
Sensor Control for Search and Identification of Markov Objects

Darin C. Hitchings and David A. Castañón

Abstract— In this paper, we discuss stochastic control ap-
proaches to sensor control problems for the purposes of locating
and classifying objects that can enter and leave areas of interest,
and there are many objects to interrogate. Noisy sensors with
limited energy can choose to interrogate areas to find and
identify objects while they are present in the scenario, and can
use different modes to either search or identify objects. The
goal is to identify objects appearing in the scenario as soon
as they are present. Although the resulting stochastic control
problem is a partially observed Markov decision problem with
combinatorially large action and state spaces, we develop an
approximate stochastic control formulation based on relaxing
constraints concerning the utilization of sensor energy, and
obtain an efficient algorithm for generating near-optimal sensor
control decisions. The resulting algorithm is illustrated in a
simple scenario with a single sensor observing multiple areas
of interest.

I. INTRODUCTION

Advances in embedded computing have introduced a new
generation of sensors that have the capability of adapting
their sensing dynamically in response to collected infor-
mation. Unmanned aerial vehicles (UAVs) have multiple
sensors which can change their fields of view and resolution
dynamically. However, there is a need for sensor control
algorithms that exploit processed information obtained from
sensor collections and selects measurement actions in order
to improve the performance of the sensor system. Such con-
trol algorithms have numerous applications in surveillance
problems, as well as fault identification and diagnosis.

An early example of sensor control can be found in search
theory, where sensors moved and allocated search effort over
time and space to locate objects [1], [2]. Although much
of search theory focuses on the design of open-loop sensor
control, there are interesting extensions to problems requiring
adaptive feedback control based on noisy measurements [3].
Other early examples included Wald’s theory of sequential
hypothesis testing with costly observations [4], [5], as well
as work on sequential nonlinear regression [6], [7] that used
Cramer-Rao bounds for adaptive selection of measurements.
Most of these control approaches involve one-step looka-
head optimization criteria. Alternative approaches to adaptive
Other approaches to adaptive control of sensing using single-
stage optimization have been proposed using information
theoretic objectives and performance bounds [8]–[10].

Feedback control approaches to sensor control based on
optimization over time have been explored in different con-
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texts. Athans [11] controlling the error covariance in linear
estimators by choosing among potential linear measurements
using maximum principle techniques. Multi-armed bandit
formulations have been used to control individual sensors
in applications related to target tracking [12], [13]. Such
approaches are restricted to single-sensor control in order to
obtain solutions using Gittins indices [14], [15]. Approximate
dynamic programming (DP) techniques have also been pro-
posed using approximations to the optimal cost-to-go based
on information theoretic measures evaluated using Monte
Carlo techniques [16], [17]. An overview of these techniques
is available in [18].

The above approaches for dynamic feedback control are
limited in application to problems with a small number
of sensor-action choices and simple constraints because the
algorithms must enumerate and evaluate the various control
actions. For problems with many actions, [19] integrates
combinatorial optimization techniques with stochastic dy-
namic programming to obtain stochastic control algorithms.
Subsequent work in [20] derived a formulation for sensor
control using partially observed Markov decision processes
(POMDPs) and obtained a computable lower bound to the
achievable performance of feedback strategies for complex
multi-sensor management problems involving classification
of stationary objects. The lower bound was obtained by a
convex relaxation of the original combinatorial POMDP. The
results in [20] were extended in [21] to obtain sensor control
algorithms with performance close to the lower bound, using
a receding horizon control approach.

In this paper, we extend the results of [20] and [21] to
the problem of adaptive sensor control in the presence of
Markovian objects, where the underlying state of the object
may change with time. We impose a structural condition
on the Markovian objects, in that the state at each location
evolves independently of states at other locations, which
allows extension of our previous approaches to this class of
problems. We pose the sensor control problem as resource-
constrained adaptive control problem using a POMDP frame-
work, which is computationally intractable. As in [20], we
develop a convex relaxation that provides a lower bound
on the performance objective. Our results present a simpler
derivation of the bound result and provide approaches for
computing optimal solutions to the lower bound problem
using combinations of integer programming and stochastic
dynamic programming. The resulting algorithms are used
to develop approximate control strategies that satisfy the
required constraints, and achieve performance close to the
lower bound, as in [21]. We illustrate the performance of the
algorithms in a simple example.
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Fig. 1. An example HMM that can be used for each of the N locations.
pa is an arrival probability and pd is a departure probability for the Markov
chain.

The rest of this paper is organized as follows: Section II
describes the formulation of the stochastic sensor control
problem. Section III describes an approximate stochastic
control problem that provides a lower bound to the original
problem, and develops an algorithm for computing optimal
strategies for this approximate control problem. Section IV
discusses a computational example that illustrates the control
algorithm. Section V summarizes our results and discusses
areas for future work.

II. PROBLEM STATEMENT

Assume that there are a finite number of locations
1, . . . , N where objects of different types may enter and
leave. We assume there is a set of S sensors, each of which
has multiple sensor modes, and that the sensor can distribute
its sensing energy at each time over multiple locations
by choosing its observation mode for each location. The
sensor control problem is determining, for each sensor, which
locations and which modes to use for collecting information
at each discrete time step.

The contents of location i at time t is represented by
state xi(t) ∈ {0, 1, . . . , D}, where xi(t) = 0 if location i
is unoccupied, and otherwise xi(t) = k > 0 indicates
location i contains an object of type k at time t. The initial
knowledge about the contents of location i is represented
by a discrete a priori probability distribution πi(0) ∈ <D+1

over the possible states for the ith location for i = 1, . . . , N
where D ≥ 2. Assume that the random variables xi(t) for
i = 1, . . . , N are mutually independent for each time t. The
state of each of the N locations evolves dynamically as a
Markov chain, such as Fig. 1. The transition probabilities are
specified as a stochastic matrix {pjk} with stationary tran-
sition probabilities pjk = P (xi(t+ 1) = j|xi(t) = k). We
assume the Markov transition probabilities are the same for
each location for simplicity; extensions to different transition
chains per location or time varying transition probabilities are
straightforward.

There are s = 1, . . . , S sensors, each of which has

m = 1, . . . ,Ms possible modes of observation. Let there
be a series of T discrete decision stages with t = 1, . . . , T
for sensors to make measurements. Each sensor s has a
limited set of locations that it can observe at each stage,
denoted by Os(t) ⊆ {1, . . . , N}. At each stage, each sensor
can choose to employ one of its sensor modes to collect
noisy measurements concerning the states xi(t) of the sensed
locations in its Field of View (FOV) (location i is in the FOV
of sensor s if i ∈ Os(t)).

To define the control objective, at each time, one must
make an estimate of the content of each location after
measurements are collected and processed. Thus, the control
actions at each stage consist of two types: first, each sensor
selects locations and modes to observe; information is col-
lected and processed, and then the system makes a tentative
classification of the current content of each location.

A sensor action by sensor s at stage t is the set of pairs:

us(t) = {(is(t),ms(t)) | is(t) ∈ Os(t),ms(t) ∈Ms} (1)

where each pair consists of a location to observe is(t), and a
sensor mode (independent for each location) used to observe
this location, ms(t), where the mode is restricted to the set
of feasible modes given the resource levels for each sensor.
We assume that no two sensors observe the same location
at the same time in order to minimize the complexity of the
associated action and observation spaces. Let ui,s(t) refer to
the sensor action taken on location i with sensor s at stage t
if any, or let ui,s(t) = ∅ otherwise.

Sensor measurements at time t of location i with mode
m are denoted as yi,s,m(t) ∈ {1, . . . , Ls}. Measured values
yi,s,m(t) are assumed to be conditionally independent of
other values yj,σ,n(τ) given the underlying values of the
states at the measured locations in us(t), uσ(τ) whenever i 6=
j, or τ 6= t or σ 6= s. Denote the conditional probability of
the measurement as P (yi,s,m(t)|xi(t), i, s,m). Thus, the un-
derlying Markov states at each location are observed through
noisy measurements, and the optimal Bayesian inference
can be performed using Hidden Markov Model estimation.
We assume that the conditional probability of measurements
given xi(t) is time-invariant.

In terms of constraints, assume each sensor has a quantity
Rs of resources available for measurements during each time.
Associated with the use of mode m by sensor s on location i
at time t is a resource cost rs(ui,s(t)) to use this mode,
representing power or some other type of resource required
to operate the sensor, represented as

∑
i∈Os(t)

rs(ui,s(t)) ≤ Rs ∀ s ∈ [1 . . . S]; ∀ t ∈ [1 . . . T ] (2)

This constraint applies for each realization of observations
and decisions. In contrast with [20], the available resources
per sensor are limited at each time rather than across all
times; in addition, at each time a tentative decision must be
made as to the contents of each location, rather than a single
decision at the end of a time horizon.
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Let I(t) denote the sequence of past sensing actions and
measurement outcomes up to and including time t− 1:

I(t) = {(ui,s(τ), yi,s,m(τ))| i ∈ Os(τ); s = 1, . . . , S;

τ = 1, . . . , t− 1}

Under the assumption of conditional independence of mea-
surements and independence of the Markov chains governing
each location, the joint probability π(t) = P (x1(t) =
k1, x2(t) = k2, . . . , xN (t) = kN |I(t)) can be factored as
the product of marginal conditional probabilities πi(t) =
p(xi(t)|Ii(t)) at each location, where Ii(t) denotes the
sequence of past sensing actions and measurement outcomes
of location i up to and including time t − 1. This structure
will be exploited in our algorithms later, as it allows us
to represent a complex sufficient statistic in terms of the
marginal statistics. This independence implies that objects
that leave one location do not go to a nearby location. A
measurement of location i with the sensor-mode combina-
tion ui,s(t) = (i,m) at stage t that generates observation
value yi,s,m(t) updates the marginal conditional probabilities
as:

πi(t+ 1) =
diag{P (yi,s,m(t)|xi(t) = j, i, s,m)}πi(t)

1T diag{P (yi,s,m(t)|xi(t) = j, i, s,m)}πi(t)
(3)

where 1 is the D + 1 dimensional vector of all ones.
(3) captures the relevant information dynamics that are
controlled by the choice of sensor actions.

Given the information I(t) at stage t, an estimate vi(t)
of the state xi(t) of each location i is made. The Bayes’
cost of selecting estimate vi(t) when the true state is xi(t)
is denoted as c(xi(t), vi(t)) ∈ < with c(xi(t), vi(t)) ≥ 0.
The objective of this problem is to estimate the state of each
location at each time with minimum error:

J = min
γ∈Γ

E
γ

[
N∑
i=1

T∑
t=1

c(xi(t), vi(t))

]
(4)

subject to (2). The minimization is done over the finite
space of admissible, adaptive feedback strategies γ ∈ Γ,
corresponding of time-varying maps from information sets
I(t) to sensor actions us(t) and from information sets
I(t+ 1) to tentative classification decisions vi(t). Note that
determining an optimal classification decision strategy is
straightforward, and corresponds to minimizing the Bayes’
risk of the classification decision at each stage given the
available information. Thus, the hard part of determining an
optimal strategy is determining the sensing strategy.

The above formulation is a Partially Observed Markov
Decision Problem (POMDP) that extends the formulation
of [20] from static location contents to Markovian contents.
As in [20], this POMDP has combinatorially large state and
action spaces, and is intractable for all but the simplest of
problems. Our approach will be to modify this problem to
obtain a lower bound, as in [20], and to develop algorithms
that can obtain solutions to this lower bound and can be
used to generate feasible control strategies for the original
problem.

III. LOWER BOUND FORMULATION

Instead of solving the problem outlined in the previous
section, we focus on a different version where the hard
resource constraint in (2) are replaced with an expected-
resource-use constraint for each of the S sensors, as:∑
i∈Os(t)

E[rs(ui,s(t))] ≤ Rs ∀ s ∈ [1 . . . S]; ∀ t ∈ [1 . . . T ]

(5)
This problem is a lower bound on the original problem
(4) with sample path constraints (2) because every strategy
that satisfies the original sample path constrained problem is
feasible for the relaxed problem. However, it is a POMDP
with combinatorial action and state spaces.

Define nonnegative multipliers λs(t) ≥ 0 ∀s, t. Define an
augmented objective in Lagrangian form as

Jλ = min
γ∈Γ

E
γ

[
N∑
i=1

T∑
t=1

c(xi(t), vi(t))−
S∑
s=1

T∑
t=1

λs(t)Rs − ∑
i∈Os(t)

rs(ui,s(t))

 (6)

The following result is typical of weak duality results in
nonlinear programming

Theorem 3.1 (Lower Bound on Performance): The solu-
tion of the unconstrained decision problem with augmented
objective function (6) is a lower bound on the achievable
performance of the decision problem (4) with sample path
constraints (2).

Proof: Every admissible strategy γ ∈ Γ that satisfies
(2) also satisfies (5). Thus, for admissible, adaptive feedback
strategies that satisfy (5), the second term in (6) is non-
positive, and thus has a value less than or equal to the value
in (4). Thus, the unconstrained minimization over strategies
in (6) must yield a lower bound on the original optimization
(4) with constraints (2).

Unfortunately, the optimization in (6) is still over a joint
set of strategies across all locations. To further simplify the
optimization, we show, similar to the work in [20], [22],
that one can choose strategies for optimizing (6) where the
actions at location i depend only on the information collected
at location i, as established below.

Theorem 3.2: Under the assumption of independent
Markov states across locations, and multiplier trajectories
λs(t) ∀ s, t, an optimal solution to the optimization problem
in (6) can be achieved with local adaptive feedback strategies
s γi that select sensor actions ui,s(t) for each location i based
only on local information Ii(t).

Proof: The following inequality follows from minimiz-
ing the sum of terms versus summing the minimum per term:

min
γ∈Γ

E
γ

[
N∑
i=1

T∑
t=1

{
c(xi(t), vi(t)) +

S∑
s=1

λs(t)rs(ui,s(t))

}]
≥

N∑
i=1

min
γ∈Γ

E
γ

[
T∑
t=1

{
c(xi(t), vi(t)) +

S∑
s=1

λs(t)rs(ui,s(t))

}]
(7)
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Consider the minimization problem for each location i in
the right hand side above:

min
γ∈Γ

E

[
T∑
t=1

{
c(xi(t), vi(t)) +

S∑
s=1

λs(t)rs(ui,s(t))

}]

We can solve this problem via stochastic dynamic program-
ming. We break the decision problem at each stage t into
two stages: first, we select ui,s(t) and collect information on
object i. Then, we select vi(t), the tentative classification. At
the final stage, consider the selection of vi(T ) as a function
of the complete information-state I(T + 1), which includes
the measurements and sensing actions collected at stage T
collected over the entire set of locations, as:

J∗i (I(T + 1), T ) = min
vi(T )

E [c(xi(T ), vi(T ))|I(T + 1)]

= min
vi(T )

E [c(xi(T ), vi(T ))|Ii(T + 1)]

≡ J∗i (Ii(T + 1), T )

because of the independence of xi(T ) from other xj(T ) and
conditional independence of the observations of location i
from those of other locations. These independence assump-
tions imply p(xi(T )|I(T + 1)) = p(xi(T )|Ii(T + 1)). Thus,
the optimal decision, vi(T ), and the optimal cost-to-go will
be a function only of Ii(T + 1) and not all of I(T + 1).

Assume inductively that for stages τ > t, the optimal
cost-to-go J∗i (I(τ + 1), τ) ≡ J∗i (Ii(τ + 1), τ) depends only
on the information collected at location i, and the strategy
for the optimal decision vi(τ) and measurements ui,s(τ +1)
for s = 1, . . . , S depends only on Ii(τ + 1) and not all
of I(τ + 1). Consider the minimization over the choice of
vi(t), ui,s(t+ 1), s = 1, . . . , S. Under γ, these are functions
of the full information-state I(t + 1). Bellman’s equation
becomes:

J∗i (I(t+ 1), t) = min
vi(t),ui,s(t+1)

E [c(xi(t), vi(t))+

S∑
s=1

λs(t+ 1)rs(ui,s(t+ 1))+

E
[
J∗i (Ii(t+ 2), t+ 1)|I(t+ 1), {ui,s(t+ 1)}

]
|I(t+ 1)

]
Although all of the conditioning is in terms of the infor-

mation set I(t+1), the dependence will be only on Ii(t+1)
because of the independence assumptions, which imply that
p(xi(t)|I(t+ 1)) = p(xi(t)|Ii(t+ 1)) and:

E
[
J∗i (Ii(t+ 2), t+ 1)

∣∣∣I(t+ 1), {ui,s(t+ 1)}
]

=

E
[
J∗i (Ii(t+ 2), t+ 1)

∣∣∣Ii(t+ 1), {ui,s(t+ 1)}
]

so the minimizing strategies for vi(t), ui,s(t + 1) will only
depend on Ii(t+1). Let ΓLi denote the set of local feedback
strategies γi that select decisions ui,s(t), vi(t−1) depending
on Ii(t) only. By induction through stochastic dynamic

programming, we have shown:

min
γ∈Γ

E
γ

[
T∑
t=1

{
c(xi(t), vi(t)) +

S∑
s=1

λs(t)rs(ui,s(t))

}]
=

min
γi∈ΓL

i

E
γi

[
T∑
t=1

{
c(xi(t), vi(t)) +

S∑
s=1

λs(t)rs(ui,s(t))

}]
Carrying the induction to the initial time yields

min
γ∈Γ

E
γ

[
N∑
i=1

T∑
t=1

{
c(xi(t), vi(t)) +

S∑
s=1

λs(t)rs(ui,s(t))

}]
≥

N∑
i=1

min
γi∈ΓL

i

E
γi

[
T∑
t=1

{
c(xi(t), vi(t)) +

S∑
s=1

λs(t)rs(ui,s(t))

}]

To complete the proof, note that feedback strategies of
the form γ = (γ1, γ2, . . . , γN ) are admissible strategies for
the optimization problem on the left. Hence, the optimal
local strategies, γi, achieve equality in the above equation,
establishing the theorem.

The above theorem establishes that the optimization prob-
lem (5) can be decoupled into the sum of N local cost
functions as follows:

Jλ = min
γ∈Γ

E
γ

[
N∑
i=1

T∑
t=1

c(xi(t), vi(t))+

S∑
s=1

T∑
t=1

∑
i∈Os(t)

λs(t)rs(ui,s(t))−
S∑
s=1

T∑
t=1

λs(t)Rs


=

N∑
i=1

{
min
γi∈ΓL

E
γi

[
T∑
t=1

(c(xi(t), vi(t))

+

S∑
s=1

λs(t)rs(ui,s(t))

)]}
−

T∑
t=1

S∑
s=1

λs(t)Rs (8)

Solution of the decoupled problems in (8) for any trajec-
tories of λs(t) provides a lower bound to the performance
of our original problem. In particular, we have

J∗ ≥ sup
λ1,...,λS≥0

Jλ1,...,λS
(9)

The problem in (9) is a dual optimization problem in terms
of optimizing the multipliers associated with the constraints
(5). Because of strong duality, this is the dual of the lin-
ear programming optimization problem that optimizes over
mixtures q(γi) of local feedback strategies (see [21], [23] for
details)

min
q∈Q(ΓL)

∑
γ∈ΓL

q(γ)

N∑
i=1

E
γi

[
T∑
t=1

c(xi(t), vi(t))

]
(10)

∑
γ∈ΓL

q(γ)

N∑
i=1

E
γi

 ∑
i∈Os(t)

rs(ui,s(t))

 ≤ Rs ∀ s, t (11)

∑
γ∈ΓL

q(γ) = 1 (12)
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where we have one constraint for each of the S sensor
resource pools for each time t and an additional simplex
constraint in (12), which ensures that q ∈ Q(ΓL) forms a
valid probability distribution.

Note that the above linear program is an optimization
problem over a very large space, mixtures of local feedback
strategies. However, the number of constraints is equal to the
number of sensors times the number of decision times, which
means that the optimal mixture will be sparsely supported.
This suggests the use of Column Generation [24] to obtain
optimal mixtures, which operates as follows:
• Initalize the problem with a set of local strategies,

ΓLrest.
• Solve the above linear programming (10)-(12) restricted

to mixtures of strategies in ΓLrest, and compute the
optimal dual variables λs(t) for the constraints (11).

• Using these dual variables, sove the resulting decoupled
POMDP problems for each location arising from the
decomposition of Theorem 3.2 to obtain a new local
strategy γ.

• If the new composite local strategy γ is not included in
ΓLrest, add the strategy to ΓLrest and repeat. Otherwise,
stop and the optimal mixture is provided by the solution
of the linear program.

In consequence, we have randomized strategies that mix
not only in terms of which sensor is utilized, but when and
where a sensor is utilized. These strategies can be used to
generate sensor control actions by various mechanisms such
as sampling or truncation, as explored in [21].

IV. SIMULATION EXAMPLE

Although the preceding implementation provides algo-
rithms that handle arbitrary Markov processes at each loca-
tion, we focus on demonstrating the algorithm for a Markov
Birth Process, which is easier to implement with existing
POMDP solvers. In this example, there were 100 locations,
each of which could be empty, or have objects of three types,
so the possible states of location i were xi ∈ {0, 1, 2, 3}
where type 1 represents cars, type 2 trucks, and type 3
military vehicles. Sensors can have four observation modes:
a search mode, a low resolution mode, a high resolution
mode and a wait mode where no measurement is taken. The
search mode primarily detects the presence of objects; the
low resolution mode can identify cars, but confuses the other
two types, whereas the high resolution mode can separate
the three types. Observations are modeled as having three
possible values. The search mode consumes 0.25 units of
resources, whereas the low-resolution mode consumes 1 unit
and the high resolution mode 5 units, uniformly for each
sensor and location. Table I shows the conditional probability
functions for the different sensing modes.

Initially, each location has a state with prior probabil-
ity distributions described as πi(0) = [0.1 0.6 0.2 0.1]’
∀ i ∈ [1, . . . , 10], πi(0) = [0.80 0.12 0.06 0.02]T ∀ i ∈
[11, . . . , 100]. Thus, the first ten locations are likely to
contain an object initially, and the subsequent 90 locations
are likely to start as empty locations. The Markov chain

Search Low-res Hi-res
y1 y2 y3 y1 y2 y3 y1 y2 y3

empty 0.92 0.04 0.04 0.95 0.03 0.02 0.95 0.03 0.02
car 0.08 0.46 0.46 0.05 0.85 0.10 0.02 0.95 0.03

truck 0.08 0.46 0.46 0.05 0.10 0.85 0.02 0.90 0.08
military 0.08 0.46 0.46 0.05 0.10 0.85 0.02 0.03 0.95

TABLE I
OBSERVATION LIKELIHOODS FOR DIFFERENT SENSOR MODES

WITH THE OBSERVATION SYMBOLS Y1, Y2 AND Y3.

model has transitions from the empty state 0 to the other
states 1, 2, 3, such that

P (xi(t+ 1) = 1|xi(t) = 0) = 0.06;

P (xi(t+ 1) = 2|xi(t) = 0) = 0.03;

P (xi(t+ 1) = 3|xi(t) = 0) = 0.01;

States 1, 2, 3 are absorbing states.
We consider a problem with a single sensor that has a

total of 100 units of resource, with 20 units to be used at
each of f5 mesurement times, with a horizon corresponds
to T = 5. After measurements are collected at each time, a
tentative classification decision must be made, corresponding
to vi(t) ∈ {0, 1}, where 1 corresponds to a military vehicle
and 0 corresponds to otherwise. The inremental cost of each
decision is given as:

c(xi, vi) =


0 vi = 0, xi ∈ {0, 1, 2}
0 vi = 1, xi = 3

1 otherwise

For this problem, we solve the associated POMDP prob-
lems using the Point Based Value Iteration Method, a fast
POMDP technique [25], and we compute the optimal mixed
strategies using column generation. Since we have a single
sensor and 5 decision times, there are 5 dual variables to be
determined in the algorithm, and the optimal mixed strategies
are mixtures of 6 pure strategies. In order to obtain feasible
decisions, we sample the mixed strategies according to their
mixture probabilities in order to determine which strategy
should be used for each location. To guarantee feasibility
at each period, resources are assigned incrementally across
locations, so that if there are not enough resources to imple-
ment the desired action for a location, the most informative
feasible action is implemented instead.

As a reference set of strategies, we compare the perfor-
mance of our strategies with a myopic based on entropy
reduction. This algorithm selects actions as follows: for
each location and potential action, one computes an index
consisting of the expected reduction in sample entropy, or
discrimination gain [8], per unit resource assigned. Actions
are then assigned for each object in order of decreasing index
until all resources for each interval are exhausted.

Table II compares compares the performance of our al-
gorithm, termed Relaxed DP, with that of the alternative
algorithm, Discrimination Gain, and the lower bound com-
puted in our relaxation. The performance of the algorithms
was computed averaging over 100 independent realizations
of our experiments, while the bound was computed from
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Average Cost
Bound 64.45
Relaxed DP 70.81
Discrimination Gain 77.23

TABLE II
AVERAGE COST OBTAINED BY DIFFERENT ALGORITHMS FOR

100 MONTE CARLO SIMULATIONS.

a single run. The results illustrate that our Relaxed DP
algorithm achieves performance closer to the lower bound
than the alternative Discrimination Gain algorithm, as the
strategies selected coordinated sensing activities across time,
by recognizing the need to reserve resources to classify ac-
curately future arrivals. Note that neither algorithm achieves
performance close to the lower bound, suggesting that al-
ternative approaches should be explored for determining
feasible strategies from the optimal mixed strategies, such
as the receding horizon approaches discussed in [21].

V. CONCLUSION

The problem of optimal control of observation processes
is a complex, partially observed stochastic control problem
that requires feedback from information states generated
by the acquired information. When the problem involves
observation of multiple locations with multiple sensors, the
resulting combinatorial control problem is intractable, and
requires approximations to obtain computable control strate-
gies. In our previous work [20], [21], we have developed an
approximate control strategy based on finding the optimal
solution to a lower bound to the optimal cost, obtained
through relaxation of sample path constraints and using
mixed strategies to obtain a convex optimization problem that
can be solved through combinations of decoupled stochastic
dynamic programs for each location, coordinated by a master
problem to select optimal prices of sensor resources.

The previous results applied only to locations where the
unknown state was constant over time. In this paper, we
extend these results to locations where the state can change
according to a Markov chain, representing the possibility
that objects arrive and depart. We obtain a similar lower
bound to the previous results available in the literature,
and develop a hierarchical algorithm that combines dynamic
programming with column generation to obtain near-optimal
feedback strategies.

The results of this paper provide a foundation for de-
termining achievable performance of adaptive sensor con-
trol schemes. However, real-time implementation of these
controllers is still computationally intensive, as it requires
iterative solutions involving small POMDP problems. We
are investigating alternative approaches for control of infor-
mation acquisition that use other approximations involving
information theory bounds, and hope to report on these
results in future publications.
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