
Linear Computational Complexity Design of Constrained Optimal ILC

Aleksandar Haber, Rufus Fraanje and Michel Verhaegen

Abstract— In this paper we present a linear computational
complexity framework for design and implementation of (con-
strained) lifted Iterative Learning Control (ILC) systems with
quadratic cost. The problem of designing constrained lifted
ILC with quadratic cost is formulated as a convex optimization
problem. We solve this problem using the primal-dual interior
point method. High computational complexity of the primal-
dual method, which render this method computationally infea-
sible for high dimensional lifted ILC systems, is significantly
decreased by exploiting the sequentially semi-separable (SSS)
structure of lifted system matrices. More precisely, O(N3)
computational cost of one iteration of the primal-dual method
is reduced to O(N), where N characterizes the size of the lifted
system matrices. Furthermore, by exploiting the SSS structure
the large lifted system matrices can be efficiently stored in
computer memory. We also show that SSS structure can be
exploited to efficiently implement analytical solution of the
unconstrained lifted ILC problem with quadratic cost and for
calculation of the norm and stability radius of ILC system.

Index Terms— Learning control; Efficient algorithms; Con-
strained optimization; Primal-Dual methods.

I. INTRODUCTION

Iterative Learning Control (ILC) has proven to be an

effective method for achieving a high tracking performance

of systems that have to execute the same task a number of

times. Each execution of the task is referred to as a trial,

and ILC strategy derives a control action for the next trial

by updating the control action from the previous trial(s) with

the signals that are derived on the basis of measured data

from the previous trial(s). Detailed and recent overviews of

the theoretical foundations and fields of application of ILC,

with an extensive bibliography are available in [1], [5]. The

system controlled by ILC evolves during the trial length,

a domain that we refer to as the local time domain, and

from one trial to another, a domain that we refer to as the

trial domain. In lifted system representation [16] or Super-

Vector ILC (SVILC) representation [14], this 2D system is

reformulated as 1D system that evolves only in the trial

domain.

In [12], [9], [4], [5] lifted ILC law has been obtained as a

solution of the convex unconstrained quadratic optimization

problem. This type of ILC law is referred to as the ILC with

quadratic cost (Q-ILC) or as the norm-optimal ILC. In [13]

actuator’s saturation constrains have been incorporated in the

design of Q-ILC.

This research is supported by the Dutch Ministry of Economic Affairs and
the Provinces of Noord-Brabant and Limburg in the frame of the ”Pieken
in de Delta” program.

A. Haber and M. Verhaegen are with Delft Center for Systems and Con-
trol, Delft University of Technology, Delft, 2628 CD, The Netherlands, (e-
mail: a.haber@tudelft.nl; p.r.fraanje@tudelft.nl
m.verhaegen@tudelft.nl).

In the lifted ILC framework, dimensions of the system

matrices are proportional to the number of the sampling

steps in one trial (trial length). This implies that for large

trial lengths or for a relatively high sampling frequencies

with respect to the trial length, the lifted system matrices

(system matrices in the trial domain) have extremely large

dimensions. This is the case in robotic applications where

the lifted system matrices can have several million elements

[10]. Consequently, a straightforward application of lifted

ILC design methods proposed in [12][9][4][5][13] may turn

out to be computationally infeasible.

Analysis of the lifted ILC laws consists of stability check

and convergence rate evaluation. The stability and the con-

vergence rate are determined by the spectral properties (the

spectral radius and the spectral norm) of the lifted system

matrices of the ILC system [1], [5]. In the case of large trial

lengths, the high computational complexity of algorithms

used for determining the spectral properties of the lifted

matrices [6] will hinder the analysis of the ILC system.

Beside the computational complexity, another difficulty in

the design of lifted ILC for large trial lengths, is an increased

demand for memory locations [2]. The necessary memory,

that is needed to store lifted system matrices, is a quadratic

function of N .

The problem of high computational complexity of the

lifted ILC and Repetitive Control has been recognized by

several researchers. The Sequentially-Semi Separable (SSS)

structure of the lifted system matrices has been exploited in

[17] to derive LQG (H2) repetitive controller with O(N)
complexity. In [11], a computationally efficient method for

implementing unconstrained Q-ILC law is presented. This

method is restricted to block-diagonal selection of weighting

matrices of the Q-ILC cost function. In [2], a computa-

tionally efficient method for determining monotonicity and

convergence rate of ILC systems with large number of

samples in a trial has been presented. In order to apply the

methodology presented in [2], the lifted learning matrices

must be precomputed in advance (O(N3) complexity) or

they must be described as filters in the local frequency

domain associated with the local-time domain. Due to this,

the method presented in [2] is restricted.

In this paper we present a linear computational complexity

framework for design and implementation of (constrained)

lifted ILC systems with quadratic cost. The problem of

designing constrained lifted ILC with quadratic cost is

formulated as a convex optimization problem. We solve

this problem using the primal-dual interior point method.

High computational complexity of the primal-dual method,

that render this method computationally infeasible for high

2011 50th IEEE Conference on Decision and Control and
European Control Conference (CDC-ECC)
Orlando, FL, USA, December 12-15, 2011

978-1-61284-799-3/11/$26.00 ©2011 IEEE 5343

dimensional lifted ILC systems, is significantly decreased by

exploiting the sequentially semi-separable (SSS) structure of

lifted system matrices. More precisely, O(N3) computational

cost of one iteration of the primal-dual method is reduced to

O(N). Furthermore, by exploiting the SSS structure the large

lifted system matrices can be efficiently stored in computer

memory. We also show that SSS structure can be exploited to

efficiently implement analytical solution of the unconstrained

lifted ILC problem with quadratic cost and for calculation of

the norm and stability radius of ILC system.

This work is organized as follows: In Section 2 we

present problem formulation; in Section 3 we revise the main

properties of the SSS structure that are relevant for this work;

in Section 4 we present a linear computational complex-

ity framework for lifted ILC analysis and design. Finally,

simulation experiments that confirm the linear computational

complexity are presented in Section 5 and conclusions are

presented in Section 6.

II. PROBLEM STATEMENT

The ILC problem formulation presented in this paper is

kept as simple as possible due to simplicity reasons. The

results presented in this paper can be generalized for much

more richer and complex ILC problem formulations (for

example ILC problem formulation that includes a local-time

domain feedback). We consider the local-time domain Linear

Time Varying (LTV) system:

xk(t + 1) = A(t)xk(t) + B(t)uk(t) + F (t)dk(t) (1)

yk(t) = C(t)xk(t) + D(t)uk(t) (2)

where t is the local-time, k is the trial index, xk(t) ∈ R
nx

is the state, yk(t) ∈ R
ny is the measured output, uk(t) ∈

R
nu is the control input and dk(t) ∈ R

nd is the process

disturbance. All the matrix dimensions are in accordance

with the corresponding vector dimensions. For the sake of

simplicity we assume ny = nu = 1. The state transition

matrix of the system (1)-(2) is defined as:

Φ(N,N0) =

{

A(N − 1)A(N − 2) . . . A(N0) if N > N0

I if N = N0

For the trial length of N + 1 we have

y
k

= Cxk(0) + Duk + Hdk (3)

where

D =

















D(0) 0 . . . 0
C(1)Φ(1,1)B(0) D(1) . . . 0

.

.

.

.

.

.

.
.
.

.

.

.

C(N)Φ(N,1)B(0) C(N)Φ(N,2)B(1) . . . D(N)

















C =

















C(0)Φ(0,0)
C(1)Φ(1,0)

.

.

.

C(N)Φ(N,0)

















y
k

=















yk(0)
yk(1)

.

.

.

yk(N)















uk =















uk(0)
uk(1)

.

.

.

uk(N)















dk =















dk(0)
dk(1)

.

.

.

dk(N)















(4)

and H is similarly defined. In (4) underline notation denotes
a lifted system matrix or a lifted vector. The matrix D is
referred to as the lifted impulse response matrix. If D(t) = 0,

∀t ∈ {0, 1, . . . , N}, we define y
k

= [yk(1)T . . .yk(N)T]T ,

uk = [uk(0)T . . .uk(N − 1)T]T and

D =








C(1)B(0) 0 . . . 0
C(2)Φ(2,1)B(0) C(2)B(1) . . . 0

...
...

. . .
...

C(N)Φ(N,1)B(0) C(N)Φ(N,2)B(1) . . . C(N)B(N − 1)









(5)

We assume that D has a full column rank. For simplicity,

we also assume that each trial starts from the zero initial

state, that is xk(0) = 0, ∀ k ∈ N0, and that the process

disturbances are trial invariant, that is, dk = d, ∀ k ∈ N0.

We define the difference operator ∆zk = zk+1 − zk, where

zk is an arbitrary lifted vector. The lifted tracking error is

defined as:

ek = y
ref

− y
k

(6)

where y
ref

is the lifted reference trajectory vector. Taking

into account (3), we represent the lifted tracking error as:

ek = y
ref

− b − Duk (7)

where y
ref

and b = Cxk(0)+Hd are trial invariant parts of

ek. Taking into account all previous assumptions, we have:

ek+1 = ek − D∆uk (8)

The main goal of the ILC strategy is to reach a small value of

the tracking error in a relatively small number of trials. The

widely used ILC law [1], [5] can be expressed in a generic

form:

uk+1 = Q (uk + Lek) (9)

where Q and L are matrices of appropriate dimensions,

and are referred to as the Q-filter and the learning matrix

respectively. The system (8) controlled by (9) is referred to

as the ILC system.

A. Design of optimal ILC laws

In the ILC with quadratic criterion (Q-ILC or norm-

optimal ILC) [12], [9], [4], [5], the ILC law has been derived

as the solution of the unconstrained quadratic optimization

problem:

Unconstrained ILC with quadratic cost design problem.

min
uk+1

g(uk+1) = min
uk+1

(ek+1)
T Week+1

+ (∆uk)T W∆u∆uk + (uk+1)
T Wuuk+1 (10)

where We is positive definite, W∆u and Wu are positive

semi-definite weighting matrices. The solution of (10) can

be expressed analytically, with the learning matrices given

by:

Q = (DT WeD + W∆u + Wu)−1(DT WeD + W∆u)

L = (DT WeD + W∆u)−1DT We (11)

5344

In practice, actuators of ILC system are often subjected

to different types of physical constraints. We name just a

few: the constraint on the rate of the input change between

two trials (input rate constraint), the constraint on the input

amplitude (input saturation), the constraint on the total input

energy in one trial (input energy constraint) and etc. For

simplicity reasons we consider the input rate constraint and

input energy constraint. The input rate constraint is expressed

analytically:

−a2 ≤ ∆uk(t) ≤ a1 (12)

where a1, a2 > 0 represent the constraints. The constraint

(12) can be represented in the trial domain:

Wc∆uk � c (13)

where Wc =
[

I −I
]T

and c =
[

a1 . . . a1 a2 . . . a2

]T
have dimensions

corresponding to ∆uk, and the symbol � denotes the

element-wise less than or equal relation. The input energy

constraint is expressed analytically:

1

2
∆uT

k WE∆uk ≤ b (14)

where WE is a positive-definite weighting matrix and b >
0 is a constraint. Taking these constraints into account, we

formulate the optimization problem:

Constrained ILC with quadratic cost design problem

min
∆uk

f0(∆uk) = min
∆uk

1

2
(ek+1)

T Week+1

subject to f(∆uk) � 0 (15)

where We is positive-definite, ek+1 is given by (8) and

f(∆uk) =

[

Wc∆uk − c
1
2∆uT

k WE∆uk − b

]

(16)

Due to simplicity we have only included the penalization of

ek+1 in (15). The optimization problem (15) is convex.

B. Stability and convergence analysis

Substituting the ILC law (9) into (8) and using the relation

ek = yref − yk we arrive at:

uk+1 = Q(I − LD)uk + QL(y
ref

− b) (17)

The stability and monotonic convergence properties of the

ILC system (17) have been extensively studied in the lit-

erature [1], [5] and are mainly determined by the spectral

properties of Q(I − LD). The ILC system is stable if and

only if:

ρ(Q(I − LD)) < 1 (18)

where ρ(.) denotes the matrix spectral radius. The conver-

gence rate γ of ILC system is given by:

γ = ‖Q(I − LD)‖2 (19)

The lifted impulse response matrix (4) (or (5)) satisfies the

Sequentially Semi Separable (SSS) matrix structure [7]. In

this paper we exploit the SSS structure to derive a linear

computational complexity (O(N)) framework for ILC design

and analysis. In that sense we define:

Problem 1. Assuming that all weighting matrices in

optimization problems (10) and (15) are chosen to satisfy

the Sequentially-Semi Separable (SSS) structure,

• Implement analyitical solution of (10) given by (11)

with O(N) complexity.

• Using the primal-dual method (PDM) [3], solve (15)

and implement one iteration of the PDM method with

O(N) complexity.

• Assuming that the Q-filter and learning matrix L of the

ILC law (9) satisfy (11), compute the convergence rate

(19) of ILC system with O(N) complexity.

In the next section we revise some basic properties of SSS

structure, whereas in Section 4 we exploit these properties

to solve Problem 1.

III. SEQUENTIALLY SEMI SEPARABLE STRUCTURE

The informal definition of the SSS structure can be given

as follows [7].
Let S be an M ×M (possibly complex) matrix satisfying

the matrix structure. Then there exist N positive integers
m1, . . . ,mN with M = m1 + . . . + mN to block partition
S as S = (Si,j), where Si,j ∈ C

mi×mj satisfies

Si,j =







Di, if i = j

UiWi+1 . . . Wj−1V
H

j , if j > i

PiRi−1 . . . Rj+1Q
H
j , if j < i

(20)

where the superscript H denotes the Hermitian transpose.

For example, if N = 4 the structure of S can be visualized

as follows:

S =









D1 U1V
H
2 U1W2V

H
3 U1W2W3V

H
4

P2Q
H
1 D2 U2V

H
3 U2W3V

H
4

P3R2Q
H
1 P3Q

H
2 D3 U3V

H
4

P4R3R2Q
H
1 P4R3Q

H
2 P4Q

H
3 D4









(21)

Since the SSS matrix structure is uniquely determined with

the sequences of matrices Pi, Ri, Qi, Ui, Wi, Vi and Di they

are called generator matrices of S. We denote the SSS

matrices in a compact manner [17]:

S = SSS (Pi, Ri, Qi, Ui, Wi, Vi, Di) (22)

In the spirit of (22) and with slight abuse of the notation,

the matrix D defined by (4) can be written in terms of its

generators:

D = SSS (C(i), A(i), B(i), 0, 0, 0, D(i)) (23)

Similarly, matrix D defined in (5) can also be written in

terms of its generators.

5345

The class of SSS matrices is attractive from computational

point of view due to following facts [8], [7], [18]:

• The computational cost of the basic matrix operations

(+−,×,−1) and matrix-vector multiplications is linear

in N . Furthermore, the SSS matrices can be compactly

stored in the computer memory.

• The algebra of SSS matrices is closed under the basic

matrix operations.

The generators of a matrix obtained as a result of basic

matrix operations on SSS matrices, are directly computed

by the efficient SSS algorithms summarized in [7], [18].

IV. LINEAR COMPUTATIONAL COMPLEXITY FRAMEWORK

FOR ILC ANALYSIS AND DESIGN

In Problem 1 (see Section 2), it is assumed that all

weighting matrices of optimization problems (10) and (15)

are choosen to satisfy the SSS structure. This assumption is

not restrictive due to following. The most simple selection

of weighting matrices, that satisfies the SSS structure, is a

diagonal selection. Next, in [15] (see Chapter 14) a non-

diagonal selection of weighting matrices has been proposed.

The authors select Wu = (HHT)−1, where H is the Toeplitz

matrix with the first column being the first N + 1 Markov

parameters of a low pass filter (e.g. Butterworth filter),

whereas We and W∆u are selected as diagonal. The matrix

H with the Toeplitz structure satisfies the SSS structure

and consequently Wu satisfies the SSS structure. All vector-

matrix and matrix operations, that are used in the algorithms

presented in this section, are performed using the efficient

SSS algorithms presented in [7], [18].

A. O(N) implementation of unconstrained ILC with

quadratic cost

The solution of the unconstrained optimization problem

(10) has analytic form (11) that is computed by performing

vector-matrix multiplications and the basic matrix operations

(+−,×,−1) on the lifted impulse response matrix D and

weighting matrices We, Wu and W∆u. Since these matrices

satisfy the SSS structure, the solution can be computed with

O(N) computational complexity.

B. Computationally efficient implementation of the primal-

dual interior point method

We briefly summarize the basic primal-dual method

(PDM) presented in [3] and focus on the computational

aspects of its implementation. The modified Karush-Kuhn-

Tucker (KKT) equations associated with the optimization

problem (15) are:

r =

[

r1

r2

]

=

[

∇f0(∆uk) + Df(∆uk)T
λ

−diag(λ)f(∆uk) − (1/l)1

]

= 0 (24)

where Df(∆uk)T =
[

∇f1(∆uk) . . .∇f2(N+1)+1(∆uk)
]

and fi denotes the ith element of (16), λ ∈ R
2(N+1)+1 is a

vector of Lagrange multipliers, 1 ∈ R
2(N+1)+1 is a vector

of ones and l > 0. The Newton step n =
[

nT
1 nT

2

]T
, for

solving nonlinear system of equations (24), is computed as

a solution of:

Jn = −r (25)

where the Jacobian matrix J is:

J =
[

∇2f0(∆uk) +
∑2(N+1)+1

i=1 λi∇
2fi(∆uk) Df(∆uk)T

−diag(λ)Df(∆uk) −diag(f(∆uk))

]

(26)

Next we have:

∇f0(∆uk) = D
T
WeD∆uk − D

T
Week

∇2
f0(∆uk) = D

T
WeD , Df(∆uk) =





I
−I

∆u
T
k WE





2(N+1)+1
∑

i=1

λi∇
2
fi(∆uk) = λ2(N+1)+1WE (27)

We introduce following partitions:

diag(λ) =





Λ1

Λ2

λ2(N+1)+1





diag(f(∆uk)) =





F1

F2

f2(N+1)+1



 (28)

where Λ1 = diag(λ(1 : N + 1)), Λ2 = diag(λ(N + 2 :
2(N +1))), F1 = diag(f(1 : N +1)), F2 = diag(f(N +2 :
2(N + 1))), λ2(N+1)+1 = λ(2(N + 1) + 1), f2(N+1)+1 =
f(2(N + 1) + 1) and (1 : N + 1) denotes the standard
MATLAB R© notation for choosing first N + 1 elements of a
vector. Substituting the last expression in (26) we obtain:

J =








DT WeD + λ2(N+1)+1WE I −I WE∆uk

−Λ1

Λ2

−λ2(N+1)+1∆u
T
k WE

−F1

−F2

−f2(N+1)+1









(29)

The PDM for solving optimization problem (15) can be

summarized as follows:

Algorithm 1: Primal-dual interior point method

(PDM) [3]. Given initial point ∆uk that satisfies

f(∆uk) ≺ 0,λ ≻ 0, µ > 1, ǫ > 0 and ǫf > 0,

repeat

1) Compute η̂ = −f(∆uk)λ and l = µ(2(N +1)+1)/η̂.

2) Compute the primal-dual search direction n by solving

system (25).

3) Determine the step length s > 0 and update ∆uk :=
∆uk + sn1 and λ := λ + sn2

until ‖r1‖2 ≤ ǫf , ‖r2‖2 ≤ ǫf and η̂ ≤ ǫ.

In the third step of Algorithm 1, it is required to compute the

step length s. This step can be performed using the modified

version of backtracking line search that ensures that the next

5346

iterates of λ and ∆uk are feasible. For more details about

the backtracking line search and how to chose the constants

µ,ǫ and ǫf see Section 11.7.3 of [3] and references therein.

In each iteration of the Algorithm 1, the stopping criterion

needs to be checked. That is, the values of ‖r1‖2 and ‖r2‖2

need to be computed. Due to the fact that all weighting

matrices, together with lifted impulse matrix D and diagonal

matrices in expressions (24) and (27) satisfy the SSS struc-

ture, we conclude that ‖r1‖2 and ‖r2‖2 can be computed

with O(N) complexity.

In the first step of Algorithm 1, the value of η̂ needs to be

computed. This can be done with O(N) complexity, since

matrices in (16) satisfy the SSS structure.

Similarly we can conclude that the step 3 of Algorithm 1

can be performed with O(N).
In the second step of Algorithm 1, we need to determine

primal-dual search direction n. Its value can be computed

using the Schur complement:

n1 = (J11 − J12J
−1
22 J21)

−1(J12J
−1
22 r2 − r1) (30)

n2 = J−1
22 (−r2 − J21n1) (31)

where Jij coresponds to the (i, j) block of (29). Next we

have:

J11 − J12J
−1
22 J21 = DT WeD + λ2(N+1)+1WE − F−1

1 Λ1

− F−1
2 Λ2 −

λ2(N+1)+1

f2(N+1)+1
WE∆uk∆uT

k WE (32)

and where:

∆uk∆u
T
k =

















∆uk(1)2 ∆uk(1)∆uk(2) . . . ∆uk(1)∆uk(N + 1)

∆uk(2)∆uk(1) ∆uk(2)2 . . . ∆uk(2)∆uk(N + 1)

.

.

.

.

.

.

.

.

.

.

.

.

∆uk(N + 1)∆uk(1) ∆uk(N + 1)2

















By comparing ∆uk∆uT
k and the general form of the SSS

structure (21) we conclude that ∆uk∆uT
k satisfies the SSS

structure, with the generators given by:

Di = uk(i)2 , Pi = uk(i) , Ri = 1 , Qi = uk(i) . . .
(33)

Since Fi and Λi, i = 1, 2 are diagonal matrices they satisfy

the SSS structure. Due to the fact that WE , D, I , and

∆uk∆uT
k satisfy the SSS structure, we conclude that the

Schur complement (32) (together with its inverse) satisfies

the SSS structure. We can transform the second term of

product in (30) as follows:

J12J
−1
22 r2 − r1 = F−1

2 r
(2)
2 − F−1

1 r
(1)
2 − ∆ukWE

r
(3)
2

f2(N+1)+1

− r1 (34)

where r2 =
[

(r
(1)
2)T (r

(2)
2)T r

(3)
2

]T

and the dimensions

of r
(i)
2 , i = 1, 2, 3 correspond to the partition of diag(f)

(28). Since all matrices in (34) have diagonal structure,

the computational effort of determining (34) is O(N). Due

to this and due to the fact that the inverse of the Schur

complement satisfies the SSS structure, the computational

cost of evaluating (30) is O(N). Similarly it can be shown

that computational cost of (31) is O(N) This implies that the

second step of Algorithm 1 can be performed with O(N).

C. Computationally efficient stability check and convergence

rate computation

In order to compute the spectral radius of the ILC system,

we need to compute the maximal eigenvalue of Q(I −LD).
Similarly, to determine the convergence rate of the ILC

system we need to determine the square root of the maximal

eigenvalue of (I − LD)T QT Q(I − LD).
One of the most simplest algorithms to determine the

maximal eigenvalue of a matrix is the Power Method (PM)

[6]. The PM for computing the maximal eigenvalue of

(I −LD)T QT Q(I −LD) consits of the following iteration:

h
j+1 =

(I − LD)T QT Q(I − LD)hj

∥

∥(I − LD)T QT Q(I − LD)hj
∥

∥

2

(35)

where j is an iteration index. The iteration (35) starts with

a vector h
0, which can be chosen as a random vector

or as an approximation of the dominant eigenvector of

(I−LD)T QT Q(I−LD). If the sequence generated by (35)

converges, the sequence:

λj =
(hj)T (I − LD)T QT Q(I − LD)hj

(hj)T h
j

(36)

converges to the dominant eigenvalue of (I−LD)T QT Q(I−
LD). Convergence properties of PM, together with other

methods for computing the maximal eigenvalue of a matrix

(that are based on iteration (35)), are summarized in [6].

Since the weighting matrices We, Wu and W∆u satisfy the

SSS structure, Q and L (defined in (11)) satisfy the SSS

structure. This is due to the fact that the SSS algebra is closed

under the basic matrix operations. Similarly, the matrices

Q(I − LD) and (I − LD)T QT Q(I − LD) satisfy the SSS

structure. Due to this, the computational cost of one iteration

of PM (35) (as well as (36)) is O(N).

V. SIMULATIONS

All simulations are performed on the standard desktop per-

sonal computer. The SSS algorithms summarized in [7], [18]

are implemented in MATLAB R©. We consider the system (1)-

(2) defined by:

A =

[

−0.7 −0.5
1 0.2

]

, B =

[

2
0.5

]

, C =
[

1 0
]

, D = 0

(37)

We assume zero initial state. The graph of reference trajec-

tory is left out due to space constraint. For the simplicity

reasons weighting matrices We and WE are chosen as

diagonal. The same computational efficiency can be also

observed for the fully populated and SSS structured weight-

ing matrices. For the trial length of N = 1000, we have

solved the optimization problem (15) using Algorithm 1. The

parameters are µ = 25, ǫf = ǫ = 0.005. In order to illustrate

the effect of the constraints on the learning transients, we

have computed the solution for the two set of the constraints

5347

K1 = (a1, a2, b) = (2, 2, 15) and K2 = (a1, a2, b) =
(3, 3, 100). The tracking performance in the trial domain is

presented in Figure 1 (left). The input rate values between

trial 1 and 2, for the set of weights K1 and K2, are presented

in Figure (1) (right).

1 1.5 2 2.5 3 3.5 4 4.5 5
0

5

10

15

20

k

e
k

K2 set of constraints

K1 set of constraints

0 200 400 600 800 1000
−1

−0.5

0

0.5

1

trial length N

∆
u

1
(
t
)

K1 set of constraints

K2 set of constraints

Fig. 1. Left: tracking performance in the trial domain for the set of
constraints K1 = (a1, a2, b) = (2, 2, 15) and K2 = (a1, a2, b) =
(3, 3, 100). Right: input rate values between trial 1 and 2.

In Figure 1 the effect of the input energy constraint on

the learning transient can be observed. By decreasing the

input energy constraint (the value of b), the convergence rate

of the ILC system is decreased and vice-versa. It can be

also shown that by decreasing the input rate constraint the

convergence rate of the ILC system will be decreased and

vice-versa. From Figure 1 (right) we can see that the input

rates and input energy (by integrating the amplitude) are in

the set defined by the constraints.

The primal-dual search direction (25) is computed us-

ing efficient SSS algorithms for different trial lengths. For

comparation purpose, the primal-dual search direction is

computed using standard MATLAB R© matrix operations. The

computational times are expressed in seconds and presented

in Figure 2 (left). The linear computational complexity

of computing the primal-dual search direction using SSS

algorithms is evident.

0 500 1000 1500 2000

0

50

100

150

trial length N

c
o
m

p
u
ta

ti
o
n
a
l
ti
m

e
 [
s
]

MATLAB

SSS algorithms

0 500 1000 1500 2000

0

50

100

150

trial length N

c
o
m

p
u
ta

ti
o
n
a
l
ti
m

e
 [

s
]

Power Method and SSS algorithms

MATLAB function norm()

Fig. 2. Left: necessary time to compute the primal-dual
search direction (25) using the SSS algorithms and the standard
MATLAB matrix operations. Right: necessary time to compute
‖Q(I − DL)‖2, using the MATLAB function norm() and by using
the PM in a combination with SSS algorithms.

We have computed the convergence rate (19) for different

trial lengths N . The learning matrices are defined in (11).

The weighting matrices of (11) are: We = I , W∆u = I and

Wu = I (also any other selection that satisfies the SSS struc-

ture will give similar results). Following the methodology

presented in Section 4 we have computed the convergence

rate using the Power Method (PM) and by exploiting the SSS

structure. For comparation, we have used the MATLAB R©

function norm(.). The computation times are presented in

Figure 2 (right). The linear computational complexity of the

PM and SSS algorithms is evident. This is in contrast to the

computational complexity of MATLAB function norm(.)

VI. CONCLUSION

In this paper we have exploited the sequentially-semi

separable structure of the lifted system matrices to reduce

the computational complexity of the constrained ILC design

methods. We have also proposed a computationally efficient

method for stability check and computation of convergence

rate of ILC system.

REFERENCES

[1] H.S. Ahn, Y.Q. Chen, and K.L. Moore. Iterative learning control: Brief
survey and categorization. IEEE Transactions On Systems, Man, And

Cybernetics, Part C: Applications and Reviews, 37(6):1099, 2007.
[2] K.L. Barton, D.A. Bristow, and A. G. Alleyne. A Numerical Method

for Determining Monotonicity and Convergence Rate In Iterativel
Learning Control. International Journal of Control, 2010.

[3] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge
University Press, 2004.

[4] D. A. Bristow. Weighting matrix design for robust monotonic
convergence in norm optimal iterative learning control. In Proceedings

of the American Control Conference, pages 4554–4560, 2008.
[5] D.A. Bristow, M. Tharayil, and A.G. Alleyne. A survey of iterative

learning control. IEEE control systems magazine, 26(3):96–114, 2006.
[6] R.L. Burden and J.D. Faires. Numerical Analysis. Brooks/Cole, 2001.
[7] S. Chandrasekaran, P. Dewilde, M. Gu, T. Pals, A.J. van der Veen,

and D. White. Fast Stable Solvers for Sequentially Semi-Separable
Linear Systems of Equations. Report, Lawrence Livermore National

Library, 2003.
[8] P. Dewilde and A.J. Van der Veen. Time-varying systems and

computations. Kluwer Academic Pub, 1998.
[9] S. Gunnarsson and M. Norrlöf. On the design of ILC algorithms using

optimization. Automatica, 37:2011–2016, 2001.
[10] W.B.J. Hakvoort, R.G.K.M. Aarts, J. van Dijk, and J.B. Jonker. Lifted

system iterative learning control applied to an industrial robot. Control

Engineering Practice, 2008.
[11] W.B.J. Hakvoort, R.G.K.M. Aarts, J. van Dijk, and J.B. Jonker. A

computationally efficient algorithm of iterative learning control for
discrete-time linear time-varying systems. Automatica, 45:2925–2929,
2009.

[12] J.H. Lee, K.S. Lee, and W.C. Kim. Model-based iterative learning
control with a quadratic criterion for time-varying linear systems.
Automatica, 36:641–657, 2000.

[13] S. Mishra, U. Topcu, and M. Tomizuka. Optimization-based Con-
strained Iterative Learning Control. to appear in the IEEE Transactions

on Control Systems Technology, 2010.
[14] K.L. Moore, M. Johnson, and M.J. Grimble. Iterative Learning

Control for Deterministic Systems. Springer-Verlag New York, Inc.
Secaucus, NJ, USA, 1993.

[15] M. Norrlöf. Iterative Learning Control: Analysis, Design and Exper-

iments. Thesis no. 653, Linköpings universitet, 2000.
[16] M.Q. Phan, R.W. Longman, and K.L. Moore. Unified formulation of

linear iterative learning control. Spaceflight mechanics 2000, pages
93–111, 2000.

[17] J.K. Rice and M. Verhaegen. A Structured Matrix Approach to
Efficient Calculation of LQG Repetitive Learning Controllers in the
Lifted Setting. Accepted for publication in International Journal of

Control, 2010.
[18] Justin K. Rice. Efficient Algorithms for Distributed Control: A Struc-

tured Matrix Approach. PhD thesis, Delft University of Technology,
2010.

5348

