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Abstract— A discrete linear multi-agent system is considered,
and each agent in the system aims to minimize his own infinite-
horizon quadratic cost. An attempt is made to quantify the
relative value of information at each node in the network.
This knowledge is relevant when the exchange of information
between agents is costly or limited. First, a centralized approach
to the estimation and control problem is taken. Then, a non-
zero sum game is formulated, in which the strategies are the
measurements selections. We impose that these be time periodic,
which allows us to pose an equivalent finite-horizon game and
to interpret the results as explicit data rates. The method is
applied to the simple example of a string of cars, and provides
an interesting validation to a heuristic assumption made in
previous work on string stability.

Index Terms— Decentralized control, limited information,
measurement selection

I. INTRODUCTION

Due to potentially significant advantages and technological
advances, decentralized control has generated a substantial
interest in the last few decades ([1], [2]). However, a
number of theoretical difficulties are introduced with de-
centralization. Among them, the question of the distribution
of information at each of the nodes of the network at
which the local controls are applied has a great impact
on the performance of the system. Indeed, a non-classical
information pattern, where the measurement sequence is not
nested, was shown to lead to non-obvious consequences ([3]).
Decentralized information is inherently non-classical, and
requires the generalization of notions of stabilization under
(local) feedback ([4], [5]) and controllability ([6]).

In large multiple-agent systems, the transmission of infor-
mation between agents can be costly, or limited by band-
width. Depending on the objective of the control problem, it
seems reasonable that only a part of the total information
about the system is relevant for an individual node. For
example, in a formation of a large number of vehicles,
information about distant vehicles might be ignored, or
transmitted at a lower frequency than that of nearby vehicles.

The aim of this paper is to develop a methodology which
quantifies the relative value of data from each measure-
ment at all the nodes in the system and to provide effi-
cient measurement selection under bandwidth constraint. The
framework adopted is the following. The system is assumed
linear, discrete, and perturbed by Gaussian white noise. The
decision process is non-cooperative, so each agent attempts
to minimize his own infinite-horizon quadratic cost. Each
agent selects a subset of all the available measurements,
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and the selections are constrained to be periodic. From
this local measurement information sequence, the agents
construct their own filter of the entire state, on which the
individual controllers are based.

Ideally, each agent would try to minimize his cost with
respect to his choice of the state estimator, the control law,
and the measurement sequence. However, a Nash solution
with respect to all these free variables entering the opti-
mizations is difficult, since the information pattern would
become non-classical, and the separation principle would
therefore no longer hold. To avoid this complexity, we choose
to perform the optimizations sequentially. First, the filter
is defined for all agents. Then, assuming all agents use
this centralized state estimator, person-by-person optimal
controllers are determined. Finally, the measurement se-
quences are sought, by formulating a periodic optimal control
problem, where the controls are the explicit data rates of each
measurement. The notion is to start from a solution assuming
centrality, and discard information with limited relevance.
This will yield a suboptimal solution to the general problem.
A similar approach was taken for continuous time ([7]), but
the discrete-time formulation allows for direct interpretation
of the results as data exchange rates. Also, the optimal
measurement sequences are for a given limit on the number
of measurements per time-step, instead of adding a cost
for communication in the performance objective ([7], [8]).
Related work has been done in the single agent systems case:
selecting a single measurement optimally with respect to an
estimation error ([9]), determining optimal control when each
measurement is costly ([10], [11], [12]), and simultaneous
optimization of control and measurement under constrained
total amount of measurement ([13]).

The paper is organized as follows. The problem is for-
mulated in section II. Optimization of the estimation and
control gains is done in section III. In section IV, the agents’
measurement selection process is introduced, and a periodic
optimal control problem is posed. Finally, the approach is
tested on a simple example in section V.

II. PROBLEM FORMULATION

A. Dynamics and Measurements

Consider a discrete linear dynamic system composed of
M vehicles:

x[k + 1] = Ax[k] +
M∑
j=1

Bjuj [k] + Γw[k] (1)

y[k] = Cx[k] + v[k] (2)
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where x ∈ Rn is the aggregate state vector of the M vehicle
system, uj ∈ Rmj , j = 1 · · ·M is the control vector of
the jth vehicle, w ∈ Rp is the zero-mean Gaussian white
process noise with power spectral density W , y ∈ Rq is
the vector of all available measurements, and v ∈ Rq is the
zero-mean Gaussian white measurement noise with power
spectral density V , assumed to be independent between
measurements. Let Y [k] be the measurement history

Y [k]
def
= {y[s] : 0 ≤ s ≤ k} (3)

At time k, each agent i will have access to a subset of the
measurement history (3), in order to update its estimate x̂i[k]
of the entire state of the system. Each control ui[k] will be
a function of x̂i[k].

B. Costs

Each agent i in the network attempts to minimize his cost
Ji, with an infinite horizon. We assume the cost is quadratic
in the state and the controls, having the form:

Ji = lim
N→∞

1

N
E

[
N−1∑
k=0

(
x[k]TQix[k] + ui[k]

TRiui[k]
)]

(4)
where E[·] is the expectation operator, and Qi = QT

i ≥ 0
and Ri = RT

i > 0 for all i. The matrices Qi should reflect
the relative importance of certain linear combinations of the
state, e.g. by weighing more the relative distance with a close
agent versus the one with a farther agent in the network.
This multi-cost formulation provides flexibility through the
different possible choices of the matrices Qi (perhaps more
than a single-cost approach).

III. CENTRALIZED ESTIMATOR AND CONTROLLER

A. Centralized Estimator

First, we assume that all agents have access to the entire
available set of measurements y[k] as well as all the agents’
controls uj [k] at each time-step. With this assumption, we
choose to use the standard discrete Kalman filter with infinite
horizon, and each agent will have the same estimator gains.
Denote x̂[k] the a posteriori estimate, and x̄[k] the a priori
(or propagated) estimate at time k; then

x̄[k + 1] = Ax̂[k] +
M∑
j=1

Bjuj [k] (5)

x̂[k + 1] = x̄[k + 1] +K(y[k + 1]− Cx̄[k + 1]) (6)

K is the steady-state Kalman gain, and is given by:

K = P̄CT (CP̄CT + V )−1 (7)

where P̄ is the a priori error variance, and is the solution to
the algebraic Riccati equation:

0 = AT P̄A−P̄+A
[
P̄CT (CP̄CT +V )−1CP̄

]
AT +ΓWΓT

(8)

This can be rewritten in terms of the a posteriori error
variance P :

K = PCTV −1 (9)

P =
(
P̄−1 + CTV −1C

)−1

(10)

B. Nash Equilibrium Controllers

We assume that all agents use the same estimator, x̂[k],
computed above. We now look to solve the multi-criteria
optimization problem. We can compute the Nash equilibrium
by solving the following problem:

minu1 J1(u1, u
0
2 · · · , u0

M )
...

minuM
JM (u0

1, · · ·u0
M−1, uM )

s.t. (1) - (2), (5) - (8)

(11)

Solutions to the finite-horizon version of this problem were
derived both for continuous time ([14], [7]) and discrete
time ([15]). It was also shown that when all the agents use
the same measurements, the certainty equivalence principle
holds ([15]). Therefore, in the remainder of the section, full-
state feedback is assumed in determining the control gains. It
is not immediate to conclude that the solution to the infinite-
horizon problem is the limit of the solution to the finite-
horizon case. However, we will now show that this is in fact
the case when solutions exist and lead to a stable closed-loop
system. Namely, if we define

A(−i) = (A+
∑
j ̸=i

BjGj), ∀i = 1, . . . ,M (12)

the optimal controls to the infinite-horizon problem are:

∀i = 1, . . .M, ui = Gix (13)

where

Gi = −(Ri +BT
i SiBi)

−1BT
i SiA(−i) (14)

= −R−1
i BT

i Si(A+
∑
j

BjGj) (15)

Si = Qi +AT
(−i)SiA(−i)

−AT
(−i)SiBi(Ri +BT

i SiBi)
−1BT

i SiA(−i) (16)

= Qi + (A+
∑
j

BjGj)
TSi(A+

∑
j ̸=i

BjGj) (17)

To show this, first make a change of variable in the control:

ui = Gix+ ri (18)

Next, note that if the closed-loop system is stable, E(x[k])
will be bounded, and a fortiori so will E(x[k]TSix[k]).
Therefore, using the following zero quantity:

H = lim
N→∞

1

N
E

[
N−1∑
k=0

(x[k+1]TSix[k+1]−x[k]TSix[k])

]
,

(19)
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the dynamics, and the equations for Gi and Si, we have after
some manipulation that:

Ji = Ji +H

= lim
N→∞

1

N
E

[
N−1∑
k=0

rTi (Ri +BT
i SiBi)ri

]
+ tr(ΓTQiΓW )

(20)

Since the quadratic form in (20) is positive definite, the
minimum of Ji with respect to ri is clearly attained for
ri = 0, which proves the claim.

The conditions which guarantee the existence of a so-
lution to the coupled-Riccati equation satisfied by the Si

are unclear. Indeed, for each i the matrix A(−i) entering
the equation for Si depends on the solutions Sj , j ̸= i.
Likewise, if the existence of a solution is assumed, the
closed-loop stability is not straightforward. What seems
clear is that for all the costs Ji to be bounded, the states
which are observable by any one Qi must remain bounded.
In particular, if (A, [QT

1 . . . QT
M ]T ) is observable, then the

closed-loop stability of the system is necessary for all the
costs to be finite. All these considerations are the subject of
current work.

IV. MEASUREMENT OPTIMIZATION

A. Individual Estimators

We now assume that these gains Gj are known a priori by
all agents, but that each agent does not know, by default, the
actual controls ui[k] of the other agents (a priori knowledge
of the control gains appears to yield a better performance
than online knowledge of the exact control actions ([7])).
Agent i’s best estimate of agent j’s control action uj [k] =
Gj x̂j [k] is Gj x̂i[k], where x̂i[k] is agent i’s a posteriori
estimate of the state of the system at time k. Therefore, agent
i’s a priori estimator’s update equation is:

x̄i[k + 1] = Ax̂i[k] +
M∑
j=1

BjGj x̂i[k] (21)

Now, we want to express that at time step k, agent i only
has access to a certain subset of measurements chosen among
the available measurements y[k]. We do this by setting the
innovation to zero when the measurement is not available,
i.e., we define the ”selector” matrix Li[k] of agent i at time
k as a diagonal matrix whose diagonal terms are 1 (resp.
0) for the available (resp. unavailable) measurements. The a
posteriori estimate’s update equation for agent i is then:

x̂i[k + 1] = x̄i[k + 1] + . . .

+KLi[k + 1](y[k + 1]− Cx̄i[k + 1]) (22)

B. Closed-loop System and Error Variance Differential
Equation

Define the aggregate state:

x̃[k] =
[
xT [k] x̂T

1 [k] . . . x̂
T
M [k]

]T
∈ R(M+1)n (23)

We can write the closed-loop update equation (similar results
can be found in [16]). For ease of notation, we drop the time
index ([k + 1]) for the Li’s. First, denote

Ωi = (I −KLiC)(A+
∑
j

BjGj) (24)

Then, using (21) and (22):

x̃[k + 1] = ÃCL[k]x̃[k] + Γ̃[k]

[
w[k]

v[k + 1]

]
(25)

where

ÃCL[k] =


In

KL1C
...

KLMC

 [
A B1G1 . . . BMGM

]

+


0n

Ω1

. . .
ΩM

 (26)

and

Γ̃[k] =


Γ 0

KL1CΓ KL1

...
...

KLMCΓ KLM

 (27)

Let X̃[k] = E[x̃[k]x̃T [k]]. The difference equation for X̃ is
the Lyapunov equation:

X̃[k + 1] = ÃCL[k]X̃[k]ÃT
CL[k] + Γ̃[k]

[
W 0
0 V

]
Γ̃T [k]

(28)
This deterministic matrix equation is a function of the
matrices Li[k + 1] of each agent i and at all time k. Note
that spectrum(A+

∑
j BjGj) ⊂ spectrum(ÃCL[k]) for all

k, so that the stability of A+
∑

j BjGj is necessary for the
stability of ÃCL[k] (see appendix for proof).

C. Periodic Optimal Control Formulation

With the notations introduced above, we can express the
costs Ji as functions of X̃ . Indeed, if

X̃00 = E[x[k]xT [k]] and X̃ij = E[x̂i[k]x̂
T
j [k]] (29)

then

Ji = lim
N→∞

1

N
E

[
N−1∑
k=0

(
x[k]TQix[k] + ui[k]

TRiui[k]
)]
(30)

= lim
N→∞

1

N
tr

[
N−1∑
k=0

(QiE[x[k]x[k]T ]+

+GT
i RiGiE[x̂i[k]x̂i[k]

T ]
)]

(31)

= lim
N→∞

1

N
tr

[
N−1∑
k=0

(QiX̃00[k] +GT
i RiGiX̃ii[k]

)]
(32)
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We interpret the difference equation (28) as a controlled
dynamical system with X̃ as the state, where the controls
are the matrices Li[k]. These matrices Li[k] are assumed
periodic (data rate), but with an unknown period T . We
optimize each Ji, and the optimization is performed on the
controls as well as on the period. Since the Li are assumed
periodic with period T , so are ÃCL and Γ̃. Therefore,
equation (28) has T -periodic coefficients.

We will now show that under certain conditions, this
infinite-time optimal control problem is equivalent to a
finite-time problem, which we will then be able to solve
numerically. First, define the monodromy matrix Ψ for ÃCL

as:
Ψ = ÃCL[T − 1]× . . .× ÃCL[0] (33)

Claim: If Ψ is stable, the limit in equation (32) can be
rewritten as a finite sum:

Ji = lim
N→∞

1

N
tr

[
N−1∑
k=0

(QiX̃00[k] +GT
i RiGiX̃ii[k]

)]
(34)

=
1

T
tr

[
T−1∑
k=0

(QiX̃
∗
00[k] +GT

i RiGiX̃
∗
ii[k]

)]
(35)

where X̃∗ is the unique T -periodic solution of eq.(28).

Proof: It is a known result ([17]) that if monodromy
matrix does not have any reciprocal eigenvalues, equation
(28) has a unique T -periodic solution X̃∗. In particular, this
is the case for a stable Ψ, since all eigenvalues will be inside
the unit circle.

Next, define ∆X̃[k] = X̃[k]− X̃∗[k]; then from eq.(28):

∆X̃[k + 1] = ÃCL[k]∆X̃[k] ÃT
CL[k] (36)

By immediate induction:

∆X̃[k + T ] = Ψ∆X̃[k] Ψ (37)

=⇒ ||∆X̃[k + T ]|| ≤ ||Ψ|| ||∆X̃[k]|| ||Ψ|| (38)

So if ||Ψ|| < 1,

=⇒ lim
k→∞

||X̃[k]− X̃∗[k]|| = lim
k→∞

||∆X̃[k]|| = 0 (39)

This shows that although X̃ is not a periodic sequence, it
converges, in the sense of eq.(39), to the periodic sequence
X̃∗.

Now define the function fi : R(M+1)n×(M+1)n 7→ R by

X 7→ fi(X) = tr(QiX00 +GT
i RiGiXii) (40)

where the subscripts on X represent, as before, the block
selection, and the sequence

Z̃∗
i [k] = fi(X̃

∗[k]) (41)

The following lemma (see appendix for proof), which is an
extension of Cesaro’s lemma to periodic sequences, will be
of use:

Lemma 1 Let (un)n∈N be a T -periodic sequence, i.e., ∀n ∈
N, un+T = un. Then:

lim
N→∞

1

N

N−1∑
k=0

uk =
1

T

T−1∑
k=0

uk = µ (42)

Since the sequence Z̃∗
i is clearly T -periodic, we can conclude

that:

lim
N→∞

1

N

N−1∑
k=0

Z̃∗
i [k] =

1

T

T−1∑
k=0

Z̃∗
i [k] < +∞ (43)

Note that the term on the right hand side of the equation
above is exactly the term in eq.(35). To conclude the claim,
we now present two lemmas, the proofs of which are in the
appendix.

Lemma 2 Let (un) and (vn) be two sequences such that

lim
n→∞

||un − vn|| = 0 (44)

and let f be a given uniformly continuous function. Then:

lim
n→∞

||f(un)− f(vn)|| = 0 (45)

Note: if f is continuous, but not uniformly, the result is no
longer valid.

Lemma 3 Let (un) and (vn) be two sequences such that

lim
n→∞

||un − vn|| = 0 (46)

Then:

lim
N→∞

1

N

[
N−1∑
n=0

||un − vn||

]
= 0 (47)

From the previous two lemmas, we can conclude that if f is
a uniformly continuous function and if

lim
n→∞

||un − vn|| = 0 (48)

then:

lim
N→∞

∥∥∥ 1

N

N−1∑
n=0

f(un)−
1

N

N−1∑
n=0

f(vn)
∥∥∥ = 0 (49)

Indeed, we have that:∥∥∥ 1

N

N−1∑
n=0

f(un)−
1

N

N−1∑
n=0

f(vn)
∥∥∥ ≤ 1

N

N−1∑
n=0

∥∥∥f(un)−f(vn)
∥∥∥

(50)
In particular, if

lim
N→∞

1

N

N−1∑
n=0

f(vn) < +∞, (51)

then we have

lim
N→∞

1

N

N−1∑
n=0

f(un) = lim
N→∞

1

N

N−1∑
n=0

f(vn) (52)
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We are now in a position to conclude, by noting that fi is
uniformly continuous, since it is linear, and that

Ji = lim
N→∞

1

N

N−1∑
k=0

fi(X̃[k]) (53)

The stability condition on Ψ gives us eq.(39), which, com-
bined with eq.(43), give us eq.(52):

Ji = lim
N→∞

1

N

N−1∑
k=0

fi(X̃[k]) (54)

= lim
N→∞

1

N

N−1∑
k=0

Z∗
i [k] (55)

=
1

T

T−1∑
k=0

Z∗
i [k] (56)

which is the claim.
Therefore, if we impose the monodromy matrix to be sta-

ble (which will guarantee a bounded closed-loop system), we
can reformulate the infinite horizon optimal control problem
as a finite horizon, periodic optimal control problem:

J∗
i = min

Li

1

T
tr

[
T−1∑
k=0

(QiX̃
∗
00[k] +GT

i RiGiX̃
∗
ii[k]

)]
(57)

under the dynamics constraints:

X̃∗[k + 1] = ÃCL[k]X̃∗[k]ÃT
CL[k] + Γ̃[k]

[
W 0
0 V

]
Γ̃T [k]

(58)

X̃∗[T ] = X̃∗[0] (59)

Note that the controls Li[k] enter the dynamics in the matri-
ces ÃCL[k], and the minimization is over the set of controls
such that Ψ is stable. First-order necessary conditions for
optimality can be derived using notions of matrix maximum
principle ([18]) and periodic optimal control ([19]), but are
not presented here for clarity, since they do not lead to
obvious closed-form solutions, and a global search for the
Nash solution is performed numerically (see for example
[20] for the computation of solutions to discrete periodic
Lyapunov equations).

V. EXAMPLE: STRING OF CARS

We consider a string of M cars traveling is a straight line,
as depicted in Fig. 1.

xM

vM

x1

v1

x2

v2

Fig. 1. M car example

We use a simplified dynamical model, in which the inertia
is neglected, i.e., for each car’s subsystem, the differential
equation is:

ẋi(t) = ui(t) (60)

Assuming a nominal control u0
i (t) for each car, which keeps

the separation between the cars to a desired value, we can
linearize around these nominal trajectories, to obtain the
differential equations for the deviation states:

δẋi(t) = δui(t) (61)

Finally, we consider the equivalent sampled-data system,
with a sampling time Ts, to which process noise was added:

δxi[k + 1] = δxi[k] + Tsδui[k] + Γiw[k] (62)

The aggregate system is therefore

δx[k + 1] = Aδx[k] +
∑
i

Biδui[k] + Γw[k] (63)

δy[k] = Cδx[k] + v[k] (64)

where A = IM , Bi = Tsei (ei being i-th vector of the
standard canonical basis of RN ), C = IM , and Γ =
blkdiag(Γi, i = 1 . . .M).

In order to guarantee stability of the closed-loop system
with full-information, we choose:

Q1 = ϵei, ϵ = 10−3 (65)

Qi = DT
i Di, i = 2 . . .M (66)

where
Di = (ei−1 − ei)

T

Finally, R1 is picked equal to 102, and Ri = 1, i = 2 . . .M .
The lead vehicle’s weighing matrix Q1 reflects the fact that
the lead car only cares about stabilizing its own state. The
other vehicles aim to minimize the separation error with
the vehicle in front of them. The ratio ϵ/R1 will have an
influence on how aggressively the lead car will try to keep
its state close to zero, at the expense of a high control. A
large ratio will weight the norm of x1 more heavily, so the
lead car will track the zero more closely. The knowledge
of this by the other agents will allow them to disregard the
state of the lead car completely. By “trickle” effect down the
string, each car will only need to focus on keeping its own
state stable, which amounts to the decoupling of the systems,
and does not require any exchange of information. We are
more interested in the case where coupling is introduced via
the costs. Therefore, we prefer to choose a small ratio, which
will give the lead car more freedom to divert from the origin,
and require exchange of information within the system.

With a slight abuse of terminology, we call “bandwidth”
the maximum number of measurements allowed per time-
step for an individual vehicle. Figs. 2 and 3 show the
Nash measurement sequences over 12 time-steps, with time
being represented along the horizontal axis. In each diagram
representing the measurement sequence of an individual car,
each line represents one coordinate of the total available
measurement vector. In our example, we chose C = IM ,
so there are M lines per diagram. A black cell signifies that
the measurement corresponding to that line is available at
the time-step corresponding to that particular column, while
a white cell means this measurement is not available.
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We first look at the case of time-invariant measurement
schemes, i.e., we set T = 1, and we vary the upper bound on
the bandwidth at each time-step. The results for a string of 4
cars are displayed in Fig. 2. We only show the schemes which
use the least possible bandwidth, although making possibly
more measurements does not deteriorate the performance.
Fig. 2(a) shows that if only one measurement is allowed for
all time, each car will measure its own position. However, in
this case, the performance of the second car is very poor,
since it cannot observe the state of the lead car, which
directly affects its cost. Its only recourse is to rely on the
knowledge that the lead car will keep its state near the origin,
and bring its own state to the origin as well.

Fig. 2(b) shows that if two measurements are allowed at
each time-step, the lead car will not improve by measuring
any other state, while the other two cars will measure their
own position, as well as the position of the lead car. This tells
us that the position of the lead car is more important than,
say, the position of the car right in front, even though the
latter appears directly in the cost, while the former does not.

J1 = 1.05

J2 = 1.03e+003

J3 = 4.02

J4 = 4.02

(a) bw = 1

J1 = 1.05

J2 = 4.47

J3 = 4.38

J4 = 4.29

(b) bw = 2

J1 = 1.05

J2 = 4.47

J3 = 4.29

J4 = 4.25

(c) bw = 3

J1 = 1.05

J2 = 4.47

J3 = 4.29

J4 = 4.22

(d) bw = 4

Fig. 2. 4 Cars, varying bandwidth, time-invariant

This is a somewhat non-intuitive result. It was shown that this
information pattern could yield string stability ([21]) under
the appropriate control law; our methodology additionally
provides a sense of optimality to this topology. It must be
noted that the special role of the lead vehicle here is due to
its matrix Q1 rather that its position within the string. If yet
another measurement is allowed per time-step, the position
of the car right in front is selected next, as shown in Fig.
2(c). It appears from Fig. 2(d) that if more measurements are
available, the cars will measure the states of the cars in front
of them further and further up the string, until saturation of
the bandwidth. It is also worth noting that the improvement
in performance for each agent is marginal for a bandwidth
greater than 2.

Next, we consider a string of 3 cars and vary the period,
while limiting the bandwidth to 1. The results are shown
in Fig. 3. Note that for every T -periodic solution, there are
T −1 solutions, which are circular permutations of it, which
yield the same costs; we only plot one of these equivalent
solutions for clarity. We can observe that if allowed to switch
measurements for different time-steps, the cars will replicate
the invariant measurement sequence with a bandwidth of
2 over a period. Indeed, aside from the lead car, which
only measures its own position, the other cars measure both
their position and the position of the lead car. As shown in
Figs. 3(a) and 3(c), when the time period is even, the two
measurements are used alternatively, and equally frequently.
It appears from Figs. 3(b) and 3(d) that, for each car, the
measurement of its own position is slightly more important
than that of the lead car. Indeed, when the time period is
odd, each car measures its own position more often than the

J1 = 1.05

J2 = 5.81

J3 = 5.76

(a) T = 2

J1 = 1.05

J2 = 6.21

J3 = 5.12

(b) T = 3

J1 = 1.05

J2 = 5.81

J3 = 5.76

(c) T = 4

J1 = 1.05

J2 = 6.02

J3 = 5.37

(d) T = 5

Fig. 3. 3 Cars, varying period, bandwidth of 1
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position of the lead car. It may seem surprising that each
car does not use all the available measurements, even when
possible to do so over a period. This is probably due to the
fact that measuring additional parts of the state only improves
the performance slightly, if at all, as seen in the previous
example.

VI. CONCLUSION

The methodology presented in this paper gives insight into
the relative value of the different available measurements
for each agent of a discrete time multi-agent linear system.
The decision making is person-by-person optimal, which
means each agents aims to minimize his own cost function,
over an infinite time period. The problem was separated
in two distinct steps: first, the Nash solution was solved
centrally, assuming full information. The measurement se-
lection strategies were then obtained as periodic optimal
controls of a finite-horizon problem, which was shown to
be equivalent to the original problem. The method assesses
the relative importance of each measurement by gradually
decreasing the available transmission bandwidth. Introducing
time-periodicity for measurement selections helps to over-
come very restrictive bandwidth limits, as well as interpret
the solutions as data exchange rates in a straightforward way.
The example presented illustrates the potential of the method
to exhibit optimality properties of a given information pat-
tern, such as the one assumed in [21]. Determining necessary
and sufficient conditions for the existence of Nash solutions
for the games formulated in both steps is the subject of
current effort. Also, the measurement selections are solved
numerically, and the dimension of the problem increases
rapidly with the size of the measurement vector and the time-
period, so implementing a search algorithm (such as [22]) to
find the Nash solutions for larger problems would be useful.

APPENDIX

Proof: (Lemma 1) First, note that by clear induction:

∀n ∈ N,
1

T

n+T−1∑
k=n

uk = µ (67)

Now define the two following sequences:

σn =
1

n

n−1∑
k=0

uk, vn = nσn − nµ (68)

We show that vn is T -periodic:

vn = nσn − nµ (69)

=
n−1∑
k=0

uk − nµ (70)

vn+T = (n+ T )σn+T − (n+ T )µ (71)

=

n+T−1∑
k=0

uk − nµ− Tµ (72)

=
n−1∑
k=0

uk +
n+T−1∑
k=n

uk − nµ− Tµ (73)

= nσn + Tµ− nµ− Tµ (74)
= nσn − nµ = vn (75)

Therefore, we have that:

∀n ∈ N m ≤ vn ≤ M (76)

where

m = min(v0, . . . , vT−1), M = max(v0, . . . , vT−1) (77)

So:

m ≤ vn ≤ M (78)
m ≤ nσn − nµ ≤ M (79)

m

n
≤σn − µ ≤ M

n
(80)

(81)

Since both m
n and M

n converge to 0 as n → +∞, we get
that

σn − µ → 0 (82)

or equivalently:
σn → µ (83)

Proof: (Lemma 2) By definition, f uniformly continu-
ous means:

∀ϵ > 0, ∃δ,∀x, y, ||x−y|| ≤ δ =⇒ ||f(x)−f(y)|| ≤ ϵ (84)

(As opposed to regular continuity, where the δ can be
dependent on x, uniform continuity requires the existence
of a single δ which works for all x and y.)
Since limn→∞ ||un − vn|| = 0:

∃N0, ∀n ≥ N0, ||un − vn|| ≤ δ (85)

Therefore,

∀ϵ > 0, ∃N0,∀n ≥ N0 ||f(un)− f(vn)|| ≤ ϵ (86)

which is exactly the desired result.
Proof: (Lemma 3) Define the sequences

αn = ||un − vn|| (87)
βn = 1 (88)

Then
∀n ∈ N, 0 ≤ αn = o(1) = o(βn) (89)
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Call the sequences of finite sums:

sN =
N−1∑
n=0

αn (90)

σN =

N−1∑
n=0

βn (91)

Then it can be shown that:
• if (sN )N∈N converges, it is bounded, so that

lim
N→∞

1

N
sN = 0 (92)

• if (sN )N∈N diverges, so does (σN )N∈N, and we have:

sN = o(σN ) = o(N) (93)

=⇒ lim
N→∞

1

N
sN = 0 (94)

Proof: Fact: σ(A +
∑

j BjGj) ⊂ σ(ÃCL[k]) where
σ(Λ) denotes the set of eigenvalues of the matrix Λ. Define

T =


I 0 . . . 0

I
. . . 0

... I

I 0
. . .

 =⇒ T−1 =


I 0 . . . 0

−I
. . . 0

... I

−I 0
. . .


Then it is straightforward to see that:

T−1ÃCLT =


A+

∑
j BjGj B1G1 . . . BMGM

0
. . .

... Aerr

0
. . .


(95)

where

Aerr =

KL1C
...

KLMC

 [
B1G1 . . . BMGM

]
+ blkdiag((I −KLiC)(A+

∑
j

BjGj)) (96)

Eq.(95) proves the claim.
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