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Abstract— Because of their high degree of maneuverability,
four wheel steered robotic vehicles have increasingly attracted
interest in many applications. These robots are characterized by
ability to easily maneuver tight turns. Two types of such vehicles
have been identified: vehicles with independently steered wheels,
and vehicles with mechanically coupled pairs of steered wheels.
While the latter group has been easy to model and control,
the former group still poses many control challenges. The
common approaches employed in modeling and controlling
vehicles with independently steered wheels either assume that
the rear wheels will copy the front steering angles or allow

wheel slippage to accommodate independent steering angles
for all wheels. Both these approaches do not offer the sought
maneuverability advantages. This paper revisits the problem of
four independent wheel steering and proposes an approach that
makes it possible to achieve maximum maneuverability while
avoiding wheel slippage. It develops individual wheel constraints
that enable the wheels to be independently controlled while
satisfying the desired vehicle motion. Numerical simulation
results have shown that this approach can indeed simplify the
problem of controlling four steered wheel vehicles.

I. INTRODUCTION

Because of their high maneuverability characteristics, the

interest in vehicles with four steered wheels has been in-

creasing over time. From a series of papers published by

the Society of Automotive Engineers [1], [2], [3] and other

technical media [4] in the mid-eighties, it seems that the

thrust towards these vehicles originated from the automotive

industry. The maneuverability problem in robotics was ap-

proached by using differential steering systems and omni-

wheels for omnidirectional locomotion [5], [6]. Together,

these approaches promoted successful development of omni-

directional robots with three steered wheels [6], [7], [8], [9]

of negligible slippage. Despite these successes, the problem

of controlling robotic vehicles equipped with four steered

wheels has not been as successful. This lack of success in

(a) (b)

Fig. 1. Typical Wheel Configurations for Four Wheel Steered
Vehicles

four steered wheel vehicles may be attributed to the presence

of many independently moving points on the vehicle, i.e., the
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wheels. Therefore, the rigid body kinematic constraints that

must be satisfied on such vehicles are generally difficult to

meet.

Today, two types of four wheel steered vehicles can be

identified as illustrated in Figure 1: vehicles with two sets

of mechanically coupled steered wheels (a), and vehicles

with independently steered wheels (b). Since the kinematic

constraints for vehicles that have mechanically coupled pairs

of steered wheels are less stringent, their dynamic models

have been easy to develop and control. These models have

only two steering angles: one angle for both front wheels and

another angle for both rear wheels. One of their characteristic

features is the presence of variable relative distances between

the wheels and the vehicle’s mass center. Many significant

results in robotics have been reported based on vehicles with

this wheel configuration [10], [11], [12], [13], [14].

Vehicles with independently steered wheels pose a chal-

lenge because of the difficulty in satisfying the rigid body

kinematic constraints for all wheels in a variety of paths.

Many of the proposed alternative approaches alleviate effects

of wheel slippage by using circular or square robots [15],

[16] and possibly with omnidirectional wheels [17], [18],

[19], [20], [21]. Others minimize the wheel slippage by

limiting the steering angles to only small values such that the

two front wheels can be assumed to have the same steering

angle as well as the rear wheels[22], [23].

The key kinematic constraint that must be satisfied by all

robotic vehicles is the consistence of the instantaneous center

of rotation (ICR) for all wheels and the robot body. Since

the location of ICR changes with the path geometry, it is in

general to difficult to exploit it. The easiest way of locating

the ICR is by constraining it along the perpendicular bisector

of the robot’s longitudinal centerline. However, this approach

limits the vehicle maneuverability, because it automatically

dictates the rear wheel angles to mirror the front wheel

angles. A closed loop solution for any arbitrary positioning of

the ICR has not been fully established. Existing approaches

for solving this problem involve some measurements or

estimation of the vehicle yaw rate [24], [25], and are related

to the early developments on the subject [26], [27]. Since the

relationship between the wheel velocities and the vehicle yaw

rate is one way causal, with the latter being a result of the

former, determining the wheel velocities based on estimated

yaw rates may be prone to considerable errors.

This paper develops closed loop constraints for determin-

ing the individual wheel steering angles and wheel speeds

using the path geometry and the vehicle speed only. These

constraints are applied in developing the path tracking con-
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troller for the vehicle. The vehicle is assumed to be equipped

with appropriate path detection sensors, and odometry. The

paper is divided into four sections. Section II formulates

wheel constraint equations, and develops a control system

for leading the robot along the desired path. Section III

presents numerical simulation results, and finally the paper

closes with some concluding remarks in Section IV.

II. VEHICLE MODELING AND CONTROL DESIGN

A. Kinematic Constraints

The theoretical foundation of the model presented is this

section lies in standard methods of analytical dynamics [28],

[29], [30], [31], [32]. Figure 2 shows the framework for

development of this model. Later on, the vehicle will be

assumed to be wholly a non-deformable rigid body such that

the relative orientations and positions rGi, i = 1,2, . . .4, of

the wheels from the mass center G are constant.
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Fig. 2. The configuration the coordinate system for a robotic vehicle

Assume that the frame xyz is attached to, and moves with
the vehicle at its center of mass, G, such that the y axis is
always pointing in the direction of the vehicle. If the corre-
sponding rotation (Euler) angles of frame xyz with respect
to XYZ are θx,θy, and θz then by using standard coordinate
transformation methods [28], [29], [30], the relative position

(x
′
,y

′
,z

′
) of any part of the vehicle can be expressed in the

XYZ frame by using the linear coordinate transformation J
such that





X
′

Y
′

Z
′



 =�rOG +JG





x
′

y
′

z
′



 , (1)

where �rOG is the relative position of the vehicle’s center of
mass in the XYZ inertial frame from its origin, and JG is
the rotation matrix of the frame xyz in frame XYZ about G.
Assuming sequential Z −Y −X rotations, the matrix JG is
defined as

JG �





CyCz CxSz +SxSyCz SxSz −CxSyCz

−CySz CxCz −SxSySz SxCz +CxSySz

Sy −SxCy CxCy



 , (2)

with Cx � cos(θx), and Sy � sin(θy). Defining�rxyz as a point

on the vehicle body such that �rxyz �
[

x
′

y
′

z
′ ]T

, then

the velocity vector �V of this point �rxyz on the car as seen

from the origin of the XYZ inertial frame is

�V = �VG +�Ω×�rxyz + JG�̇rxyz, (3)

where �Ω is the rotational velocity vector of the frame xyz in

frame XYZ defined as �Ω �
[

θ̇x θ̇y θ̇z

]T
, and �VG ��̇rOG

is the velocity of the mass center. Furthermore, if �aG ��̈rOG,
then the acceleration �a of the point �rxyz also satisfy

�a =�aG +�Ω×
(

�Ω×�rxyz

)

+ �̇Ω×�rxyz +2�Ω×�̇rxyz + JG�̈rxyz (4)

For a ground robotic vehicle with n wheels, each wheel

must move at velocities �Vi and accelerations �ai each satis-

fying (3) and (4) such that the vehicle tracks the desired

path �rOG at a desired velocity, �VG, and acceleration, �aG,
without slippage. Most often, control problems are concerned

with satisfying velocity requirements only, with accelerations

serving as intermediaries towards achieving the desired ve-

locities.

In the general case where the robotic vehicle runs along

a path, �p(X ,Y,Z), defined in the inertial frame XY Z, all

three components of each wheel velocity, �Vi, must be well

coordinated. This is relatively complex endeavor; however,

most applications assume that the path, �p(X ,Y,Z), is along a

flatland such that the Z-coordinate is constant. Therefore, the

control problem reduces to determining only two components

of the wheel velocities. Even with this assumption of a

flatland path, if �rxyz is not constant, then �VG will still have

three components, with almost same level of difficulty as that

of a 3-D path.

The simplest case of flatland path that has been extensively

studied assumes that the vehicle is a rigid body such that

�̇rxyz = 0, and�̈rxyz = 0. Under this assumption, there exists a

single point C at position�rOC in the inertial frame serving as

its instantaneous center of zero velocity such that �VG = �Ω×
(�rOC −�rOG). Therefore, the velocities at the wheel centers

can be expressed as

�Vi = �Ω× [�rOC − (�rOG +�rGi)], i = 1,2, . . .4, (5)

where�rGi is the position vector of wheel i from the vehicle’s

mass center. Again, the problem of controlling the robotic

vehicle to track a particular path focuses on determining

the wheel velocities, �Vi, of (5) such that the robot tracks

the desired trajectory, �rOG, at the desired velocity, �VG,
without wheel slippage. Even for this simplest form of robot

navigation control as a rigid body in 2-D path, it is still

difficult to coordinate all wheel velocities in a way that the

vehicle velocity, �VG, is met.

There are two possible approaches for the vehicle to track

the 2-D path �p(X ,Y ): either track the path of its mass center

or track the path of its wheels. A typical configuration of

a four steered wheel vehicle tracking a path �p(X ,Y ) on a

flat XY plane is shown in Figure 3. The velocity, �Vi, of

each wheel can be expressed by the wheel speed, Vi, and its

steering angle, δi, such that equation (5) is satisfied, with an

instantaneous center of zero velocity located at C.
By tracking the mass center, the wheels can assume any

velocities (speeds and steering angles) as long as require-

ments on�rG and �VG are satisfied. However, this approach can

take the wheels into negative obstacles that are close to but

not on the tracked path. The second approach, which tracks

the path of the wheels, can avoid negative obstacles, but it

can also lead the vehicle into positive obstacles that are close
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Fig. 3. Typical wheel configuration for a four wheel steered vehicle
on a flat surface.

to but not on the wheel path, especially when negotiating

corners. We consider the wheel tracking approach only with

restrictions that the deviation of G from its path is within

acceptable bounds λ such that

||�rOG −�p(X ,Y )|| ≤ λ , (6)

where || · || is the normal Euclidean norm; therefore the
enclosed angles σ at the corners of all allowable traversable
paths must satisfy λ ≥ 1

2
H tan 1

2
σ . For the vehicle in Figure

3, if V f , VG, and Vr respectively are the front, center and
rear speeds of the vehicle along the longitudinal centerline
with respective directions δ f , δG and δr then kinematic and
rigid body constraints on the centerline satisfy V f cosδ f =
VG cosδG = Vr cosδr, and at the front and real axles these
constraints satisfy V1 sinδ1 =V f sinδ f =V2 sinδ2, and V3 sinδ3 =
Vr sinδr = V4 sinδ4; therefore it can be shown that

V f sinδ f −Vr sinδr = 2(VG sinδG −Vr sinδr) = Hω, (7)

V1 cosδ1 −V2 cosδ2 = 2(V f cosδ f −V2 cosδ2) = Wω, (8)

V4 cosδ4 −V3 cosδ3 = 2(Vr cosδr −V3 cosδ3) = W ω. (9)

where ω is the vehicle yaw rate as it negotiates a corner.
Since the only information available to the controller is

limited to the path geometry (δ f and δr) and the desired robot
speed VG, the controller is required to establish the values of
the wheel speeds Vi, i = 1,2 . . . ,4 and the drive angles δ i, i =
1,2 . . . ,4. In practice, navigation sensors will determine the
path direction angle at the front axle, δ f ; however, there
will be no corresponding sensors for determining the path
direction angle at the rear axle, δr, for these equations to be
determined. If the orientation angle, θ , of the vehicle and the
path gradient angle ρ in the inertial frame X −Y are known
where ρ = tan−1

(

dY
dX

)

, then the path direction angles at the
front axle δ f and at the rear axle δr of the vehicle satisfy

δ f =
π

2
− (θ +ρ f ); δr =

π

2
− (θ +ρr), (10)

where ρ f and ρr respectively are the path gradient angles
at the front and at the rear axles of the vehicle. A finite
path memory function M is required to monitor the front
path gradient angle, ρ f , such that at any front axle path
coordinates (X f ,Yf ) and vehicle orientation θ ,

M(X f ,Y f ) = ρ f , (11)

ρr = M(X f −H sinθ ,Y f −H cosθ ). (12)

These path gradient angles are used to determine the path

orientation parameters in (10). This assumption requires the

vehicle to start its motion on a straight line path along the

Y direction for at least distance H before making turns.
If all angles δi, i = f ,G,r,1,2, . . . ,4 are such that |δi|<

π
2
,

then by combining equations (7)-(9) with the instantaneous
center equation (5) leads to the wheel speed constraints1

Vi =



















VG tanδ f cscδi
√

1+ 1
4
(tanδ f +tanδr)

2
, i = 1,2;

VG tanδr cscδi
√

1+ 1
4
(tanδ f +tanδr)

2
, i = 3,4;

(13)

and wheel steer angle constraints

δ1 = cot−1

(

cotδ f +
W

2H
cotδ f [tanδ f − tanδr]

)

, (14)

δ2 = cot−1

(

cotδ f −
W

2H
cotδ f [tanδ f − tanδr]

)

, (15)

δ3 = cot−1

(

cotδr −
W

2H
cotδr[tanδ f − tanδr]

)

, (16)

δ4 = cot−1

(

cotδr +
W

2H
cotδr[tanδ f − tanδr]

)

, (17)

These constraint equations are similar to those of [26],

[27], but they are proactive and more explicit requiring

information on the vehicle speed VG and the path geometry

(δ f ,δr) only instead of relying on the vehicle yaw rate ω ,
which essentially is dependent on wheel speeds and angles.

B. Dynamic Equations

To formulate the dynamic equations for the robot, it is

assumed that the wheels will roll without slippage, therefore,

the wheel speed Vi is related to its rotational speed ϕ̇i as

Vi = rwϕ̇i, where rw is the wheel radius. Figure 4 shows the

forces acting on the robot wheel (a) and on the robot body

(b). Each wheel is acted on by a total of four forces and

three torques: the longitudinal, FLi, and lateral, FTi, ground

reactions; the longitudinal, RLi, and lateral vehicle support

reactions, RTi; the steering torque, τSi, the traction torque,

τTi, and the wheel self-aligning torque τAi (not shown in

the figure). The side slip angle for the wheel is γ i, and the

no wheel slippage condition guarantees that FLi = RLi, and

FTi = RTi. The vehicle body is acted by a total of four pairs

of wheel reactions: RLi and RTi for i = 1,2, . . . ,4.
Assuming that the vehicle weight MRg is evenly dis-

tributed on all wheels, the lateral tire force FTi can be

approximated as

FTi =
1

4
MRgµ(γi), (18)

where µ(γi) is the friction coefficient for a particular side
slip angle γi; it can be estimated using either the extended
Burckhardt’s formula [33]

µ(γi) = [C1 −C1 exp(−C2γi)−C3γi]exp(−C2γiVi), (19)

or the Pacejka’s formula [34]

µ(γi) = C1 sin
(

C2 tan−1
(

C3γi −C4(C3γi − tan−1(C3γi))
))

, (20)

1Note that limδx ,δy→0[tan δx cscδy] = limδx ,δy→0

[

sinδx
sinδy

secδx

]

= 1
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where C1, C2, C3, and C4 are constants governed by the tire

and road contact conditions.

The effects of the wheel self-aligning torque, τAi, on each

wheel can be neglected; therefore, the generalized coordinate

vector q ∈ R
11 for the robotic system will be defined as

q = [XG,YG,θ ,ϕ1,ϕ2,ϕ3,ϕ4,δ1,δ2,δ3,δ4]
T , (21)

and a corresponding generalized force vector as

Q = [FX ,FY ,τθ ,τT 1,τT 2,τT 3,τT 4,τS1,τS2,τS3,τS4]
T . (22)

If the wheel slip angles γi are neglected, then the generalized
forces FX and FY are related to the wheel reactions by

FX =
4

∑
i=1

RTi(sinδi cosθ −cosδi sinθ )+RLiΨi, (23)

FY =
4

∑
i=1

RLi(sinδi cosθ −cosδi sinθ )−RTiΨi, (24)

where Ψi = (sinδi sinθ +cosδi cosθ ), and the magnitude of

the generalized body torque τθ is defined as

τθ =

∣

∣

∣

∣

∣

4

∑
i=1

[

�rGi × (�RTi +�RLi)
]

∣

∣

∣

∣

∣

. (25)

By ignoring the potential energy due to the steering damp-
ing and the vehicle suspension system, the corresponding
Lagrangian L for this system can now be defined as

L =
1

2

[

MRV 2
GX +MRV 2

GY + IRω2 +
4

∑
i=1

(Iwrϕ̇2
i + Iwsδ̇ 2

i )

]

, (26)

where MR is the mass of the robot, IR its yaw moment of

inertia, Iwr the wheel rotational moment of inertia of each

wheel about the ground contact, and Iws is the steering rota-

tional moment of inertia for each wheel. The linear speeds,

VGX and VGY respectively, are the X- and Y - components of

the vehicle velocity �VG, i.e.,

VGX =
VG(tanδ f + tanδr)

√

4+(tanδ f + tanδr)2
, (27)

VGY =
2VG

√

4+(tanδ f + tanδr)2
. (28)

By applying the standard Euler-Lagrange equation
d
dt

(

∂L

∂ q̇ j

)

− ∂L

∂q j
= Q j, j = 1,2, . . . ,11, the resulting equa-

tions of motion can be expressed as

ẋ = F (x,u), (29)

where the control vector, u ∈ R
8, comprises of the wheel

torques only, i.e.,

u = [τT 1,τT 2,τT 3,τT 4,τS1,τS2,τS3,τS4]
T ; (30)

the state vector, x ∈ R
14, is defined as

x = [XG,VGX ,YG,VGY ,θ ,ω,δ1,β1,δ2,β2,δ3,β3,δ4,β4]
T , (31)

where βi = δ̇i. The wheel longitudinal forces satisfy

RLi = FLi =
1

rw

(

τTi −
IwrV̇i

rw

)

(32)

for each wheel i = 1,2 . . . ,4, where Vi’s are defined as in (13)

with VG =
√

V 2
GX +V 2

GY , and the lateral forces RTi = FTi are

estimated using (18). The 14×8 dynamic system (29) can be

established by combining the formulations described above.

C. The Path Tracking Controller

From the model developed in Section II-B, the path

tracking control problem is defined as that of finding u

such that the vehicle runs at the desired speed VG(re f ) and

it remains aligned to the path �p(X ,Y ). Figure 5 shows a

simplified structure for this control system.

Σ

0

0

V
G(ref)

Vehicle Movement

and Location

Robotic VehicleWheel MotorsController

fδ

rδ

V
G

0

Path data

0

δ f(ref)

rr(ref)δδ
δ f

Desired Speed

Fig. 5. A simplified layout of the proposed control system.

Many standard multivariable nonlinear control approaches

can be applied in developing the required controller for this

system. However, the size and structure of this 14×8 system

will definitely complicate the control design process. The

approach used in this paper is to break the control problem

into simple individual wheel controllers in a decentralized

form. This approach treats the robot as system of objects

centered at the vehicle wheels. As such, it assumes that the

weight of the vehicle is evenly distributed among the wheels

such that application of equation (32) on the wheel yields
(

MR

4
+ mw

)

V̇i =
1

rw

(

τTi −
IwrV̇i

rw

)

, (33)

where mw is the mass of the wheel. This, along with the

corresponding steering equations for each wheel, neglecting

the steering wheel friction, leads to





V̇i

δ̇i

β̇i



=







4rwτTi

MRr2
w+4(Iwr+mwr2

w)

βi
τSi
Iws






. (34)

Now, it is required to find τTi and τSi such that the wheel

motion satisfies the references, Vi(re f ) and δi(re f ), compatible
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with [VG(re f ),δ f (re f ),δr(re f )]
T . At this point, only a simple

decoupled proportional controller has been numerically sim-

ulated under discrete time domain as
[

τTi(k + 1)
τSi(k + 1)

]

=

[

PKT [Vi(re f )−Vi(k)]
PKS[δi(re f ) − δi(k)]

]

, (35)

where PKT and PKS are the traction, and steering proportional

control gains. This controller is not only simple, but also it

is less dependant of the model accuracy; additionally, the

controller uses easily measurable inputs, i.e., the desired

vehicle speed and the path geometry.

III. SIMULATION RESULTS

The proposed controller was numerically simulated on a

robotic vehicle whose physical data is shown in Table I.

TABLE I

SIMULATION VEHICLE PHYSICAL PARAMETERS

Quantity Value Units Quantity Value Units

MR 50.00 Kg mw 3.5 Kg

IR 5.50 Kgm2 rw 0.085 m

H 1.00 m Iws 0.009 Kgm2

W 0.75 m Iwr 0.025 Kgm2

Figures 6 through 8 show some of the simulation results

obtained along a path illustrated in Figure 6 at a speed of

VG = 1 m/s. The theoretical values of the wheel speeds and
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Fig. 6. The simulated robot trajectory

steering angles were computed in two approaches; the first

approach used the path gradient to determine the instanta-

neous centers shown in red dots, then the speeds of the

wheels and their directions were determined geometrically

using these instantaneous centers. The second approach, also

used the path gradient to determine the angles δ r and δ f ;

these angles were used in equations (13) through (17). Both

approaches yielded identical results.

The proposed decoupled controller (35) was simulated

on the vehicle described above at a sampling interval of

1 ms; the controller gains were set at PKT = 120 and PKS =
230. The vehicle speed was assumed to remain constant at

1.0 m/s, and the front axle path angle, δ f , was estimated

by using the path gradient at the front axle, while the rear
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axle path angle, δr, was determined by using the memory

function (11)-(12). Figures 7 and 8 respectively show the

results obtained on the wheel angles and wheel speeds as

compared to the predicted values. Because of the exact

similarity between the controlled values and the theoretical

values, it appears in these Figures as if each wheel is

represented by one curve only, instead of two: the controlled

and the theoretical. The controlled values for each wheel

have a ‘contr’ subscript while the theoretical values have a

subscript ‘th’. This similarity is an indication that this simple

controller generated wheel speeds and angles that drive the

robot along the path as perfectly as predicted by the theory.

The control torques for the simulated vehicle are shown

in Figures 9 and 10. The magnitudes of the traction torques

increased whenever the corresponding wheel speeds changed

rapidly, and remained almost zero when the wheel speed was

held at near constant values. The steering torques showed

to be very actively busy throughout the simulation inter-

val, especially when negotiation corners. Both the steering

torques and the traction torques where within ±15Nm for

the simulated vehicle, which is a reasonable value.

IV. SUMMARY AND CONCLUSIONS

This paper has presented eight explicit kinematic con-

straint equations that must be satisfied by four wheel steered

vehicles. These constraints depend on the desired vehicle

speed and the path geometry. Generally, the resulting vehicle

model is relatively large, i.e., fourteenth order; however, by

decentralizing the control system, it is possible to control

the vehicle using four simple controllers at each wheel.

Simulation results have demonstrated this concept that. Since

certain speeds and angle demands may call for excessively

high torques, it is important to limit the maximum allowable

vehicle speed VG at any given corner angle σ . The next phase

of the research will focus on implementing the proposed
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Fig. 10. Simulated Steering Torques

control approach on an experimental 4WS/4WD robotic

vehicle and compare its performance to those that assume

the axle wheels to have the same steering angles, and those

that estimate the vehicle yaw rate.
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