided based on the property of the analytic solution.
Employing the advantage of proposed approach, a design
method of H

2 control law is derived for the preview/delayed
systems.

I. INTRODUCTION

Design methods of H∞ control law have been consid-

ered for broad class of infinite-dimensional systems and,

for preview/delayed control problems, the solvabiliy condi-

tion and the analytic solution are characterized with finite-

dimensional operations. The H∞ control problems for de-

layed systems are solved via various approaches (e.g. [4], [9],

[6], [7]) and, in the preview control problems, it is shown

that the solvability condition is significantly simplified [10],

[14], [5].

A state-space approach on appropriate function space is

employed by [6], [7] and the H∞ preview/delayed control

law is derived by solving the operator Riccati equation.

Although the state-space approach has an advantage of

dealing with the preview/delayed strategies in a unified

manner, the solvability condition for the general problem is

still complicated because it requires to check whether all

the eigenvalues of a compact operator are with nonnegative

real values. Furthermore, the check method occasionally

causes numerical instability as the existence region for the

roots of correspondingly defined transcendental equation is

unbounded.

In this paper, we focus on generalized H∞ preview/

delayed control problems and newly establish a solvability

condition with a control law. The solvability condition is

characterized by maximal eigenvalue of a compact operator,

which is given by a root of transcendental equation. The

control problem covers multiple preview/delayed control

systems in a unified manner and enables us to deal with

rather complicated system such as unilateral delay systems

[3]. Employing the advantage of the state-space approach,

a design method of H2 control law is derived for broad

preview/delayed systems.

This paper is organized as follows. In Section II, a

generalized H∞ control problem is defined for preview and
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delayed systems, which inherits the structure investigated

by [6]. The relation between the system description and

the typical control problems is also discussed. In Section

III, the operator Riccati equation which corresponds to the

generalized H∞ control problem is solved and, further, the

solvability condition is newly established. In Section IV, the

solution of H2 preview/delayed control problem is clarified

by employing the advantage of proposed approach. In Sec-

tion V, the H∞ performance of the preview and delayed

control system is illustrated with numerical examples. The

conclusion of this paper is presented in Section VI.

II. PROBLEM FORMULATION AND PRELIMINARIES

Define a full-information (FI) control problem for preview

and delayed system:

Σ : ẋ(t) = Ax(t) +
d

∑

i=0

Bi
1w(t− hi) +

d
∑

i=0

Bi
2u(t− hi)

z(t) =
ℓ

∑

j=0

C
j
1x(t− ȟj) +D12u(t)

y(t) =
[

xT(t) wT(t)
]T

(1)

where x(t) ∈ R
n, w(t) ∈ R

m1 , u(t) ∈ R
m2 , z(t) ∈ R

p,

y(t) ∈ R
n+m2 are the state, the disturbance, the control

input, the regulated output, and the measurement of the sys-

tem, respectively. The system matrices are with appropriate

dimensions and hi (i = 0, 1, . . . , d), ȟj (j = 0, 1, . . . , ℓ) are

the time delays denoted in ascending order: 0 =: h0 < h1 <

h2 < · · · < hd := L, 0 =: ȟ0 < ȟ1 < ȟ2 < · · · < ȟℓ := Ľ.

The time delays in the disturbance w equivalently describe

previewable reference signals and those in the regulated

output enable to deal with general input/output delay systems

(Remark 2). We prepare the auxiliary matrices:

Ac := A−B2D
+
12C1,

B :=
[

B1 B2

]

, B1 :=
d

∑

i=0

Bi
1, B2 :=

d
∑

i=0

Bi
2,

Bi :=
[

Bi
1 Bi

2

]

(i = 0, 1, . . . , d),

C1 :=

ℓ
∑

j=0

C
j
1 , D+

12 := (DT
12D12)

−1DT
12

Rc :=

[

−γ2 · Im1
0

0 DT
12D12

]

, Nc := I −D12D
+
12. (2)

and make following assumptions for the system Σ.

(H1) (A,B2) is stabilizable,
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(H2) D12 is full column rank,

(H3) rank

[

A− jωI B2

C1 D12

]

= n+m2, ∀ω ∈ R,

(H4) Σ satisfies the following conditions:

BiR−1
c BjT = 0, Bi

1NcB
jT
1 = 0 (i 6= j), (3)

Bi
2D

+
12C

j
1 = 0 (i 6= 0 or j 6= 0). (4)

The assumption (H4) is broader than the orthogonal con-

dition (e.g. [16]) and, from the practical viewpoint, typical

problems are easily formulated along (H4).

The H∞ control problem is to design a control law such

that the resulting closed loop system satisfies the following

conditions.

(C1) the closed-loop system is internally stable,

(C2) the transfer function of the closed loop system Σzw

satisfies ‖Σzw‖∞ < γ for a prescribed γ > 0.

Although the H∞ control problem Σ is discussed by [6]

with the orthogonal condition, the solvability condition is

not fairly characterized as it requires direct calculation of

minimal eigenvalue of a compact operator. More precisely,

for the check of positive semi-definiteness of the compact

operator, it needs to verify that all the eigenvalue keep

nonnegative real values.

In the sequel, we focus on the system Σ under (H1)-

(H4) and newly establish a solvability condition which

overcomes the limitation of the existing result. The con-

dition is characterized in terms of maximal eigenvalue of

an auxiliary compact operator, which value is given by a

root of transcendental equation. Employing the advantage of

proposed approach, a solution of H2 preview/delayed control

problem is also clarified.

The relation to typical control problems is noted in the

following remarks.

Remark 1 (Preview control): A preview control problem:

ẋ(t) = Ax(t) +B1,0w0(t) +B1,1w1(t− L) +B2u(t)

z(t) = C1x(t) +D12u(t)

y(t) =
[

xT(t) wT(t)
]T

(5)

is formulated by Σ with

w(t) :=

[

w0(t)
w1(t)

]

, B0
1 =

[

B1,0 0
]

, B1
1 =

[

0 B1,1

]

.

In the system (5), w0, w1 denote system uncertainty and

previewable reference signal, respectively. Replacing the

signal by r(t) = w1(t − L), it is observed that the future

information of the reference r(t + L) is included in the

measurement y(t). The assumption (H4) broadens the system

description as structural condition between the regulated

output and control input is relaxed. H∞ control problems

for unilateral delay systems [3] are also formulated with Σ
by imposing transmission delays on both disturbance and

control.

Remark 2 (Output feedback problem): Time delays in the

regulated output enable to derive analytic solutions of con-

trol/filtering Riccati equations defined for multiple preview

and input/output delay systems. The problem Σ provides

fundamental result on the output feedback problems which

include preview/delayed action. A preliminary result is dis-

cussed by [7] under the orthogonal condition.

In order to solve the H∞ control problem Σ, we prepare a

system description on appropriate function space. Introduce

a Hilbert space X := R
n×L2(−L, 0; R

n)×L2(−Ľ, 0; R
n)

endowed with the inner product

〈ψ, φ〉 := ψ0Tφ0

+

∫ 0

−L

ψ1T(β)φ1(β) dβ +

∫ 0

−Ľ

ψ2T(β)φ2(β) dβ,

ψ = (ψ0, ψ1, ψ2) ∈ X , φ = (φ0, φ1, φ2) ∈ X , (6)

the system Σ is described by the evolution equation [12]:

Σ̂ : ˙̂x(t) = Ax̂(t) + B1w(t) + B2u(t)

z(t) = C1x̂(t) +D12u(t)

ŷ(t) =

[

x̂(t)
w(t)

]

. (7)

The operator A is an infinitesimal generator defined by

Aφ =





Aφ0 + φ1(−L)

φ1
′

φ2
′



 ,

D(A) =
{

φ ∈ X : φ1 ∈W 1,2(−L, 0;Rn),

φ2 ∈W 1,2(−Ľ, 0;Rn), φ1(0) = 0, φ2(0) = φ0
}

(8)

where W 1,2(−L, 0;Rn) denotes the Sobolev space of R
n-

valued, absolutely continuous functions with square inte-

grable derivatives on [−L, 0] (see e.g. [1], Chapter 2). For

the subspaces:

V∗ := {ψ ∈ X : ψ1 ∈W 1,2(−L, 0;Rn), ψ1(−L) = ψ0},
(9)

W := {φ ∈ X : φ2 ∈W 1,2(−Ľ, 0;Rn), φ2(0) = φ0)}, (10)

W = DV(A), V∗ = DW∗(A∗) hold and W , X , V are with

continuous, dense injections satisfying W ⊂ X ⊂ V ([12],

Remark 2.6). The input/output operators Bk ∈ L(Rmk ,V)
(k = 1, 2), C1 ∈ L(W,Rp) are defined as follows:

B∗

kφ =

d
∑

i=0

BiT
k φ1(−L+ hi), φ ∈ V∗, (11)

C1φ =
ℓ

∑

j=0

C
j
1φ

2(−ȟj), φ ∈ W . (12)

The system Σ̂ is in the class of Pritchard-Salamon sys-

tems [12], [13] and typical H∞ (H2) control problems are

characterized with abstract Riccati equations. We introduce

an operator Riccati equation

SAcφ+A∗

cSφ− SBR−1
c B∗Sφ+ C∗

1NcC1φ = 0, φ ∈ W

Ac := A− B2D
+
12C1, B :=

[

B1 B2

]

(13)

for Σ̂ and clarify the solution of the H∞ control problem.

For the system Σ̂, the H∞ control problem is solvable

iff (13) has a stabilizing solution S ≥ 0 (S ∈ L(V,V∗))
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such that Ac −BR−1
c B∗S generates an exponentially stable

semigroup on W , V [15]. Furthermore an H∞ control law

is given as follows:

u(t) = −(DT
12D12)

−1(B∗

2S +DT
12C1)x̂(t). (14)

We will establish analytic solution of (13) by introducing

Hamiltonian operator representation (Section III). Some in-

terpretations on the H2 control problem are also provided

by employing the solution of (13) (Section IV).

III. MAIN RESULT

Solve the H∞ control problem Σ by providing analytic

solution of (13). In highlight with [6], we newly characterize

the solvability condition in terms of maximal eigenvalue of

an auxiliary compact operator. Furthermore an integral kernel

representation of S ∈ L(V,V∗) is provided which clarifies

the related H2 control problems (Section IV).

The following lemma is a foothold of our approach

obtained along [5].

Lemma 3 ([5], Theorem 1): For a given γ > 0, the oper-

ator Riccati equation (13) has a stabilizing solution S ≥ 0
only if the Hamiltonian matrix

H =

[

Ac −BR−1
c BT

−CT
1 NcC1 −AT

c

]

(15)

does not have any eigenvalue on the imaginary axis.

Lemma 3 guarantees that there exists a full column rank

matrix V ∈ R
2n×n:

X−(H) := ImV : HV = V Λc, Λc : stable matrix,

V :=

[

V1
V2

]

, V1, V2 ∈ R
n×n (16)

if (13) has a stabilizing solution. We next introduce an

auxiliary output delay form of Σ which yields a Hamiltonian

operator representation.

Introduce an auxiliary state-space X o := R
n × L2(−L−

Ľ, 0;Rn) and a state-transformation G ∈ L(X ,X o):

Gφ =

[

(Gφ)0

(Gφ)1

]

, φ = (φ0, φ1, φ2) ∈ X (17)

(Gφ)0 = eAcLφ0 +

∫ 0

−L

e−Acβφ1(β) dβ

(Gφ)1(ξ) =















eAc(ξ+L)φ0 +

∫ ξ

−L

eAc(ξ−β)φ1(β) dβ,

− L ≤ ξ ≤ 0
φ2(ξ + L), − L− Ľ ≤ ξ ≤ −L

which satisfies G ∈ L(W,Wo), G ∈ L(V ,X o). Then

x̂o(t) = Gx̂(t), x̂(t) ∈ W (18)

holds and the system Σ̂ is transformed to

Σ̂o : ˙̂xo(t) = (Ao
c + Bo

2D
+
12C

o
1)x̂

o(t) + Bo
1w(t) + Bo

2u(t)

z(t) = Co
1 x̂

o(t) +D12u(t)

y(t) =

[

x̂o(t)
w(t)

]

(19)

where Ao
c is an infinitesimal generator defined as follows:

Ao
cφ =

[

Acφ
0

φ1
′

]

, D(Ac) = {φ ∈ X o :

φ1 ∈W 1,2(−L− Ľ, 0;Rn), φ0 = φ1(0)}. (20)

For the space

Wo := {φ ∈ X : φ1 ∈W 1,2(−L− Ľ, 0;Rn), φ1(0) = φ0},
(21)

Wo := D(Ao
c), DWo(Ao∗

c ) = X o hold and Wo, X o are with

continuous, dense injections satisfying Wo ⊂ X o [12]. The

input/output operators are given by

Bo
1 := GB1, B

o
2 := GB2, (22)

Co
1 ∈ L(Wo,Rp1) : Co

1φ =

ℓ
∑

j=0

Cℓ
1φ

1(−L− ȟj). (23)

Since Co
1G = C1 follows from (12), (17), (23), the systems Σ̂,

Σ̂o provide equivalent input-output map and the H∞ control

problem Σ̂ is solvable iff Σ̂o is solvable [6]. By (22), (23),

it is also noted that the stabilizing solution S ≥ 0 of (13) is

given by

S = G∗SoG (24)

where So ≥ 0 (So ∈ L(X o)) is a stabilizing solution of the

auxiliary operator Riccati equation

SoAo
cφ+Ao∗

c Soφ− SoBoR−1
c Bo∗Soφ+ Co∗

1 NcC
o
1φ = 0,

Bo :=
[

Bo
1 Bo

2

]

, φ ∈ Wo. (25)

For the system Σ̂o, a Hamiltonian operator representation

is obtained from (20), (22), (23).

Lemma 4: Let V ∈ R
2n×n be a full column rank matrix

defined by (16). Then the Hamiltonian operator Ho ∈
L(Wo ×X o,X o ×Wo∗):

Ho :=

[

Ao
c −BoR−1

c Bo∗

−Co∗
1 NcC

o
1 −Ao∗

c

]

(26)

yields the equality

Ho

[

V1 + GΠG∗V2

V2

]

φ =

[

V1 + GΠG∗V2

V2

]

Ao
Λc
φ,

φ ∈ D(Ao
Λc
) (27)

V1 :=

[

V1 0
0 I

]

, V2 :=

[

V2 0
0 Θ

]

, (28)

(Θφ1)(ξ) :=
ℓ

∑

j=0

χ[−L−ȟj ,0]
(ξ) · CjT

1 NcC
j
1φ

1(ξ),

φ1 ∈ L2(−L− Ľ, 0; Rn), −L− Ľ ≤ ξ ≤ 0 (29)

Π =





0 0 0
0 Π1 0
0 0 0



 ∈ X ,

(Π1φ
1)(ξ) =

d
∑

i=0

χ[−L+hi,0](ξ) ·B
iR−1

c BiTφ1(ξ),

φ1 ∈ L2(−L, 0; R
n), −L ≤ ξ ≤ 0 (30)
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where χ is a characteristic function defined by χD(β) =
{

1 (β ∈ D)
0 (β 6∈ D)

. In (27), Ao
Λc

is an infinitesimal generator:

Ao
Λc
φ =

[

Λcφ
0

φ1
′

]

, D(Ao
Λc
) =

{

φ ∈ X o : φ1 ∈W 1,2(−L− Ľ, 0; Rp1), V1φ
0 = φ1(0)

}

Λc : stable matrix defined by (16) (31)

which generates an exponentially stable semigroup on X o.

The equality (27) characterizes the condition such that (25)

has a stabilizing solution or a positive semi-definite solution.

In like manner of finite-dimensional systems (see e.g. [16]),

the stabilizing solution of (25) is expressed as

So = V2 (V1 + GΠG∗V2)
−1

(32)

and, further, (32) is positive semi-definite iff

Q := (V1 + GΠG∗V2)
∗So(V1 + GΠG∗V2)

= (V1 + GΠG∗V2)
∗V2 ≥ 0 (33)

holds. The condition (33) enables to avoid direct calculation

of the eigenvalue problem for (32). Based on (32), (33), we

will establish a solvability condition in terms of maximal

eigenvalue of a compact operator.

Decompose the space X o and the operators V1, V2, G as

follows:

X o = X o
1 ×X o

2 , X o
1 := R

n × L2(−L, 0;R
n),

X o
2 := L2(−L− Ľ,−L;Rn), (34)

V1 =

[

V11 0
0 V12

]

∈ L(X o
1 ×X o

2 ), (35)

V11 =

[

V1 0
0 I

]

∈ L(X o
1 ), V12 = I ∈ L(X o

2 )

V2 =

[

V21 0
0 V22

]

∈ L(X o
1 ×X o

2 ), (36)

V21 =

[

V1 0
0 Θ1

]

∈ L(X o
1 ), V22 = Θ2 ∈ L(X o

2 )

(Θ1φ
1)(ξ) = CT

1 NcC1φ
1(ξ), −L ≤ ξ ≤ 0,

φ1 ∈ L2(−L, 0;R
n)

(Θ2φ
2)(ξ) =

ℓ
∑

j=0

χ[−L−ȟj ,−L](ξ)C
jT
1 NcC

j
1φ

2(ξ),

− L ≤ ξ ≤ 0, φ2 ∈ L2(−L, 0;R
n)

G =

[

G1

G2

]

∈ L(X ,X o
1 ×X o

2 ),
G1 ∈ L(X ,X o

1 )
G2 ∈ L(X ,X o

2 )
(37)

G1φ =

[

(G1φ)
0

(G2φ)
1

]

, φ = (φ0, φ1, φ2) ∈ X

(G1φ)
0 = eAcLφ0 +

∫ 0

−L

e−Acβφ1(β) dβ

(G1φ)
1(ξ) = eAc(ξ+L)φ0 +

∫ ξ

−L

eAc(ξ−β)φ1(β) dβ,

− L ≤ ξ ≤ 0

(G2φ)(η) = φ2(η + L), −L− Ľ ≤ η ≤ −L.

The properties of V1 + GΠG∗V2 and Q are summarized by

the following remarks.

Remark 5: On the space X o
1 × X o

2 , the operator V1 +
GΠG∗V2 is expressed as

V1 + GΠG∗V2 =

[

V11 + G1ΠG
∗
1V21 0

0 I

]

, (38a)

V11 + G1ΠG
∗

1V21 = I +

[

V1 − I 0
0 0

]

+ G1ΠG
∗

1V21. (38b)

Since

[

V1 − I 0
0 0

]

and G1ΠG
∗
1V21 are compact, V1 +

GΠG∗V2 has bounded inverse iff (38b) does not have any

eigenvalue at origin.

Remark 6: The operator Q defined by (33) is given by

Q =

[

Q1 0
0 Q2

]

∈ L(X o
1 ×X o

2 ),

Q1 := V∗

11V21 + V∗

21G1ΠG
∗

1V21, Q2 := Θ2 ≥ 0. (39)

Hence the condition (33) holds iff Q1 ≥ 0.

Introducing a differential equation:
{

Φλ(0) = I
d
dt
Φλ(t) = Hj(λ)Φλ(t), −L+ hj ≤ t ≤ −L+ hj+1

Hj(λ) :=





Ac −
j
∑

i=0

BiR−1
c BiT

− 1
λ
· CT

1 NcC1 −AT
c



 ,

(j = 0, 1, 2, · · · , d− 1), (40)

the existence of stabilizing solution is clarified by the fol-

lowing theorem.

Theorem 7: Let V ∈ R
2n×n be a full column rank matrix

defined by (16). The operator Riccati equation (25) has a

stabilizing solution So ∈ L(X o) iff the matrix

Vs :=
[

I 0
]

Φ1(−L)V (41)

is nonsingular where Φ1(·) is a solution of (40) with λ = 1.

Furthermore the stabilizing solution is given by (32).

Proof: We first show that there exists a stabilizing

solution So in (25) iff the operator (38a) does not have any

eigenvalue at origin (Remark 5).

(⇒) Suppose there exists a stabilizing solution of (25).

Applying [−So, I ] to (27), then using (25), we have

Ao∗
S FSφ+ FSA

o
Λc
φ = 0, φ ∈ D(Ao

Λc
), (42a)

FS := SoV1 − V2 + SoGΠG∗V2, (42b)

Ao
S := Ao − BoR−1

c Bo∗So. (42c)

Since Ao
S and Ao

Λc
generate exponentially stable semigroups

on X o, the Lyapunov equation (42a) requires FS = 0
([2],[15] Lemma 2.32). We verify by contradiction that the

operator (38a) is invertible. Suppose (38a) has an eigenvalue

0 and

(V1 + GΠG∗V2)v = 0 (43)
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holds for v = (v0, v1) 6= 0. Then the equalities

FSv = −V2v = 0, V1v = 0 (44)

follow from (42b), (43) and, further, (44) yields contradiction

∃v0 6= 0 : V v0 = 0, v = (v0, v1) ∈ X o, (45)

since V is full column rank by (16). Hence (38a) is invertible.

(⇐) Since (27) holds and (38a) is assumed to be invertible,

(32) is a solution of (25). Applying [ I, 0 ] to (27), we have

Ao
S(V1 + GΠG∗V2)φ = (V1 + GΠG∗V2)A

o
Λc
φ, φ ∈ D(Ao

Λc
)

(46)

where Ao
Λc

generates exponentially stable semigroups on Xo.

Thus ASo also generates exponentially stable semigroups

and (32) provides the stabilizing solution.

Secondly by contraposition, we show that (38a) is in-

vertible iff (41) is nonsingular. By the equality (V1 +
GΠG∗V2)v = 0, V1 +GΠG∗V2 has an eigenvalue 0 iff there

exists v 6= 0 such that

V1v = −GΠu, u = G∗V2v (47)

hold. In the following, we verify that the matrix Vs is singular

iff v 6= 0 exist. Introducing auxiliary variables

p(ξ) :=

∫ ξ

−L

eAc(ξ−β){−(Π1u
1)(β)} dβ (48a)

q(β) := e−AT

c βV2v
0 +

∫ 0

β

eA
T

c (ξ−β)(Θv1)(ξ) dξ (48b)

to the left and right equalities in (47), respectively, we have
[

p′(ξ)
q′(ξ)

]

= Hi(1)

[

p(ξ)
q(ξ)

]

,
−L+ hi ≤ ξ ≤ −L+ hi+1

(i = 0, 1, · · · , d− 1)
(49)

with the following conditions:
[

p(−L)
q(−L)

]

= Φ1(−L)

[

p(0)
q(0)

]

, (50a)

[

p(0)
q(0)

]

= V v0, p(−L) = 0. (50b)

It is also noted that the left equality in (47) includes

v1(ξ) =

{

p(ξ), −L ≤ ξ ≤ 0
0, −L− Ľ ≤ ξ ≤ 0

. (51)

By (50a), (50b), we finally obtain the equality:
[

I 0
]

Φ1(−L)V v
0 = Vsv

0 = 0. (52)

If v0 = 0, (49), (50b) yield (p, q) = 0 and, further with

(51), we have v1 = 0. Hence v = 0 if v0 = 0. Conversely

v = 0 includes v0 = 0. Thus, V1 + GΠG∗V2 is invertible iff

the matrix Vs is nonsingular.

The representation (32) is obtained in the proof of neces-

sity.

Finally we clarify an alternative condition of So ≥ 0
by transforming (33) to maximal eigenvalue condition of a

compact operator.

Theorem 8: Let λmax be maximal root of the transcen-

dental equation

detVp(λ) = 0,

Vp(λ) :=
[

I 0
]

Φλ(−L)

{

(λ− 1) ·

[

I

0

]

+ V V T
2

}

(53)

where Φλ(·) is a solution of (40). The stabilizing solution

(32) is positive semi-definite (So ≥ 0) iff maximal root of

(53) satisfies λmax ≤ 1.

For the proof of Theorem 8, we prepare a preliminary

result which characterizes the condition (33) in terms of

maximal eigenvalue of a compact operator.

Lemma 9: The condition (33) is satisfied iff

Γ∆Γ∗ ≤ I (54)

holds for ∆ ∈ L(X 1
o ), Γ ∈ L(X 1

o ,R
n × L2(−L, 0;R

p1)):

∆ :=

[

I − V T
1 V2 0
0 0

]

−

[

V T
2 0
0 I

]

G1ΠG∗

1

[

V2 0
0 I

]

, (55)

Γ :=

[

I 0
0 NcC1 · I

]

. (56)

Proof: For the operator Q1 defined by (39), the equality

Q1 = Γ∗(I − Γ∆Γ∗)Γ (57)

follows from (55), (56). We will show that the conditions

(54) and Q1 = Γ∗(I − Γ∆Γ∗)Γ ≥ 0 are equivalent. The

condition (54) derives Q1 ≥ 0 directly. By contradiction, we

verify (57) derives (54). Note that the operator

Γ+ :=

[

I 0
0 (NcC1)

+ · I

]

(58)

preserves equalities ΓΓ+Γ = Γ and (ΓΓ+)∗ = ΓΓ+.

Suppose (57) holds and there exists y ∈ X o
1 such that

〈y, (I − Γ∆Γ∗)y〉 < 0 (59)

holds. Then a contradiction

〈ỹ,Γ∗(I − Γ∆Γ∗)Γỹ〉 = 〈y,Γ+∗Γ∗(I − Γ∆Γ∗)ΓΓ+y〉

= 〈y, (ΓΓ+ − Γ∆Γ∗)y〉

≤ 〈y, (I − Γ∆Γ∗)y〉 < 0 (60)

is derived for ỹ := Γ+y. Thus (54) is derived from (57).

Proof of Theorem 8: Since Γ∆Γ∗ is compact (see Re-

mark 5), we clarify the condition such that λmax(Γ∆Γ∗) ≤ 1
holds.

The equality λv = Γ∆Γ∗v is equivalently expressed as

λv =

[

I − V T
1 V2 0
0 0

]

v −

[

V T
2 0
0 Γ1

]

G1Πf, (61a)

f = G∗

1

[

V2 0
0 Γ∗

1

]

v. (61b)

For λ 6= 0, 1, we will show that there exists v 6= 0 which

satisfies (61a), (61b) iff the matrix (53) is singular.
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Introducing auxiliary variables

p(ξ) :=

∫ ξ

−L

eAc(ξ−β){−(Π1f
1)(β)} dβ (62a)

q(β) := e−AT

c βV2v
0 +

∫ 0

β

eA
T

c (ξ−β)CT
1 Ncv

1(ξ) dξ (62b)

to (61a) and (61b), respectively, we have the following

relations:

p′(ξ) = Acp(ξ)−

d
∑

i=0

χ[−L+hi,0](ξ) ·B
iR−1

c BiTf1(ξ),

− L ≤ ξ ≤ 0 (63a)

p(−L) = 0 (63b)

{(λ− 1) · I + V T
1 V2}v

0 = V T
2 p(0) (63c)

λv1(ξ) = NcC1p(ξ) (63d)

q′(β) = −AT
c q(β)− CT

1 Ncv
1(β), −L ≤ β ≤ 0 (63e)

q(0) = V2v
0 (63f)

f0 = q(−L) (63g)

f1(β) = q(β), −L ≤ β ≤ 0. (63h)

The differential equations:
[

p′(ξ)
q′(ξ)

]

= Hi(λ)

[

p(ξ)
q(ξ)

]

,
−L+ hi ≤ ξ ≤ −L+ hi+1

(i = 0, 1, · · · , d− 1)
(64)

follow from (63a), (63d), (63e), (63h), and, further, the

boundary conditions:
[

p(0)
q(0)

]

= Φ−1
λ (−L)

[

p(−L)
q(−L)

]

(65a)

[

p(−L)
q(−L)

]

=

[

0
I

]

f0 (65b)

[

V2V
T
2 −(λ− 1) · I − V2V

T
1

]

[

p(0)
q(0)

]

= 0 (65c)

follow from (64) and (63b), (63c), (63f), (63g). By (65a),

(65b), (65c), we finally obtain a condition:

Ṽp(λ)f
0 = 0, (66a)

Ṽp(λ) :=

[

V2V
T
2 −(λ− 1) · I − V2V

T
1

]

Φ−1
λ (−L)

[

0
I

]

. (66b)

If f0 = 0, (64), (65b) yield (p, q) = 0 and, further with

(63c), (63d), (63f), we have v = (v0, v1) = 0 for λ 6= 0, 1.

Hence v = 0 if f0 = 0. Conversely, if v = 0, (61b) derives

f = (f0, f1) = 0. Thus λ 6= 0, 1 is the eigenvalue of Q1 iff

the matrix Ṽp(λ) is nonsingular.

Since Vp(λ) = −Ṽ T
p (λ) is derived by substituting

Φ−1
λ (−L) =

[

0 I

−I 0

]

ΦT
λ (−L)

[

0 −I
I 0

]

(67)

to (66b), the eigenvalues λ 6= 0, 1 are given by (53).

By Theorems 7, 8 and (24), the analytic solution of (13) is

given with the base of stable eigenspace (16). The following

theorem summarizes the solvability condition and provides

an integral kernel representation of

S = G∗V2(V1 + GΠG∗V2)
−1G. (68)

Theorem 10: For a given γ > 0, the operator Riccati

equation (13) has a stabilizing solution S ≥ 0 iff (a1), (a2)

are satisfied.

(a1) The Hamiltonian matrix (15) does not have eigenvalues

on the imaginary axis.

(a2) The matrix (41) is nonsingular and maximal root of (53)

satisfies λmax ≤ 1.

If (a1), (a2) hold, the stabilizing solution S ≥ 0 of (68) is

expressed as

(Sv)0 = G(−L,−L)v0 +

∫ 0

−L

G(−L, β)v1(β) dβ

(Sv)1(ξ) = G(ξ,−L)v0 +

∫ 0

−L

G(ξ, β)v1(β) dβ

(Sv)2(β) =
ℓ

∑

j=0

χ[−ȟj ,0]
(β) · CjT

1 NcC
j
1v

2(β)

− L ≤ ξ ≤ 0,−Ľ ≤ β ≤ 0, v = (v0, v1, v2) (69)

G(ξ, β) =















[

0 I
]

Φ1(ξ)V
R
s Φ−1

1 (β)

[

I

0

]

, ξ ≤ β

−
[

0 I
]

Φ1(ξ)V
N
s Φ−1

1 (β)

[

I

0

]

, ξ ≥ β

(70)

V R
s := V V −1

s

[

I 0
]

Φ1(−L), V N
s := I − V R

s . (71)

Furthermore the H∞ control law (14) is given as follows:

u(t) = −D+
12

ℓ
∑

j=0

C
j
1x(t− ȟj)− (DT

12D12)
−1

d
∑

i=0

BiT
2

×

{

G(−L+ hi,−L)x(t) +

∫ 0

−L

G(−L+ hi, β)vt(β) dβ

}

vt(β) :=

d
∑

k=0

χ[−L,−L+hk](β) ·B
k

[

w(t+ β + L− hk)
u(t+ β + L− hk)

]

.

(72)

Proof: The conditions (a1), (a2) are derived by Lemmas

3-4 and Theorems 7-8. We will derive the representation of

(69) from (68). By (68), the equality f = Sv is expressed

as

V1w = G(v −Πf), f = G∗V2w. (73)

Introducing auxiliary variables

p(ξ) := eAc(ξ+L)v0

+

∫ ξ

−L

eAc(ξ−β){v1(β)− (Π1f
1)(β)} dβ (74a)

q(β) := e−AT

c βV2v
0 +

∫ 0

β

eA
T

c (ξ−β)(Θv1)(ξ) dξ (74b)
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to the left and right equalities in (73), respectively, we have

f0 = q(−L) (75a)

f1(ξ) = q(ξ), −L ≤ ξ ≤ 0 (75b)

f2(β) =

ℓ
∑

i=0

χ[−ȟi,0]
(β) · CiT

1 NcC
i
1v

2(β),

− Ľ ≤ β ≤ 0 (75c)

and the following equalities
[

p(ξ)
q(ξ)

]

= Φ1(ξ)

[

p(0)
q(0)

]

−

∫ 0

ξ

Φ1(ξ)Φ
−1
1 (β)

[

I

0

]

v1(β) dβ

(76)
[

p(−L)
q(−L)

]

=

[

v0

f0

]

,

[

p(0)
q(0)

]

=

[

V1
V2

]

w0 (77)

where Φ1(·) is defined by (40). Substituting (77) to
[

p(−L)
q(−L)

]

= Φ1(ξ)

[

p(0)
q(0)

]

−

∫ 0

ξ

Φ1(ξ)Φ
−1
1 (β)

[

I

0

]

v1(β) dβ,

(78)

then premultiplying [I 0] to both sides of (78), we obtain

w0 = V −1
s v0 + V −1

s

[

I 0
]

Φ1(−L)Φ
−1
1 (β)

[

I

0

]

v1(β) dβ

(79)

where Vs is nonsingular by Theorem 7. By (76), (77), (79),

the solution

q(ξ) = G(ξ,−L)v0 +

∫ 0

−L

G(ξ, β)v1(β) dβ (80)

is obtained. Thus (69) is derived by (75), (80).

Since the internal state x̂(t) = (x̂0t , x̂
1
t , x̂

2
t ) ∈ W corre-

sponds to

x̂0t := x(t), x̂1t := vt,

vt(β) =
d

∑

j=0

χ[−L,−L+hj ](β) ·B
j

[

w(t+ β + L− hj)
w(t+ β + L− hj)

]

,

− L ≤ β ≤ 0 (81)

the control law (72) is obtained from (14), (11), (69).

IV. H2 CONTROL PROBLEM

The state-space approach discussed in Section III has

advantage of providing solutions of H2 control problems in

a unified manner. In this section, we derive an H2 control

law for the preview/delayed system Σ. The result obtained

here is a generalization of [11], [8] which deal with multiple

preview actions.

Focus on the H2 full-information (FI) control problem

defined by Σ with (H1)-(H3) and (H̃4)

(H̃4) The system Σ satisfies the following condition.

Bi
2(D

T
12D12)

−1B
jT
2 = 0 (i 6= j) (82)

Bi
2D

+
12C

j
1 = 0 (i 6= 0 or j 6= 0) (83)

The H2 optimal control law and the performance are char-

acterized by the following theorem.

Theorem 11: Define the Hamiltonian matrix (15) and the

differential equation (40) replacing by

R−1
c =

[

0m1×m1
0

0 (DT
12D12)

−1

]

(γ → ∞). (84)

The H2 optimal control law is given by (72). Furthermore,

the optimal H2 performance γopt ≥ 0 is expressed as

γ2opt = trace(X),

X =
d

∑

i=0

d
∑

j=0

BiT
1 G(−L+ hi,−L+ hj)B

j
1. (85)

where G(·, ·) is the integral kernel defined by (70).

Proof: It is noted that the system response against the

disturbance

w(t) = δ(t) · w̄, w̄ ∈ R
m1 (86)

is equivalently described by Σ̂ with the initial state

x̂(0) = B1w̄ ∈ V . (87)

Hence, by [12], [13], an optimal control which minimizes

J(w̄) =

∫ ∞

0

‖z(t)‖2 dt (88)

is given by (72). Employing Theorem 10, the optimal value

of (88) is expressed as

Jopt(w̄) = 〈Bw̄,SBw̄〉V,V∗ = w̄TB∗SBw̄ = w̄TXw̄. (89)

Since the optimal H2 performance is given by

γ2opt =

m1
∑

i=0

Jopt(ei) = trace(X), (90)

the control law (72) is also optimal for (90) and the equality

(85) is obtained.

V. EXAMPLE

Define an H∞ preview and delayed control problem:

ẋ(t) =

[

1 0
1 3

]

x(t) +

[

0
d

]

w0(t) +

[

0
1

]

w1(t− hp)

+

[

1
0

]

u(t− hd)

z(t) =

[

0 1
0 0

]

x(t) +

[

0
1

]

u(t), d = 0.0, 0.4, 0.8 (91)

where w1 is hp unit-time previewable reference and w0 is

the uncertainty which disturbs the previewable signal w1.

Furthermore hd unit-time delay is imposed on the control u.

We will investigate the optimal performance γopt in terms

of (hp, hd).
Based on Theorem 10, the achievable H∞ performance

for (91) is obtained by Fig.1 (a)-(c). Fig.1 (a) summarizes

the performance for the case d = 0.0 and it is observed that

the curves coincide by sliding aside. This feature arises from

the fact that the common input delays min(hp, hd) can be

pushed out to the regulated output channel.

While in the cases d = 0.4, 0.8 (Fig.1 (b), (c)), the relation

between the preview and delay times are rather complicated

and the H∞ performance is not sufficiently recovered even

if long preview time is employed.
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Fig. 1. H
∞ performance vs. preview/delay times.

VI. CONCLUSION

A generalized H∞ preview/delayed control problem is

solved and a solvability condition is newly established.

The solvability condition overcomes the limitation of [6],

which causes numerical instability, and enables to deal with

preview/delayed control problems in a unified manner. An

H2 control law is also clarified by employing the integral

kernel representation for the solution of the operator Riccati

equation. The solution of H∞ output feedback control prob-

lem is derived by exploring the duality of control/filtering

operator Riccati equations.
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