
On Optimal Policies for Control and Estimation Over a Gaussian Relay

Channel
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Abstract— The problem of causal transmission of a memo-
ryless Gaussian source over a two-hop memoryless Gaussian
relay channel is considered. The source and the relay encoders
have average transmit power constraints, and the performance
criterion is mean squared distortion. The main contribution
of this paper is to show that unlike in the case of a point-to-
point channel, linear encoding schemes are not optimal over a
two-hop relay channel in general, extending the sub-optimality
results which are known for more than two hops. In some cases,
simple three level quantization policies employed at the source
and at the relay can outperform the best linear policies. Further

a lower bound on the distortion is derived and it is shown that
the distortion bounds derived using cut-set arguments are not
tight in general for sensor networks.

I. INTRODUCTION

Consider a physical phenomenon characterized by a se-

quence of independent and identically distributed real valued

Gaussian random variables {Xn}n∈Z+ having zero mean and

variance σ2
x, where n denotes a discrete time index. We

wish to instantly communicate this physical phenomenon to

a remote destination over a two-hop relay channel with as

high fidelity as possible. The system model is illustrated in

Fig. 1. According to the figure, at a discrete time n ∈ Z+ the

source encoder E observes Xn and produces an output signal

Se,n = f1,n({Xi}ni=1) suitable for transmission, where f1,n :
R

n 7→ R is a causal mapping. The encoder mapping f1,n has

to satisfy the following average power constraint,

E[S2
e,n] ≤ PS . (1)

The transmitted signal Se,n is then observed in noise by the

relay node R as Yn = Se,n + Zr,n, where {Zr,n}n∈Z+ is a

zero mean white Gaussian noise sequence of variance Nr.

The relay node applies a causal mapping on the received

signal f2,n : R
n 7→ R to produce Sr,n = f2,n({Yi}ni=1)

under the following average relay power constraint,

E[S2
r,n] ≤ PR. (2)

The signal Sr,n is then transmitted over a Gaussian channel.

Accordingly the destination node D receives Rn = Sr,n +
Zd,n, where {Zd,n}n∈Z+ is a zero mean white Gaussian

noise sequence of variance Nd. Upon receiving Rn the
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Fig. 1. A memoryless Gaussian source is transmitted in a causal fashion to
a remote destination via a relay node. The destination wishes to reconstruct
the source with minimum expected squared-error and zero-delay.

decoder wishes to reconstruct the transmitted variable Xn

by applying a mapping gn : R
n 7→ R to produce X̂n =

gn({Ri}ni=1). The encoder, the relay, and the decoder are all

causal and delay-free (zero delay). The objective is to choose

the encoder, relay, and decoder mappings such that following

distortion

D = lim
N→∞

1

N

N
∑

n=1

E[(Xn − X̂n)
2] (3)

is minimized subject to the constraints in (1) and (2).

It is well-known that linear encoding is optimal for

transmission of a Gaussian source over a point-to-point

Gaussian channel when the distortion measure is mean

squared error [1, 2]. From [3–6] we know that linear policies

are also optimal if the encoder observes a noisy version

of a Gaussian source. Moreover in [7] Gastpar has shown

that linear (uncoded) scheme is even optimal in a simple

Gaussian sensor network setting where each sensor node

observes a noisy version of a Gaussian source and all the

sensor nodes simultaneously transmit over a multiple-access

Gaussian channel.

Lipsa and Martins studied a multi-stage decision (encod-

ing) problem in [8, 9] and provided counter-examples (based

on functions whose output can take on only two values) to

show that linear policies are not optimal when the number of

stages are sufficiently large. However their counter-example

does not hold when the number of stages is either three

or four. Therefore we highlight some unanswered questions

pertaining to the transmission of a Gaussian source over

the two-hop relay channel under discussion: i) Are linear

policies optimal? ii) If not, then under what circumstances

linear scheme can be optimal and what is the greatest lower

bound on the distortion? iii) What are the optimal policies? In

this paper we address the first two questions and demonstrate

that non-linear policies based on simple three-level quantizer

functions can beat the best linear policies in some cases, thus

the linear encoding is not optimal in general. Moreover we

discuss that linear encoding policies are person-by-person

optimal, however they do not guarantee global optimality
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as the given team problem is non-convex in the encoding

policies. We also derive a lower bound on distortion which

is however not tight in general. The final question in the

direction of finding the optimal policies is challenging and

will be a subject of our future work.

This is a team decision problem under non-classical infor-

mation structure [10]. One popular example of such problems

is the well-known Witsenhausen’s counterexample, which

looks deceptively simple and remains unsolved till today

[11].

The problem of causal transmission transmission over a

two-hop relay channel is motivated by control applications,

where the sensor measurements of a dynamical system are

transmitted via a relay node to a remote decoder which has

to control the system in real time. Control of a linear time in-

variant system over various types of relay channels has been

been studied in [12–14], where sub-optimal linear schemes

are used to derive conditions on mean-square stability. In

[15], memoryless non-linear relay mappings are shown to

outperform linear mappings for instantaneous transmission

of a Gaussian source over an orthogonal three-node relay

channel. A similar observation has been made in the control

context in [16] for two parallel Gaussian relay channels.

However the problem we are studying in this paper is

fundamentally different from the problems addressed in [15,

16] due to the absence of a direct link (or parallel channels)

from the source to the decoder.

II. DISTORTION LOWER BOUND

We derive a lower bound on the distortion using Bansal

and Başar’s approach [17] and the data processing inequality

[18]. Consider the following series of inequalities:

1

N

N
∑

n=1

I(Xn; X̂n)
(a)
=

1

N

(

N
∑

n=1

H(Xn)−
N
∑

n=1

H(Xn|X̂n)

)

(b)
=

1

N

(

H(XN)−
N
∑

n=1

H(Xn|X̂n)

)

(c)

≤ 1

N

(

H(XN )−
N
∑

n=1

H(Xn|X̂N , Xn−1)

)

=
1

N

(

H(XN )−H(XN |X̂N)
)

=
1

N
I(XN ; X̂N)

(d)

≤ 1

N
I(SN

e ;RN)
(e)

≤ 1

N
min{I(SN

e ;Y N ), I(SN
r ;RN )}

(f)

≤ 1

N
min

{

N
∑

n=1

I(Se,n;Yn),

N
∑

n=1

I(Sr,n;Rn)

}

(g)

≤ 1

2
min

{

log

(

1 +
PS

Nr

)

, log

(

1 +
PR

Nd

)}

, (4)

where (a) follows from the definition of mutual information;

(b) follows from independence of the sequence {Xn}Nn=1 and

by defining XN , {Xn}Nn=1; (c) follows from conditioning

reduces entropy; (d) and (e) follow from the data processing

inequality with Markov chain [18]; (f) follows from the

fact that the channels are memoryless and conditioning

reduces entropy; and (g) follows from the fact that mutual

information is maximized by Gaussian distribution. Further

consider the following inequalities:

1

N

N
∑

n=1

I(Xn; X̂n)
(a)

≥ 1

2N

N
∑

n=1

log

(

σ2
x

E[(Xn − X̂n)2]

)

=
1

2N

N
∑

n=1

log
(

σ2
x

)

− 1

2N

N
∑

n=1

log
(

E[(Xn − X̂n)
2]
)

(b)

≥ 1

2
log
(

σ2
x

)

− 1

2
log

(

1

N

N
∑

n=1

E

[

(Xn − X̂n)
2
]

)

, (5)

where (a) follows from the rate distortion theorem for

an i.i.d. Gaussian source [18]; and (b) follows from the

concavity of the logarithm function. Now from (4) and (5),

we obtain the following lower bound on the distortion by

simple algebraic manipulation.

D = lim
N→∞

1

N

N
∑

n=1

E

[

(Xn − X̂n)
2
]

≥ σ2
x max

{

Nr

PS +Nr

,
Nd

PR +Nd

}

. (6)

Remark 1: It is observed in [19, Theorem 3.5] that due to

the presence of the two channel noise components (Zr and

Zd), we have I(Se;R) < min{I(Se;Y ), I(Sr ;R)}. There-

fore the bound in (6) is not tight. However it becomes tight

when variance of any of the two channel noise components

approaches zero. In [19, Theorem 3.5] the authors discussed

that I(Se;R) is strictly lower than the capacity of a two-hop

relay channel which follows from block coding arguments

and cut-set bound. This tells us that the distortion bounds

obtained using cut set arguments are not tight in general for

sensor networks due to the zero-delay reconstruction.

III. LINEAR POLICIES

In this section we find the optimal linear encoding policies

and the distortion obtained under these policies. Since the

source is memoryless and the encoders are causal, the

optimal encoders are memoryless [20]. This can be easily

verified by showing that if we transmit a linear combination

of the current and the previous source observations, then

the previous observations will only contribute to noise as

the source is memoryless. We therefore restrict our study to

memoryless linear policies, in the sense that the encoders

merely transmit a scaled version of the received signal. That

is, the source and the relay encoders transmit the following:

Se,n =

√

an

σ2
x

Xn, Sr,n =

√

bn

an +Nr

Yn,

where an, bn ∈ R+ are time varying gain coefficients which

are chosen such that the transmit power constraints in (1) and

(2) are satisfied, i.e., an ≤ PS and bn ≤ PR. The decoder

accordingly receives

Rn =

√

anbn

σ2
x(an +Nr)

Xn +

√

bn

an +Nr

Zr,n + Zd,n,
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and computes the minimum mean squared-error (MMSE)

estimate according to X̂n = E[Xn|Rn] = E[Xn|Rn], where

we have used the notation Rn = {Ri}ni=1 and the fact that

the {Rn, Rn−k} are mutually independent for all k 6= n.

Since Xn is Gaussian, the distortion per time instant follows

from a straightforward computation [21],

E[(Xn − X̂n)
2] = σ2

x

(

1− anbn

(an +Nr)(bn +Nd)

)

which leads to

DL = lim
N→∞

σ2
x

N

N
∑

n=1

(

1− anbn

(an +Nr)(bn +Nd)

)

(7)

The optimal choice of the gain coefficients 0 < an ≤ PS ,

0 < bn ≤ PR, which minimizes (7) is {a⋆n = PS , b
⋆
n = PR}.

This choice of the gain coefficients leads to the following

lowest distortion that is obtained under the best linear en-

coding scheme.

D⋆
L = σ2

x

(

1− PSPR

(PS +Nr)(PR +Nd)

)

. (8)

We have so far found a strict lower bound on distortion

in (6) and an upper bound in (8) using the best linear

scheme. However we still do not know how good linear

policies are and under what circumstances they are optimal?

In the following we show that the linear policies are person-

by-personal optimal, however they do not guarantee team

optimality.

Person-by-person Optimality of Linear Policies and Concav-

ity of the Team Problem

Let us fix the source encoder to be linear. Given a linear

and memoryless policy at the source encoder, we now find an

optimal relaying policy which minimizes the per time instant

distortion E[(Xn−E[Xn|Rn])2], where Rn , {Ri}ni=1. We

can rewrite the per stage distortion as

E[(Xn − E[Xn|Rn])2]
(a)
= E

[

(Xn − E[Xn|Y n])2
]

+ E
[

(E[Xn|Y n]− E[Xn|Rn])2
]

(b)
= E

[

(Xn − cnYn)
2
]

+ E
[

(cnYn − E[Xn|Rn])2
]

, (9)

where (a) follows from

E[(Xn − E[Xn|Y n])(E[Xn|Y n] − E[Xn|Rn])] = 0 (by

the orthogonality principle of MMSE estimation); and (b)
follows from the fact that the source encoder is linear

and memoryless and the MMSE estimation of a Gaussian

variable is linear, i.e. E[Xn|Y n] = cnYn, where cn is a

scalar. According to (9), an optimal relaying policy is the

one which minimizes E[(cnYn − E[Xn|Rn])2], since the

remaining term in the per time instant distortion function is

independent of the relaying policy. This problem was studied

by Bansal and Başar in [6], from which it follows that an

optimal relay encoding policy is linear and memoryless if

we fix the source encoder to be linear memoryless. This

observation can also be made from [3–5, 7, 22, 23]. Now if

we fix the relay encoder policy to be linear and memoryless,

one can observe that the problem becomes equivalent to

the transmission of a Gaussian source over a point to point

Gaussian channel subject to an average power constraint, for

which it is well-known that linear (memoryless) encoding is

optimal in the sense of minimizing mean squared distortion

[1, 2]. Hence if we fix either the source encoder or the relay

encoder to be linear, then the greatest lower bound on the

distortion is given by (8). That is linear policies are person-

by-person optimal.

We know that in a decentralized team optimization prob-

lem person-by-person optimal solutions are globally optimal

if the cost function is convex in the policies of the decision

makers and the cost function satisfies differentiability condi-

tions in the policies [24]. Let us now investigate convexity

of the distortion given in (3). Let P be an observation

channel from the input variable X at source encoder to the

channel output variable R such that P (·|x) is a probability

measure on the Borel σ-algebra B(R) on R for every x ∈
R, and P (A|·) : R 7→ [0 : 1] is a Borel measurable

function for every A ∈ B(R). Similarly we define P1 as

an observation channel from the variable X to the variable

Y , and P2 as an observation channel from the variable Y to

the variable R. From [25, Theorem 4.1] it follows that the

distortion in (3) is concave in the joint observation channel

P (A|x) =
∫

R
P2(A|y)P1(dy|x) for every A ∈ B(R), where

the individual channels P1 and P2 are induced by the source

and the relay encoding policies. Thus the distortion in (3)

is non-convex in the encoding policies. This implies that the

person-by-person optimal encoding policies do not guarantee

team optimality.

IV. COUNTER EXAMPLE: NON-LINEAR POLICIES

In this section we provide a simple counter example to

show that linear policies are not optimal for causal trans-

mission of a Gaussian source over the given two-hop relay

channel. Consider the following time invariant policies at the

source encoder and the relay encoder respectively:

f1(x) =







a, for x > m1

0, for |x| ≤ m1

−a, for x < −m1







, (10)

f2(y) =







b, for y > m2

0, for |y| ≤ m2

−b, for y < −m2







, (11)

where the scalars a, b ∈ R+. In (10) and (11) we have

dropped the index n for the sake of simplicity without any

loss as we are considering time invariant policies. According

to these policies, the signals observed at the relay and the

destination are respectively given by

Y =







a+ Zr, for X > m1

Zr, for |X | ≤ m1

−a+ Zr, for X < −m1







, (12)

R =







b+ Zd, for Y > m2

Zd, for |Y | ≤ m2

−b+ Zd, for Y < −m2







. (13)
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X̂ = g(r) = E[X |R = r] =
1

p(r)
(l3(r) − l1(r))

√

σ2
x

2π
exp

(

−m1
2

2σ2
x

)

, (15)

DNL := E

[

(

X − X̂
)2
]

=

∫ ∞

−∞

(

l1(r)

∫ −m1

−∞
(x− g(r))2 p(x)dx + l2(r)

∫ m1

−m1

(x− g(r))2 p(x)dx

+ l3(r)

∫ ∞

m1

(x− g(r))2 p(x)dx

)

dr (16)

where p(r) = (l1(r) + l3(r))Q
(

m1

σx

)

+ l2(r)
(

1− 2Q
(

m1

σx

))

,

l1(r) =
1√

2πNd

[

e
−(r+b)2

2Nd Q

(

m2 − a√
Nr

)

+ e
−r2

2Nd

(

1−Q

(

m2 − a√
Nr

)

−Q

(

m2 + a√
Nr

))

+ e
−(r−b)2

2Nd Q

(

m2 + a√
Nr

)]

,

l2(r) =
1√

2πNd

[

e
−r2

2Nd +

(

e
−(r+b)2

2Nd + e
−(r−b)2

2Nd − 2e
−r2

2Nd

)

Q

(

m2√
Nr

)]

,

l3(r) =
1√

2πNd

[

e
−(r+b)2

2Nd Q

(

m2 + a√
Nr

)

+ e
−r2

2Nd

(

1−Q

(

m2 − a√
Nr

)

−Q

(

m2 + a√
Nr

))

+ e
−(r−b)2

2Nd Q

(

m2 − a√
Nr

)]

,

The non-linear policies in (10) and (11) have to satisfy

the average transmit power constraints. In Appendix I we

have obtained conditions on a, b ∈ R+ to ensure the power

constraints in (1) and (2) are satisfied. These conditions are:

a ≤
√

√

√

√

PS

2Q
(

m1

σx

) , b ≤
√

PR

2κ(m1,m2, a, σx, Nr)
, (14)

where

κ(m1,m2, a, σx, Nr) =
(

1− 2Q
(

m1

σx

))

Q
(

m2√
Nr

)

+

Q
(

m1

σx

)(

Q
(

m2−a√
Nr

)

+Q
(

m2+a√
Nr

))

and Q(x) ,

1√
2π

∫∞
x

e−
τ2

2 dτ . For these non-linear encoding policies,

the expressions for the MMSE decoder g(R) and the

corresponding distortion DNL are derived in Appendix

II and are reproduced in (15) and (16). The distortion

DNL can be computed numerically using (15), (16),

and (14) for any fixed values of the system parameters

{σ2
x, PS , PR, Nd, Nr,m1,m2}. We now give two examples

to demonstrate that the proposed simple non-linear scheme

can outperform the best linear scheme. In the following

examples we fix the values of the system parameters and

then numerically compute the distortion for non-linear and

linear policies according to (16) and (8) respectively. We

also evaluate the lower bound in (6), however the reader

should keep in mind that the bound is not tight in general

as we have used cut-set arguments for deriving this bound.

Example 1: Fixing σ2
x = PS = PR = 1, Nr = Nd = 4,

m1 = 2.45, and m2 = 6.84, we get: DNL = 0.926, D⋆
L =

0.96, and D = 0.8.

Example 2: Fixing σ2
x = PS = PR = 1, Nr = Nd = 10,

m1 = 2.85, and m2 = 12.05, we get: DNL = 0.964, D⋆
L =

0.992, and D = 0.909.

The above examples validate the fact that linear policies

are not optimal in general for the given two-hop relay chan-

nel when the source and the relay node have individual power

constraints. Let us now consider a total power constraint

on the source and the relay, i.e., E[S2
e,n] + E[S2

r,n] = P .

According to Appendix III, the distortion is minimized for

the linear policies by an equal power allocation E[S2
e,n] =

E[S2
r,n] =

P
2 if the two channel noises have equal variance

i.e., Nr = Nd. In the above two counter-examples we

have only considered the cases with equal source and relay

transmit powers and equal noise variances, thus the linear

policies are also not optimal when a total transmit power

constraint is imposed on source and relay.

V. CONCLUSION

We studied the problem of mean square estimation of

a Gaussian source over a two-hop Gaussian relay channel

with average source and relay transmit power constraints. A

strict lower bound on mean square distortion was derived.

We observed that the distortion bounds obtained using cut-

set arguments are not tight in general for sensor networks

due to the zero-delay nature of the problem. Further it was

shown that linear policies are person-by-person optimal for

causal transmission and estimation of a Gaussian source over

the given two-hop relay channel. However person-by-person

optimality of the linear policies do not guarantee global op-

timality due to concavity property of the distortion function

in the observation channel. A simple three level function was

shown to outperform the best linear scheme in some cases,

thus validating the fact that linear policies are not optimal in

general. This observation is in accordance with the already

known results for non-classical information structures [10].

We wish to identify necessary and sufficient conditions for

optimal schemes for this problem using variational methods

in future work. Some recent related results on functional

properties of MMSE can be found in [26].
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APPENDIX I

TRANSMIT POWER CONSTRAINTS

The parameter a ∈ R+ of the source mapping f1(.) in

(10) is chosen such that

PS ≥ E
[

S2
e

]

= E
[

f2
1 (X)

]

=

∫ ∞

−∞
f2
1 (x)p(x)dx

= 2a2Q

(

m1

σx

)

⇒ a ≤
√

√

√

√

PS

2Q
(

m1

σx

) , (17)

which follows from (10), p(x) = 1√
2πσ2

x

e
− x2

2σ2
x , Q(x) ,

1√
2π

∫∞
x

e−
τ2

2 dτ , and Q(x) = Q(−x). From (12) we have

p(y|x) =



















1√
2πNr

e−
(y−a)2

2Nr , if x > m1

1√
2πNr

e−
y2

2Nr , if |x| ≤ m1

1√
2πNr

e−
(y+a)2

2Nr , if x < −m1



















. (18)

The marginal pdf p(y) can now be computed as

p(y) =

∫

R

p(y|x)p(x)dx =
1√

2πNr

[(

e
−(y+a)2

2Nr + e
−(y−a)2

2Nr

)

×Q

(

m1

σx

)

+ e
−y2

2Nr

(

1− 2Q

(

m1

σx

))]

, (19)

The condition on the parameter b which ensures the average

transmit power constraint at the relay node is obtained as

PR ≥ E
[

S2
r

]

= E
[

f2
2 (Y )

]

=

∫ ∞

−∞
f2
2 (y)p(y)dy

= 2b2

[

Q

(

m1

σx

)(

Q

(

m2 − a√
Nr

)

+Q

(

m2 + a√
Nr

))

+

(

1−2Q

(

m1

σx

))

Q

(

m2√
Nr

)

]

=:2b2κ(m1,m2, a, σx, Nr)

⇒b ≤
√

PR

2κ(m1,m2, a, σx, Nr)
, (20)

which follows from (11),(19), and by defining

κ(m1,m2, a, σx, Nr).

APPENDIX II

DISTORTION CALCULATION

We first find the joint pdf p(x, r) and the marginal pdf

p(r) in order to compute the MMSE estimator. Since we

have the following Markov chain X → Y → R,

p(x, r) =

∫

R

p(r|y)p(y|x)p(x)dy, (21)

where p(y|x) is given in (18), and from (13) we have

p(r|y) =



















1√
2πNd

e
− (r−b)2

2Nd , if y > m2

1√
2πNd

e
− r2

2Nd , if |y| ≤ m2

1√
2πNd

e
− (r+b)2

2Nd , if y < −m2



















. (22)
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For the interval x < −m1, p(x, r) is computed as follows:

p(x, r) = p(x)

∫

R

p(r|y)p(y|x)dy

(a)
= p(x)

[

1√
2πNr

{
∫ −m2

−∞
p(r|y)e

−(y+a)2

2Nr dy

+

∫ m2

−m2

p(r|y)e
−(y+a)2

2Nr dy +

∫ ∞

m2

p(r|y)e
−(y+a)2

2Nr dy

}

]

(b)
=

p(x)√
2πNd

[

e
−(r+b)2

2Nd

√
2πNr

∫ −m2

−∞
e

−(y+a)2

2Nr dy

+
e

−r2

2Nd

√
2πNr

∫ m2

−m2

e
−(y+a)2

2Nr dy +
e

−(r−b)2

2Nd

√
2πNr

∫ ∞

m2

e
−(y+a)2

2Nr dy

]

(c)
=

p(x)√
2πNd

[

e
−(r+b)2

2Nd Q

(

m2−a√
Nr

)

+e
−(r−b)2

2Nd Q

(

m2+a√
Nr

)

+e
−r2

2Nd

{

1−Q

(

m2−a√
Nr

)

−Q

(

m2+a√
Nr

)}

]

(d)
=:p(x)l1(r)

(23)

where (a) follows from (18); (b) follows from (22); (c)
follows from the definition of Q(.); and (d) follows by

defining l1(r). By following the same steps as above, the

joint pdf p(x, r) for |x| ≤ m1 is given by

p(x, r) =
p(x)√
2πNd

[

e
−r2

2Nd +

+

{

e
−(r+b)2

2Nd + e
−(r−b)2

2Nd − 2e
−r2

2Nd

}

Q

(

m2√
Nr

)

]

=: p(x)l2(r), (24)

and for x > m1,

p(x, r) =
p(x)√
2πNd

[

e
−(r+b)2

2Nd Q

(

m2 + a√
Nr

)

+ e
−r2

2Nd

{

1−Q

(

m2 − a√
Nr

)

−Q

(

m2 + a√
Nr

)}

+ e
−(r−b)2

2Nd Q

(

m2 − a√
Nr

)

]

=: p(x)l3(r). (25)

From (23), (24), and (25), we compute the following

marginal pdf,

p(r) =

∫

R

p(x, r)dx

=

∫ −m1

−∞
p(x, r)dx +

∫ m1

−m1

p(x, r)dx +

∫ ∞

m1

p(x, r)dx

= l1(r)

∫ −m1

−∞
p(x)dx + l2(r)

∫ m1

−m1

p(x)dx

+ l3(r)

∫ ∞

m1

p(x)dx

= (l1(r) + l3(r))Q

(

m1

σx

)

+ l2(r)

(

1− 2Q

(

m1

σx

))

.

(26)

The MMSE estimator can now be computed using (23), (24),

(25), and (26) as follows.

E[X |R = r] =

∫

R

xp(x|r)dx =
1

p(r)

∫

R

xp(x, r)dx

=
1

p(r)

(
∫ −m1

−∞
xp(x, r)dx +

∫ m1

−m1

xp(x, r)dx

+

∫ ∞

m1

xp(x, r)dx

)

=
1

p(r)

(

l1(r)

∫ −m1

−∞
xp(x)dx

+ l2(r)

∫ m1

−m1

xp(x)dx + l3(r)

∫ ∞

m1

xp(x)dx

)

(a)
=

1

p(r)
(l3(r) − l1(r))

∫ ∞

m1

xp(x)dx

=
1

p(r)
(l3(r)− l1(r))

√

σ2
x

2π
exp

(

−m1
2

2σ2
x

)

=: g(r), (27)

where (a) follows from
∫m1

−m1
xp(x)dx = 0. The associated

mean squared error is given by

E[(X − E[X |R])
2
] =

∫

R2

(x− g(r))
2
p(x, r)d(x, r)

=

∫ ∞

−∞

(

l1(r)

∫ −m1

−∞
(x− g(r))

2
p(x)dx

+ l2(r)

∫ m1

−m1

(x− g(r))
2
p(x)dx

+ l3(r)

∫ ∞

m1

(x− g(r))
2
p(x)dx

)

dr. (28)

APPENDIX III

OPTIMAL POWER ALLOCATION

According to (7), minimizing DL is equivalent to mini-

mizing
(an+Nr)(bn+Nd)

anbn
subject to an+bn ≤ P , and an, bn ∈

R+. In order to solve this constraint optimization problem,

we can use Lagrange multiplier method. However before

applying this method we verify convexity of the function

that we want to minimize. We can rewrite

(an +Nr) (bn +Nd)

anbn
=

(

1 +
Nr

an

)(

1 +
Nd

bn

)

,

where the right hand side is clearly convex in (an, bn).
The Lagrangian function is given by

J =

(

anbn

(an +Nr) (bn +Nd)

)

+ λ (an + bn − P ) .

From ∂J
∂an

= 0, ∂J
∂bn

= 0, we get

an =
−Nr +

√

N2
r − 4Nr

λ

2
, bn =

−Nd +
√

N2
d − 4Nd

λ

2
,

where λ is chosen to ensure an + bn = P and an, bn ∈ R+.

We observe that for Nr = Nd, the optimal choice is a⋆n =
b⋆n = P

2 .
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